JPH10132212A - Circulating particle size monitor for circulating fluidized-bed apparatus - Google Patents

Circulating particle size monitor for circulating fluidized-bed apparatus

Info

Publication number
JPH10132212A
JPH10132212A JP28377096A JP28377096A JPH10132212A JP H10132212 A JPH10132212 A JP H10132212A JP 28377096 A JP28377096 A JP 28377096A JP 28377096 A JP28377096 A JP 28377096A JP H10132212 A JPH10132212 A JP H10132212A
Authority
JP
Japan
Prior art keywords
circulating
probe
heat transfer
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28377096A
Other languages
Japanese (ja)
Inventor
Kenichi Arima
謙一 有馬
Kenji Tagashira
田頭  健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28377096A priority Critical patent/JPH10132212A/en
Publication of JPH10132212A publication Critical patent/JPH10132212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously monitor information regarding a particle size of circulating particle during operating in a circulating fluidized-bed apparatus having a combustion chamber and a fluidized-bed type external heat exchanger receiving particles flowing out together with combustion gas from the chamber, cooling and then returning it to the chamber. SOLUTION: A temperature detecting end 26 and a heat transfer probe 27 are installed in a fluidized-bed type external heat exchanger 3. An output of the end 26 and a signal of a surface temperature of the probe 27 are sent to a calculator 28, which outputs a temperature difference. Power supplied to the probe 27 is regulated by a power regulator 29 so that the difference becomes a predetermined value. A heat transfer coefficient Kt between the surface of the probe 27 and a particle layer is calculated by a calculator 30 from energy given to the probe 27, temperature difference and area of a heating surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼室から燃焼ガ
スと共に流出する粒子を受入れて冷却後、同燃焼室へ戻
す流動層方式の外部熱交換器を有する循環流動層装置に
おいて、循環粒子の粒度を監視する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating fluidized bed apparatus having a fluidized bed type external heat exchanger that receives particles flowing out of a combustion chamber together with combustion gas, cools the particles, and returns the particles to the combustion chamber. The present invention relates to an apparatus for monitoring particle size.

【0002】[0002]

【従来の技術】循環流動層ボイラ等の循環流動層装置に
おいては、循環している粒子の粒度を把握することが、
装置の安定運用を確保し、良好な性能を維持するために
不可欠である。しかし、循環粒子の粒度に関する情報を
運転中に連続的に、かつ容易に得る方法はなく、必要に
応じて粒子を外部に抜き出し、それの粒度分布などを測
定する方法を取らざるを得ない状況にあった。
2. Description of the Related Art In a circulating fluidized bed apparatus such as a circulating fluidized bed boiler, it is necessary to grasp the particle size of circulating particles.
It is indispensable to ensure stable operation of the equipment and maintain good performance. However, there is no way to obtain information on the particle size of circulating particles continuously and easily during operation, and it is necessary to take out the particles as needed and measure the particle size distribution etc. Was in

【0003】[0003]

【発明が解決しようとする課題】前記したように、循環
流動層装置における循環粒子の粒度を知るために、従来
は、運転中の装置の粒子循環系から粒子を抜き出し、そ
れを分析することで粒度に関する情報を得てきた。しか
しながら、この従来のやり方では次のような問題があっ
た。(1)一般的に高温の流動材を取り扱うことから危
険性がある。(2)分析に時間を要するため経時的なデ
ータの入手が困難である。
As described above, in order to know the particle size of circulating particles in a circulating fluidized bed apparatus, conventionally, particles are extracted from a particle circulation system of an operating apparatus and analyzed. We have gained information on particle size. However, this conventional method has the following problems. (1) Generally, there is a danger from handling a high temperature fluid material. (2) It is difficult to obtain data over time because analysis takes time.

【0004】本発明は、燃焼室、及び同燃焼室から燃焼
ガスと共に流出する粒子を受入れて冷却後、同燃焼室へ
戻す流動層方式の外部熱交換器を有する循環流動層装置
において、循環粒子の粒度に関する情報を装置運転中に
連続的に監視できる装置を提供することを課題としてい
る。
The present invention relates to a circulating fluidized bed apparatus having a combustion chamber and a fluidized bed type external heat exchanger that receives particles flowing out of the combustion chamber together with the combustion gas, cools the particles, and returns the particles to the combustion chamber. It is an object of the present invention to provide a device capable of continuously monitoring information on the particle size of the device during operation of the device.

