JPH10133740A - Method for detecting abnormality of fan and pump for air-conditioning by acoustic method - Google Patents

Method for detecting abnormality of fan and pump for air-conditioning by acoustic method

Info

Publication number
JPH10133740A
JPH10133740A JP30086596A JP30086596A JPH10133740A JP H10133740 A JPH10133740 A JP H10133740A JP 30086596 A JP30086596 A JP 30086596A JP 30086596 A JP30086596 A JP 30086596A JP H10133740 A JPH10133740 A JP H10133740A
Authority
JP
Japan
Prior art keywords
signal
prediction
sound pressure
pump
pressure signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30086596A
Other languages
Japanese (ja)
Other versions
JP2847643B2 (en
Inventor
Keiichi Tanabe
恵一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP30086596A priority Critical patent/JP2847643B2/en
Publication of JPH10133740A publication Critical patent/JPH10133740A/en
Application granted granted Critical
Publication of JP2847643B2 publication Critical patent/JP2847643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly detect the various abnormality of a fan and pump for air- conditioning, and to prevent a stop due to a fault by removing the characteristics of a sound pressure signal in a normal time from a sound pressure signal in an abnor mal time. SOLUTION: When comparing a preliminarily measured sound pressure signal Ss in a normal time with a sound pressure signal Sf at the time of measurement and detecting an abnormal signal, a signal is separated into a low frequency area corresponding to a rotational frequency and a high frequency area corresponding to the specific number of oscillation of a member, and the abnormality of a fan and a pump is detected according to whether or not a value obtained by removing the characteristics of the sound pressure signal Ss in a normal time from the sound pressure signal Sf at the time of measurement is beyond a threshold value by using a filter in an AR model to which a linear predicting method is applied. Even when the abnormal signal is very weak, only the abnormal signal components buried in the normal signal can be extracted, and a statistical processing can be executed by using the filter in the AR model. Thus, a non-contact type equipment diagnostic method using sound can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は音響法による設備診
断技術に関するものであって、特に建物内に設置されて
いる空調用のフアンやポンプの異常を診断する方法に関
するものである。本発明は空調用以外のフアンやポンプ
についても適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for diagnosing equipment by an acoustic method, and more particularly to a method for diagnosing an abnormality of an air conditioning fan or a pump installed in a building. The present invention can be applied to fans and pumps other than those for air conditioning.

【0002】[0002]

【従来の技術】空調設備の機器は熱源機械室と空調機械
室とに設置される。大規模建物では空調機械室は各所に
分散して設置され、数十個所から百個所以上もの空調機
械室を有する建物も多数ある。これらの機械室内に設置
された空調機器の異常を見つけるのに、従来は保守員が
巡回して耳で音を聞いたり、振動具合を目で見て機器の
状態を診断していた。このような判別には高度の熟練を
要するため、多数の空調機器の異常を確実に検知するだ
けの要員を確保することは困難である。以上のような背
景から、空調設備において保守を自動化、省力化するた
めに機器の状態監視による予知保全の導入が要望されて
いる。
2. Description of the Related Art Air conditioning equipment is installed in a heat source machine room and an air conditioner room. In large-scale buildings, air-conditioning machine rooms are distributed and installed in various places, and many buildings have dozens to hundreds or more air-conditioning machine rooms. Conventionally, maintenance personnel have visited the air conditioner installed in the machine room to listen to the sound with ears or visually check the vibration condition to diagnose the condition of the equipment. Such a determination requires a high level of skill, and it is difficult to secure enough personnel to reliably detect abnormalities in many air conditioners. From the above background, there is a demand for the introduction of predictive maintenance by monitoring the state of equipment in order to automate and save labor in air conditioning equipment.

【0003】空調設備の多数を占める回転機器に対して
は、振動法による状態監視が知られている。しかし、振
動法は接触型であるため各機器の異常振動発生源ごとに
センサーを取り付ける必要があり、機器の台数を上回る
個数のセンサーが必要である。また、小型の部位や内蔵
部品への設置が困難である。そのため、診断対象とでき
る設備機器の台数や検知可能な異常原因が限られてしま
う。これに対し、音響法は非接触型であるため、必ずし
も機器ごとにセンサーを設ける必要がなく、多数の空調
機器が設置された空調機械室に少数のセンサーを設ける
だけで室内に設置された全ての機器の状態を把握できる
という利点を持つ。
[0003] For a rotating device occupying a large number of air conditioners, a condition monitoring by a vibration method is known. However, since the vibration method is a contact type, it is necessary to attach a sensor for each abnormal vibration generation source of each device, and more sensors than the number of devices are required. In addition, it is difficult to install on small parts or built-in components. Therefore, the number of equipment that can be diagnosed and the causes of abnormalities that can be detected are limited. On the other hand, since the acoustic method is a non-contact type, it is not always necessary to provide a sensor for each device, and only a small number of sensors are installed in an air-conditioning machine room where many air-conditioning devices are installed. There is an advantage that the state of the device can be grasped.