【0005】[0005]

【課題を解決するための手段】本発明では、粒子の物性
値のうち粒子径が変化した場合に、粒子層と伝熱面との
間の伝熱係数が変化することに着目し、伝熱係数の変化
を測定するプローブを流動層方式の外部熱交換器内に設
けて、得られた伝熱係数から粒子径を知ることにより前
記課題を解決するようにした。
According to the present invention, the heat transfer coefficient between the particle layer and the heat transfer surface changes when the particle diameter changes among the physical property values of the particles. A probe for measuring a change in the coefficient was provided in an external heat exchanger of a fluidized bed system, and the above-mentioned problem was solved by knowing the particle size from the obtained heat transfer coefficient.

【0006】すなわち、本発明は、前記課題を解決する
ため、外部熱交換器内に設置した伝熱プローブによって
同プローブと循環粒子間の伝熱係数を求め、これにより
循環粒子の粒度変化を知る粒度監視装置であって、前記
プローブと循環粒子との間の温度差を測定する手段、お
よび前記温度差を発生させるのに要したエネルギを測定
する手段を有する循環粒子の粒度監視装置を提供する。
That is, in order to solve the above-mentioned problems, the present invention obtains a heat transfer coefficient between the probe and the circulating particles by using a heat transfer probe installed in an external heat exchanger, thereby obtaining a change in particle size of the circulating particles. Provided is a particle size monitoring device, comprising a means for measuring a temperature difference between the probe and the circulating particles, and a means for measuring energy required to generate the temperature difference. .

【0007】このように構成した本発明による粒度監視
装置において、その伝熱プローブは外部からエネルギを
与え、または奪い、プローブ表面と粒子層との間に温度
差を発生させる。そして、この与え、あるいは、奪った
エネルギの量を求めると共に、発生した温度差を求め
る。この温度差と、その温度差を発生させる為に与え、
あるいは、奪ったエネルギからプローブ表面と粒子層と
の間の伝熱係数を算出し、別途有する、粒子径と伝熱係
数との関係から粒子径の変化を求める。
In the particle size monitor according to the present invention, the heat transfer probe applies or removes energy from the outside, and generates a temperature difference between the probe surface and the particle layer. Then, the amount of the given or taken energy is obtained, and the generated temperature difference is obtained. This temperature difference and given to generate that temperature difference,
Alternatively, the heat transfer coefficient between the probe surface and the particle layer is calculated from the energy taken, and the change in the particle diameter is obtained from the relationship between the particle diameter and the heat transfer coefficient, which is separately provided.

【0008】このようにして、循環粒子の粒度を監視で
きるので、本発明によれば高温粒子のサンプリングが不
要になり安全性が増す。また、本発明によれば連続し
て、かつ速やかに循環粒子の粒度に関するデータが取得
できるため、経時変化の把握が容易であり、また運転条
件へのフィードバックも容易になる。
In this way, the particle size of the circulating particles can be monitored, and according to the present invention, sampling of high-temperature particles becomes unnecessary, and safety is increased. Further, according to the present invention, since data on the particle size of the circulating particles can be obtained continuously and promptly, it is easy to grasp changes over time and feedback to operating conditions is also easy.

【0009】[0009]

【発明の実施の形態】以下、本発明を、循環流動層ボイ
ラにおける循環粒子の粒度監視に適用した場合の実施の
形態について図面を用いて具体的に説明する。図1に示
す循環流動層ボイラは燃焼室1、サイクロン2、流動層
方式の外部熱交換器3、スタンドパイプ4の主要部分か
ら構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to particle size monitoring of circulating particles in a circulating fluidized bed boiler will be specifically described with reference to the drawings. The circulating fluidized bed boiler shown in FIG. 1 includes a combustion chamber 1, a cyclone 2, a fluidized bed type external heat exchanger 3, and main parts of a stand pipe 4.