【0004】音響法によって異常を検出する方法とし
て、例えば特開平5−99475号「空気調和機におけ
る騒音診断装置」では、室外フアンと圧縮機の騒音異常
から故障の発生を検出している。しかし、この装置では
音圧レベルを測定して称呼値と比較しているので、異常
によって発生する音響信号が微弱であると、それが機器
全体の音響信号に埋もれて異常信号を検出することがで
きない。
As a method of detecting an abnormality by an acoustic method, for example, Japanese Patent Application Laid-Open No. 5-99475, entitled "Noise Diagnosis Apparatus for Air Conditioner", detects a failure from an abnormal noise of an outdoor fan and a compressor. However, since this device measures the sound pressure level and compares it with the nominal value, if the sound signal generated by the abnormality is weak, it can be buried in the sound signal of the entire device and detect the abnormal signal. Can not.

【0005】また、特開平7−43259号「異常検出
方法及び装置」では、正常状態にある装置から得られた
音響波形を基にして逆フイルタを構成し、被検出装置か
ら得られた音響波形に上記逆フイルタを作用させて解析
に不必要な信号成分が除去された残差信号を求め、この
残差信号を解析して装置の異常を検出している。しか
し、この方法では音圧信号を前処理することなしに逆フ
イルタを構成しているので逆フイルタの分解能が低くな
り、特に異常音が回転体のアンバランスのように低周波
数域で発生した場合には異常を検出することができな
い。さらに、流体機械の流量低下のように特定帯域の音
圧が減少する異常音では、残差信号も相対的に小さくな
り、やはりこの方法で異常を検出することはできない。
In Japanese Unexamined Patent Application Publication No. 7-43259, "Abnormality Detection Method and Apparatus", an inverse filter is constructed on the basis of an acoustic waveform obtained from an apparatus in a normal state, and an acoustic waveform obtained from an apparatus to be detected. To obtain a residual signal from which signal components unnecessary for analysis have been removed, and analyze the residual signal to detect an abnormality of the apparatus. However, in this method, since the reverse filter is configured without preprocessing the sound pressure signal, the resolution of the reverse filter is low, especially when abnormal noise occurs in a low frequency range such as imbalance of a rotating body. Cannot detect an abnormality. Furthermore, in the case of an abnormal sound in which the sound pressure in a specific band decreases, such as a decrease in the flow rate of a fluid machine, the residual signal also becomes relatively small, and the abnormality cannot be detected by this method.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、空調
用のフアンやポンプの多様な異常を的確に検知し、故障
による停止を未然に防止するために、所定の時間間隔で
音響を測定し、正常時との音圧信号の変化を検知して異
常の発生を検出する診断方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to accurately detect various abnormalities of air conditioning fans and pumps and to measure sound at predetermined time intervals in order to prevent stoppage due to a failure. It is another object of the present invention to provide a diagnostic method for detecting a change in sound pressure signal from a normal state and detecting occurrence of an abnormality.

【0007】[0007]

【課題を解決するための手段】本発明は、その第1の面
において、空調用フアン及びポンプの発する音響を採取
してこれらの機器の異常を検出する方法であって、あら
かじめ測定しておいた正常時の音圧信号と測定時の音圧
信号とを比較して異常信号を検出するにあたり、信号を
回転周波数に対応した低周波数域と部材の固有振動数に
対応した高周波数域とに分離した後、線形予測法を適用
したARモデルによるフイルタを用い、測定時の音圧信
号から正常時の音圧信号の特性を除去した値が所定のし
きい値を超えるかどうかによってフアン及びポンプの異
常を検出する方法を提供する。
According to the first aspect of the present invention, there is provided a method for detecting sound of an air conditioning fan and a pump and detecting an abnormality of the equipment by measuring sound in advance. When detecting abnormal signals by comparing the sound pressure signal during normal operation with the sound pressure signal during measurement, the signal is divided into a low frequency range corresponding to the rotation frequency and a high frequency range corresponding to the natural frequency of the member. After the separation, the fan and the pump are determined by using a filter based on an AR model to which a linear prediction method is applied, and determining whether a value obtained by removing a characteristic of a sound pressure signal in a normal state from a sound pressure signal in a measurement exceeds a predetermined threshold. To provide a method for detecting abnormalities in a vehicle.

【0008】本発明はその第2の面において、正常信号
と異常信号の予測係数を用いて両方向から予測残差エネ
ルギーの比を求め、その和で定義した距離尺度δaの変
化を検出することによって空調用フアン及びポンプの異
常を検出する。
In a second aspect of the present invention, the ratio of the predicted residual energy is determined from both directions using the prediction coefficients of the normal signal and the abnormal signal, and the change in the distance scale δa defined by the sum is detected. Detects air conditioning fan and pump abnormalities.

【0009】本発明はその第3の面において、正常信号
と異常信号の予測係数を用いて両方向から予測残差の標
準偏差の3倍以上の振幅を持つ予測残差エネルギーの比
を求め、その和で定義した距離尺度δpの変化を検出す
ることによって空調用フアン及びポンプの異常を検出す
る。
According to a third aspect of the present invention, a ratio of a prediction residual energy having an amplitude of three times or more the standard deviation of a prediction residual from both directions is obtained by using prediction coefficients of a normal signal and an abnormal signal. An abnormality in the air conditioning fan and the pump is detected by detecting a change in the distance scale δp defined by the sum.

【0010】ARモデルによるフイルタは、正常信号の
母集団の特徴をモデル化し、そのモデルの成分のみをフ
イルタリングするので、信号処理の前処理として適して
いる。また、統計的な信号処理の方法として線形予測法
自体は周知の方法であり、音声分析などに威力を発揮し
ている。本発明では、信号を低周波数域と高周波数域に
分離した後、この線形予測法を適用したARモデルを空
調用のフアン及びポンプの異常診断に利用した点に特徴
を有する。ARモデルによるフイルタにより、異常信号
が微弱であっても正常信号に埋もれた異常信号成分だけ
を取り出して統計的な処理を施すことが可能になり、音
響を利用した非接触式の設備診断方法が提供されること
になる。
A filter based on an AR model models a characteristic of a population of normal signals and filters only components of the model, so that it is suitable as preprocessing for signal processing. Also, the linear prediction method itself is a well-known method of statistical signal processing, and is effective in speech analysis and the like. The present invention is characterized in that after separating a signal into a low frequency range and a high frequency range, an AR model to which this linear prediction method is applied is used for abnormality diagnosis of a fan and a pump for air conditioning. Even if the abnormal signal is weak, it is possible to extract only the abnormal signal component buried in the normal signal and perform statistical processing using the AR model filter. Will be provided.

【0011】以下の説明において、ARモデル、Levins
on-Durbin アルゴリズム、AIC基準などの用語は、例
えば(社)計測自動制御学会1982年発行の「信号処
理」などに詳述されている周知の用語である。以下、本
発明による好適な実施形態を添付図面を参照しながら説
明する。
In the following description, the AR model, Levins
Terms such as the on-Durbin algorithm and the AIC standard are well-known terms that are described in detail, for example, in "Signal Processing" published by the Society of Instrument and Control Engineers 1982. Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings.

【0012】[0012]

【発明の実施の形態】本発明による音響式の設備診断方
法を実施するために、簡易半無響室から成る実験室にフ
アン及びポンプを図1及び図2(いずれも平面図)のよ
うに設置した。図1では室内にフアン10、サイレンサ
ー12、ダンパ14を配置して、フアンが発する音響を
マイクロホンで採取した。フアンは片吸込シロッコフア
ンを使用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to carry out an acoustic equipment diagnosis method according to the present invention, a fan and a pump are installed in a laboratory consisting of a simple semi-anechoic chamber as shown in FIGS. 1 and 2 (both are plan views). installed. In FIG. 1, a fan 10, a silencer 12, and a damper 14 are arranged in a room, and sound emitted by the fan is collected by a microphone. Juan used one-sided suction sirocco fan.

【0013】図2では、ポンプ20、放熱器22、膨張
タンク24、玉型弁25〜30、圧力計、温度計、流量
計、バタフライ弁、仕切弁などを配管で接続し、ポンプ
が発する音響をマイクロホンで採取した。玉型弁28〜
30は、フアンコイルユニットに対応する二次側負荷の
役目を果たすものである。ポンプは片吸込渦巻ポンプを
使用した。
In FIG. 2, the pump 20, the radiator 22, the expansion tank 24, the globe valves 25 to 30, the pressure gauge, the thermometer, the flow meter, the butterfly valve, the gate valve and the like are connected by piping, and the sound generated by the pump is generated. Was collected with a microphone. Ball valve 28 ~
Numeral 30 serves as a secondary load corresponding to the fan coil unit. The pump used was a single-suction volute pump.

【0014】フアンは両プーリ中間点の本体から20c
mの位置で、ポンプはベアリングケース直上50cmの
位置で、正常状態と人為的に発生させた後述の異常状態
の音圧信号を測定した。測定解析システムを図3に示
す。
The fan is 20c from the body at the midpoint of both pulleys.
At a position of m, the pump measured a sound pressure signal of a normal state and an artificially generated abnormal state described later at a position of 50 cm immediately above the bearing case. FIG. 3 shows a measurement analysis system.

【0015】被検出対象の機器の音圧信号は精密騒音計
を用いて測定し、その音圧信号をデイジタルデータレコ
ーダに収録した。次いで、収録された音圧信号を再生
し、回転周波数に対応した500Hz以下の低周波数域
と、部材の固有振動数に対応した5kHz以上の高周波
数域に分離した後、再度デイジタルデータレコーダに収
録した。さらに、各周波数域に分離された音圧信号をデ
ータ転送ユニットを介してパーソナルコンピュータに取
り込み、以後の解析を行った。
The sound pressure signal of the device to be detected was measured using a precision sound level meter, and the sound pressure signal was recorded on a digital data recorder. Next, the recorded sound pressure signal is reproduced and separated into a low frequency range of 500 Hz or less corresponding to the rotation frequency and a high frequency range of 5 kHz or more corresponding to the natural frequency of the member, and then recorded again to the digital data recorder. did. Further, the sound pressure signals separated into each frequency range were taken into a personal computer via a data transfer unit, and the subsequent analysis was performed.