【0010】燃焼用の空気がブロア5a,5b,5cか
ら供給され、燃焼室1では高速流動層と呼ばれる流動状
態を形成し、燃料供給装置6から供給された燃料が燃焼
している。ボイラ内には、けい砂などの流動材が存在
し、未燃の燃料と共に燃焼室1、サイクロン2、外部熱
交換器3、スタンドパイプ4から形成される系内を循環
している。
[0010] Air for combustion is supplied from the blowers 5a, 5b, 5c, and in the combustion chamber 1, a fluid state called a high-speed fluidized bed is formed, and the fuel supplied from the fuel supply device 6 is burning. Fluid such as silica sand is present in the boiler, and circulates together with unburned fuel in a system formed by the combustion chamber 1, the cyclone 2, the external heat exchanger 3, and the stand pipe 4.

【0011】燃焼ガスと流動材とは、サイクロン2で分
離され、ガスは対流伝熱面7、バグフィルタ8、誘引フ
ァン9を経て煙突10から放出される。分離された流動
材は、流動層方式の外部熱交換器3に入り、内部の伝熱
面で冷却されたのち燃焼室1へ再循環する。
The combustion gas and the fluidized material are separated by the cyclone 2, and the gas is discharged from the chimney 10 through the convection heat transfer surface 7, the bag filter 8, and the induction fan 9. The separated fluidized material enters the fluidized bed type external heat exchanger 3, is cooled on the internal heat transfer surface, and is then recirculated to the combustion chamber 1.

【0012】燃焼室1内に残留する粒子は必要に応じて
灰取出し装置11で系外に排出する。流動層方式の外部
熱交換器3には伝熱係数を求める目的で温度検出端26
および伝熱プローブ27が取り付けられており、両者と
も流動層中に、ひたされた状態にある。
Particles remaining in the combustion chamber 1 are discharged out of the system by an ash removing device 11 as needed. The fluidized bed type external heat exchanger 3 has a temperature detecting end 26 for the purpose of obtaining a heat transfer coefficient.
And a heat transfer probe 27 are attached, both of which are in a dipped state in the fluidized bed.

【0013】図4は、伝熱プローブ27の構造例であ
る。内部にヒータ31が設けられており、プローブの外
面に近い位置に熱電対32が埋め込まれており、ヒータ
31および熱電対32からは、それぞれ外部へ接続する
端子が設けられている。
FIG. 4 shows an example of the structure of the heat transfer probe 27. A heater 31 is provided inside, and a thermocouple 32 is embedded at a position near the outer surface of the probe, and terminals connected to the outside are provided from the heater 31 and the thermocouple 32, respectively.

【0014】粒子層と伝熱プローブ27の表面との間の
伝熱係数Kt [W/m2・k]を求める具体的方法は多数ある
が、ここでは次のような方法によった。まず、流動層内
に設けた加熱面(ここでは伝熱プローブ27の表面)と
粒子層温度との間に或る温度差を生じるようにプローブ
にエネルギEを加える。このとき加熱面の温度をT1
子層の温度をT2 、加えたエネルギをE、加熱面の面積
をAとすると伝熱係数Ktは次式で求まる。
There are many specific methods for obtaining the heat transfer coefficient Kt [W / m 2 · k] between the particle layer and the surface of the heat transfer probe 27. Here, the following method is used. First, energy E is applied to the probe so that a certain temperature difference occurs between the heating surface provided in the fluidized bed (here, the surface of the heat transfer probe 27) and the particle layer temperature. Temperature T 2 of the temperature of the heating surface at this time T 1 particle layer, the energy added E, the heat transfer coefficient Kt and the area of the heating surface and A is determined by the following equation.