【0016】本発明の方法によって検出しようとしてい
るフアンの異常として、 (1)ベルト張力(300〜4500g) (2)ベルト傷(カッター,マイクログラインダで刻
設) (3)風量(0〜10000CMH) (4)モータ逆転 (5)アンバランス(おもりの付加) (6)ミスアライメント(プーリ位置の移動) (7)ベアリング傷(マイクログラインダで刻設) を
意図的に発生させて音響を測定した。
The abnormalities of the fan to be detected by the method of the present invention are as follows: (1) Belt tension (300 to 4500 g) (2) Belt flaw (engraved with a cutter or micro grinder) (3) Air volume (0 to 10,000 CMH) (4) Motor reversal (5) Unbalance (addition of weight) (6) Misalignment (movement of pulley position) (7) Bearing damage (engraved with a micro grinder) was intentionally generated and sound was measured.

【0017】また、本発明の方法によって検出しようと
しているポンプの異常として、 (1)流量の大幅な変化(0〜1300リットル/分) (2)エアーの混入 (3)キャビテーションの発生 (4)パッキン異常 (5)ミスアライメント(モータ取付位置の移動) (6)ベアリング傷(マイクログラインダで刻設) を
意図的に発生させて音響を測定した。
[0017] The abnormalities of the pump to be detected by the method of the present invention include: (1) a large change in the flow rate (0 to 1300 liter / min); (2) mixing of air; (3) occurrence of cavitation. Packing abnormality (5) Misalignment (movement of motor mounting position) (6) Sound was measured by intentionally generating bearing damage (carved with a micro grinder).

【0018】音響法によって異常を検出する場合、その
異常によって発生する音圧信号が微弱であると、それが
機器全体の音圧信号に埋もれてしまう可能性がある。そ
こで本発明に従い、異常時の音圧信号(以下、異常信号
という)から正常時の音圧信号(以下、正常信号とい
う)を除去し、異常検出の感度を向上するための手法と
して線形予測法を適用した。
When an abnormality is detected by the acoustic method, if the sound pressure signal generated by the abnormality is weak, it may be buried in the sound pressure signal of the entire device. Therefore, according to the present invention, a linear prediction method is used as a technique for removing a sound pressure signal in a normal state (hereinafter, referred to as a normal signal) from a sound pressure signal in an abnormal state (hereinafter, referred to as an abnormal signal) and improving sensitivity of abnormality detection. Was applied.

【0019】まず、正常信号Ss(n)をARモデルで
モデル化したときの予測残差εss(n)は次式で表され
る。
First, the prediction residual ε ss (n) when the normal signal Ss (n) is modeled by the AR model is expressed by the following equation.

【数9】 ここで、係数askは予測係数、pは予測次数である。(Equation 9) Here, coefficient ask is a prediction coefficient, and p is a prediction order.

【0020】この予測係数askを異常信号Sf(n)に
適用するとその予測残差εfs(n)は、次式で表され
る。
When this prediction coefficient ask is applied to the abnormal signal Sf (n), the prediction residual ε fs (n) is expressed by the following equation.

【数10】 これは、異常信号を正常信号の特性(モデル)でフイル
タリングすることと同義である。
(Equation 10) This is equivalent to filtering an abnormal signal with characteristics (model) of a normal signal.

【0021】正常信号の予測係数askは予測残差ε
ss(n)の2乗和Ess(予測残差エネルギー)が最小に
なるように求めているので、異常により音圧が増大する
異常信号から得られる予測残差εfs(n)の2乗和Efs
はEssよりも大きくなる。そこで、両者の予測残差エネ
ルギーの比δfsを次式で求める。
The prediction coefficient ask of the normal signal is the prediction residual ε
Since the sum of squares E ss (predicted residual energy) of ss (n) is determined to be the minimum, the square of the predicted residual ε fs (n) obtained from the abnormal signal whose sound pressure increases due to the abnormality Sum E fs
Is greater than E ss . Therefore, determining the ratio [delta] fs of both the prediction residual energy by the following equation.

【数11】 [Equation 11]

【0022】ところで、このδfsは対称性を持たない。
すなわち、異常信号Sf(n)の予測係数afkから同様
に予測残差エネルギーの比を求めても、δfsとは同値と
はならない。また、特定帯域の音圧が減少する異常信号
では、予測残差エネルギーEfsはEssよりも小さくな
る。従って、異常信号を予測係数afkで予測して得られ
る予測残差エネルギーEffとEsfから次式でδsfを求め
る。
Incidentally, this δ fs has no symmetry.
That is, even if the prediction residual energy ratio is similarly obtained from the prediction coefficient a fk of the abnormal signal Sf (n), it does not become the same value as δ fs . In the case of an abnormal signal in which the sound pressure in a specific band decreases, the predicted residual energy E fs becomes smaller than E ss . Accordingly, δ sf is obtained from the prediction residual energy E ff and E sf obtained by predicting the abnormal signal with the prediction coefficient a fk by the following equation.

【数12】 (Equation 12)

【0023】そして、対称性を持った距離尺度δaを、
δa=δfs+δsf と定義する。これらの解析フローを
図4に示す。また、ベアリング傷のような衝撃性の音響
を発する異常信号の検出感度を向上するため、それぞれ
の予測残差の標準偏差を求め、その3倍以上の振幅を持
った距離尺度δpを次式で定義した。
Then, a symmetric distance scale δa is expressed as
δa = δ fs + δ sf is defined. FIG. 4 shows these analysis flows. In addition, in order to improve the detection sensitivity of an abnormal signal that emits an impulsive sound such as a bearing flaw, a standard deviation of each prediction residual is obtained, and a distance scale δp having an amplitude three times or more thereof is calculated by the following equation. Defined.

【数13】 (Equation 13)

【0024】なお、距離尺度の解析にあたり無限長の信
号は扱えないので、解析の安定性を考慮して、低周波数
域では2秒、高周波数域では0.75秒の音圧信号を解
析対象とした。ここで、ARモデルの予測係数の解法に
は、Levinson-Durbin アルゴリズムを用い、予測次数は
AIC基準により決定した。本発明では、この距離尺度
δa及びδpを用いて異常検出を行ったところ、後述す
るように異常の程度に対し充分な相関性を持った指標で
あることが判明した。
Since an infinite length signal cannot be handled in the analysis of the distance scale, a sound pressure signal of 2 seconds in a low frequency range and 0.75 seconds in a high frequency range is analyzed in consideration of the stability of the analysis. And Here, the prediction coefficient of the AR model was solved using the Levinson-Durbin algorithm, and the prediction order was determined based on the AIC standard. In the present invention, when anomaly detection is performed using the distance scales δa and δp, it is found that the index has a sufficient correlation with the degree of anomaly as described later.

【0025】解析にあたって、距離尺度δaの効果を確
認するため、音圧信号を直接用いた距離尺度δtaとの
比較を行った。距離尺度δtaを次式のように定義す
る。
In the analysis, in order to confirm the effect of the distance scale δa, a comparison was made with the distance scale δta directly using the sound pressure signal. The distance scale δta is defined as follows.

【数14】 [Equation 14]

【0026】また、距離尺度δpの効果を確認するた
め、音圧信号を直接用いた距離尺度δtpとの比較を行
った。距離尺度δtpを次式のように定義する。
Further, in order to confirm the effect of the distance scale δp, a comparison was made with a distance scale δtp using a sound pressure signal directly. The distance scale δtp is defined as follows.

【数15】 (Equation 15)

【0027】[0027]

【解析結果】代表的なフアンのベルト張力(正常:12
00g)、風量(正常:8300CMH)、アンバラン
ス及びポンプの流量(正常:800リットル/mi
n)、ミスアライメント、パッキン締付け圧を異常な状
態になるまで変化させた解析結果を図5〜6に示す。縦
軸は距離尺度、横軸はそれぞれ変化させた量を表してい
る。
[Analysis results] Typical fan belt tension (normal: 12
00g), air volume (normal: 8300CMH), unbalance and pump flow rate (normal: 800 liters / mi)
n), the misalignment, and the analysis results of changing the packing tightening pressure until an abnormal state is shown in FIGS. The vertical axis represents the distance scale, and the horizontal axis represents the changed amount.

【0028】図5A〜Cはフアンによる低周波数域での
距離尺度δaの解析結果、図6Aはポンプを用いた高周
波数域での距離尺度δaの解析結果、図6B〜Cはポン
プを用いた高周波数域での距離尺度δpの解析結果であ
る。
FIGS. 5A to 5C show the analysis results of the distance scale δa in the low frequency range by the fan, FIG. 6A shows the analysis results of the distance scale δa in the high frequency range using the pump, and FIGS. 6B to 6C show the results of the analysis using the pump. It is an analysis result of the distance scale δp in a high frequency range.

【0029】なお、図中には低周波数域の解析方法とし
て定義した距離尺度δa,δpの他に、比較のためAR
モデルでフイルタリングせず音圧信号から直接求めた距
離尺度δta,δtpも表示した。
In the figure, in addition to the distance scales δa and δp defined as the analysis method in the low frequency range, AR
Distance scales δta and δtp directly obtained from the sound pressure signal without filtering by the model are also displayed.

【0030】解析結果は、概してδtaでは異常の検出
が困難なのに対して、δaではしきい値を例えば2.1
〜3.0程度に設定して異常を検出することが可能であ
り、しかも解析結果も安定している。また、δtpより
もδpの方が検出感度が向上している。図に示した以外
の異常に関しても、低周波数域、高周波数域それぞれの
距離尺度δaとδpを用いることによりほぼ全ての異常
を検出可能であり、機種の異なるフアン、ポンプに関す
る解析においても同様の結果を得ることができた。この
ことから、本発明による手法は、異常によって発生した
音圧信号を感度良く解析できることがわかる。
As a result of analysis, it is generally difficult to detect an abnormality at δta, whereas a threshold value at δa is, for example, 2.1.
Abnormality can be detected by setting the value to about 3.0, and the analysis result is stable. Further, the detection sensitivity of δp is higher than that of δtp. For abnormalities other than those shown in the figure, almost all abnormalities can be detected by using the distance scales δa and δp in the low frequency range and the high frequency range, respectively. The result was able to be obtained. This indicates that the method according to the present invention can analyze a sound pressure signal generated due to an abnormality with high sensitivity.

【0031】以上の解析結果をまとめると次のようなこ
とが判明した。 (1)解析の前処理として信号を低周波数域と高周波数
域に分離することで、ARモデルの分解能が向上する。 (2)正常信号と異常信号の両方の予測係数を用いて対
称性を持った距離尺度を定義することにより、しきい値
を設定して異常を確実に検出できる。また、特定帯域の
音圧が減少するような異常でも検出可能となる。 (3)衝撃性の信号に対しては、距離尺度δaよりも距
離尺度δpの方が検出能力が優れている。 (4)結論として、フアン及びポンプの主要な故障につ
ながる前兆現象は音響によって検出することが充分可能
である
The following has been found out from the above analysis results. (1) The resolution of the AR model is improved by separating the signal into a low frequency region and a high frequency region as preprocessing for analysis. (2) By defining a symmetric distance scale using the prediction coefficients of both the normal signal and the abnormal signal, it is possible to set the threshold value and reliably detect the abnormality. Also, it is possible to detect an abnormality such as a decrease in sound pressure in a specific band. (3) For a shock signal, the distance scale δp has better detection capability than the distance scale δa. (4) In conclusion, precursory phenomena leading to major failures of the fan and pump are sufficiently detectable by sound

【0032】[0032]

【発明の効果】以上詳細に説明した如く、本発明の検出
方法によれば、信号を回転周波数に対応した低周波数域
と部材の固有振動数に対応した高周波数域とに分離した
後、線形予測法を適用したARモデルによるフイルタを
用いることにより、異常信号が微弱であっても、正常信
号に埋もれた異常信号成分だけを取り出して統計的な処
理を施すことが可能になり、音響を利用した非接触式の
設備診断方法が提供されることになる。本発明による診
断方法は、既設の建物に対しても適用することができる
ので、定常的なメンテナンス性を高めることができる
等、その技術的効果には極めて顕著なものがある。
As described above in detail, according to the detection method of the present invention, the signal is separated into a low frequency range corresponding to the rotational frequency and a high frequency range corresponding to the natural frequency of the member, and then the signal is linearized. By using a filter based on the AR model to which the prediction method is applied, even if the abnormal signal is weak, it is possible to extract only the abnormal signal component buried in the normal signal and perform statistical processing, and use sound. Thus, a non-contact type facility diagnosis method is provided. Since the diagnostic method according to the present invention can be applied to an existing building, the technical effects thereof are extremely remarkable, such as the ability to improve regular maintenance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験用のフアンを室内に配置した状態の平面図
である。
FIG. 1 is a plan view showing a state in which an experimental fan is arranged in a room.

【図2】実験用のポンプを室内に配置した状態の平面図
である。
FIG. 2 is a plan view showing a state where an experimental pump is arranged in a room.

【図3】音響測定と解析の流れを示すブロック図であ
る。
FIG. 3 is a block diagram illustrating a flow of acoustic measurement and analysis.

【図4】距離尺度を求める方法を表すブロック図であ
る。
FIG. 4 is a block diagram illustrating a method for obtaining a distance scale.

【図5】フアンについての解析結果のグラフである。FIG. 5 is a graph showing an analysis result of a fan.

【図6】ポンプについての解析結果のグラフである。FIG. 6 is a graph of an analysis result of a pump.

【符号の説明】[Explanation of symbols]

10 フアン 12 サイレンサー 14 ダンパ 20 ポンプ 22 放熱器 24 膨張タンク 25〜30 玉型弁 Reference Signs List 10 fan 12 silencer 14 damper 20 pump 22 radiator 24 expansion tank 25 to 30 globe valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空調用フアン及びポンプの発する音響を
採取してこれらの機器の異常を検出する方法であって、 あらかじめ測定しておいた正常時の音圧信号と測定時の
音圧信号とを比較して異常信号を検出するにあたり、信
号を回転周波数に対応した低周波数域と部材の固有振動
数に対応した高周波数域とに分離した後、線形予測法を
適用したARモデルによるフイルタを用い、測定時の音
圧信号から正常時の音圧信号の特性を除去した値が所定
のしきい値を超えるかどうかによってフアン及びポンプ
の異常を検出することを特徴とする音響法による空調用
フアン及びポンプの異常検出方法。
1. A method for detecting abnormalities of these devices by collecting sounds emitted from an air conditioning fan and a pump, comprising: a sound pressure signal in a normal state, a sound pressure signal in a normal state; In order to detect an abnormal signal by comparing with the above, after separating the signal into a low frequency range corresponding to the rotation frequency and a high frequency range corresponding to the natural frequency of the member, a filter by an AR model to which a linear prediction method is applied is used. An air-conditioning system using an acoustic method, wherein an abnormality of a fan and a pump is detected based on whether a value obtained by removing a characteristic of a sound pressure signal in a normal state from a sound pressure signal at the time of measurement exceeds a predetermined threshold value. An abnormality detection method for fans and pumps.
【請求項2】 正常信号Ss(n)をARモデルでモデ
ル化したときの予測残差εss(n)を、予測係数を係数
sk、予測次数をpとして次式で求め、 【数1】 次にこの予測係数askを異常信号Sf(n)に適用して
その予測残差εfs(n)を次式で求め、 【数2】 次に両者の予測残差エネルギーの比δfsを次式で求め、 【数3】 次にこれと対称的な予測残差エネルギーの比δsfを次式
で求め、 【数4】 δfsとδsfの和を距離尺度δaと定義し、この距離尺度
δaの変化を検出することによって空調用フアン及びポ
ンプの異常を検出することを特徴とする請求項1記載の
方法。
2. A prediction residuals when modeling normal signal Ss (n) of the AR model epsilon ss (n) is, by the following equation prediction coefficients coefficients a sk, a prediction order as p, Equation 1 ] Then apply the prediction coefficients a sk abnormal signal Sf (n) determined the prediction residual epsilon fs (n) of the following formula, Equation 2] Next, the ratio δ fs of the predicted residual energies of the two is obtained by the following equation. Next, the ratio δ sf of the predicted residual energy symmetrical to this is calculated by the following equation. 2. The method according to claim 1, wherein the sum of δ fs and δ sf is defined as a distance scale δa, and abnormality in the air conditioning fan and pump is detected by detecting a change in the distance scale δa.
【請求項3】 正常信号Ss(n)をARモデルでモデ
ル化したときの予測残差εss(n)を、予測係数を係数
sk、予測次数をpとして次式で求め、 【数5】 次にこの予測係数askを異常信号Sf(n)に適用して
その予測残差εfs(n)を次式で求め、 【数6】 次に両者の予測残差の標準偏差を求め、その3倍以上の
振幅を持つ予測残差のエネルギーの比δ’fsを次式で求
め、 【数7】 次にこれと対称的な予測残差エネルギーの比δ’sfを次
式で求め、 【数8】 δ’fsとδ’sfの和を距離尺度δpと定義し、この距離
尺度δpの変化を検出することによって空調用フアン及
びポンプの異常を検出することを特徴とする請求項1記
載の方法。
Wherein the modeled prediction residual epsilon ss when normal signal Ss (n) of the AR model (n), calculated using the following expression prediction coefficients coefficients a sk, a prediction order as p, Equation 5 ] Then apply the prediction coefficients a sk abnormal signal Sf (n) determined the prediction residual epsilon fs (n) of the following formula, [6] Next, the standard deviation of both prediction residuals is obtained, and the energy ratio δ ′ fs of the prediction residual having an amplitude three times or more thereof is obtained by the following equation. Next, a symmetric ratio δ ' sf of the predicted residual energy is calculated by the following equation. 2. The method according to claim 1, wherein the sum of δ ′ fs and δ ′ sf is defined as a distance scale δp, and the abnormality of the air conditioning fan and the pump is detected by detecting a change in the distance scale δp.
JP30086596A 1996-10-28 1996-10-28 Method for detecting abnormality of air conditioning fan and pump by acoustic method Expired - Lifetime JP2847643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30086596A JP2847643B2 (en) 1996-10-28 1996-10-28 Method for detecting abnormality of air conditioning fan and pump by acoustic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30086596A JP2847643B2 (en) 1996-10-28 1996-10-28 Method for detecting abnormality of air conditioning fan and pump by acoustic method

Publications (2)

Publication Number Publication Date
JPH10133740A true JPH10133740A (en) 1998-05-22
JP2847643B2 JP2847643B2 (en) 1999-01-20

Family

ID=17890046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30086596A Expired - Lifetime JP2847643B2 (en) 1996-10-28 1996-10-28 Method for detecting abnormality of air conditioning fan and pump by acoustic method

Country Status (1)

Country Link
JP (1) JP2847643B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041143A (en) * 2000-07-31 2002-02-08 Chiyoda Corp Method for diagnosing abnormality of operating part and method for diagnosing abnormality of compressor valve
JP2007121048A (en) * 2005-10-27 2007-05-17 Tokai Denshi Kk Method of measuring breath alcohol
JP2009156732A (en) * 2007-12-27 2009-07-16 Nitto Seiko Co Ltd Abnormality detector
CN104005979A (en) * 2014-06-18 2014-08-27 国家电网公司 Portable draught fan performance testing platform
JP2015148516A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Abnormality detection device and method
JP2016075563A (en) * 2014-10-06 2016-05-12 株式会社東芝 Rotary apparatus vibration diagnosis device, method, and program
CN107420337A (en) * 2017-07-24 2017-12-01 温州长江汽车电子有限公司 A kind of control circuit of blower with diagnostic function
US10368177B2 (en) 2017-11-29 2019-07-30 Fujitsu Limited Abnormality detecting device, abnormality detection method, and recording medium storing abnormality detection computer program
JP2021096966A (en) * 2019-12-18 2021-06-24 大阪瓦斯株式会社 Abnormality determination system and fuel cell device
JP2021523376A (en) * 2018-05-18 2021-09-02 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング State analysis of guided operating means
WO2021256358A1 (en) * 2020-06-15 2021-12-23 三菱パワー株式会社 Predictive determination device, predictive determination system, predictive determination method and program
CN114635865A (en) * 2022-02-28 2022-06-17 漳州科华电气技术有限公司 Fan warning method, terminal and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197141A1 (en) * 2014-10-15 2015-12-30 Grundfos Holding A/S METHOD AND SYSTEM FOR DETECTION OF FAULTS IN PUMP ASSEMBLY VIA HANDHELD COMMUNICATION DEVICe

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041143A (en) * 2000-07-31 2002-02-08 Chiyoda Corp Method for diagnosing abnormality of operating part and method for diagnosing abnormality of compressor valve
JP2007121048A (en) * 2005-10-27 2007-05-17 Tokai Denshi Kk Method of measuring breath alcohol
JP4709630B2 (en) * 2005-10-27 2011-06-22 東海電子株式会社 Breath alcohol measurement method
JP2009156732A (en) * 2007-12-27 2009-07-16 Nitto Seiko Co Ltd Abnormality detector
JP2015148516A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Abnormality detection device and method
CN104005979A (en) * 2014-06-18 2014-08-27 国家电网公司 Portable draught fan performance testing platform
JP2016075563A (en) * 2014-10-06 2016-05-12 株式会社東芝 Rotary apparatus vibration diagnosis device, method, and program
CN107420337A (en) * 2017-07-24 2017-12-01 温州长江汽车电子有限公司 A kind of control circuit of blower with diagnostic function
US10368177B2 (en) 2017-11-29 2019-07-30 Fujitsu Limited Abnormality detecting device, abnormality detection method, and recording medium storing abnormality detection computer program
JP2021523376A (en) * 2018-05-18 2021-09-02 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング State analysis of guided operating means
US11788879B2 (en) 2018-05-18 2023-10-17 Maschinenfabrik Reinhausen Gmbh State analysis of an inductive operating resource
JP2021096966A (en) * 2019-12-18 2021-06-24 大阪瓦斯株式会社 Abnormality determination system and fuel cell device
WO2021256358A1 (en) * 2020-06-15 2021-12-23 三菱パワー株式会社 Predictive determination device, predictive determination system, predictive determination method and program
CN114635865A (en) * 2022-02-28 2022-06-17 漳州科华电气技术有限公司 Fan warning method, terminal and storage medium
CN114635865B (en) * 2022-02-28 2023-10-27 漳州科华电气技术有限公司 Fan alarm method, terminal and storage medium

Also Published As

Publication number Publication date
JP2847643B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP2847643B2 (en) Method for detecting abnormality of air conditioning fan and pump by acoustic method
KR100426227B1 (en) Methods, devices and systems for identifying subjects
JP2913552B1 (en) Method for identifying abnormal equipment of air conditioning fan and pump by acoustic method
US7729876B2 (en) Diagnostic device for use in process control system
WO2002073150A3 (en) System and method for analyzing vibration signals
KR101247337B1 (en) Function tester apparatus for vacuum pump
CN106068447B (en) Differential pressure measurement component and method for monitoring differential pressure measurement component
JP5113874B2 (en) Structural integrity monitoring system
JP2006161677A (en) Compressor inspection device
KR20090010430A (en) Apparatus for detecting mechanical trouble
Parrondo et al. Development of a predictive maintenance system for a centrifugal pump
US20160290560A1 (en) Monitoring of a condensate drain
Jamia et al. Mistuning identification in a bladed disk using wavelet packet transform
KR101920922B1 (en) Apparatus for diagnosing pneumatic control valve and method thereof
CN112460040A (en) Pump sound wave monitoring system and method
KR100836043B1 (en) Apparatus ditecting leakage of valve for removing background noise and method using the same
JP2001099757A (en) Method for detecting bearing malfunction
JP3188812B2 (en) Equipment diagnosis system
KR100905235B1 (en) A precision diagnostic method for the failure protection and predictive maintenance of a vacuum pump and a precision diagnostic system therefor
JP3014201B2 (en) Bearing abnormality prediction device
KR100436573B1 (en) Automatic vibration and sound quality evaluation system
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
Johnson Jr Vibration tests for bearing wear
Higham et al. Predictive maintenance of pumps based on signal analysis of pressure and differential pressure (flow) measurements
JPH04252928A (en) Diagnostic apparatus for pump failure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term