【0015】[0015]

【数1】 (Equation 1)

【0016】本装置の具体的な動作は次のようになる。
粒子層の温度を測定する温度検出端26の出力と伝熱プ
ローブ27表面温度の信号は演算器28に入り前記温度
差T1 −T2 が出力される。伝熱プローブ27に供給さ
れる電力は、電力調整器29により温度差T1 −T2
あらかじめ設定した値となるように調整される。伝熱プ
ローブ27の表面と粒子層間の伝熱係数Ktは演算器3
0で前述のように(1)式で求められる。
The specific operation of the present apparatus is as follows.
The output of the temperature detecting end 26 for measuring the temperature of the particle layer and the signal of the surface temperature of the heat transfer probe 27 enter the calculator 28 and output the temperature difference T 1 -T 2 . The power supplied to the heat transfer probe 27 is adjusted by the power regulator 29 so that the temperature difference T 1 -T 2 becomes a preset value. The heat transfer coefficient Kt between the surface of the heat transfer probe 27 and the particle layer is calculated by the arithmetic unit 3
At 0, it is obtained by the equation (1) as described above.

【0017】さて、実際に本発明を適用した流動層装置
において、循環粒子の粒度分布が変化した場合を考え
る。図3は粒子径dpと空げき率εと伝熱係数Ktとの
関係を示すものである(本図はVDI−WAERMEA
TLAS第4版による)。これによれば空げき率εを一
定とすれば粒子径の変化に対して、伝熱係数も変化す
る。
Now, consider a case where the particle size distribution of circulating particles changes in a fluidized bed apparatus to which the present invention is actually applied. FIG. 3 shows the relationship among the particle diameter dp, the porosity ε, and the heat transfer coefficient Kt (the figure shows VDI-WAERMEA).
(TLAS 4th edition). According to this, if the porosity ε is fixed, the heat transfer coefficient also changes with a change in the particle diameter.

【0018】従って、本発明の装置で伝熱係数を決定す
れば、その変化量から粒子径の変化(伝熱特性から決ま
る代表径としての値)が求まることになる。空げき率ε
は次の(2)式で定義される値であるが、循環流動層装
置の流動層熱交換器内では、実用範囲においてほぼ一定
となる。
Therefore, when the heat transfer coefficient is determined by the apparatus of the present invention, a change in the particle diameter (a value as a representative diameter determined from the heat transfer characteristics) can be obtained from the change amount. Vacancy rate ε
Is a value defined by the following equation (2), but becomes substantially constant within a practical range in a fluidized bed heat exchanger of a circulating fluidized bed apparatus.

【0019】[0019]

【数2】 (Equation 2)

【0020】本発明で対象と(想定)している流動層装
置で使用する流動材物性例を示すと、粒子密度ρp =2
700kg/m3 、粒子層かさ密度ρb =1200kg/m
3 (流動中の)である。従って、空げき率ε=1−(ρ
b /ρp )=1−(1200/2700)=0.56で
あり、この値を空げき率の値として取り扱うことが可能
である。流動中の粒子層かさ密度に関しては、従来の知
見、例えば次の(3)式で推算した値を採用することも
可能である。
[0020] The present invention and the target at the illustrating a flow material properties an example of using a fluidized bed apparatus which is (assuming), particle density [rho p = 2
700 kg / m 3 , particle layer bulk density ρ b = 1200 kg / m
3 (in flux). Therefore, the void ratio ε = 1− (ρ
b / ρ p ) = 1− (1200/2700) = 0.56, and this value can be handled as the value of the void ratio. With respect to the bulk density of the flowing particle layer, it is possible to use conventional knowledge, for example, a value estimated by the following equation (3).

【0021】[0021]

【数3】 (Equation 3)

【0022】具体的な例として循環粒子径が粗大化した
場合を考える。一般に循環流動層装置において循環粒子
が粗大化することは、粒子の循環量が減少するため、種
々の性能低下をおこすことが多い。この場合、粒子の粗
大化は、伝熱係数の低下となって示されるので、その場
合には細かな流動材の補充や、粗大粒子の系外排出等の
対応をとることができる。
As a specific example, consider a case where the circulating particle diameter is coarsened. Generally, coarsening of circulating particles in a circulating fluidized bed apparatus often causes various performance degradations because the amount of circulating particles is reduced. In this case, the coarsening of the particles is indicated by a decrease in the heat transfer coefficient. In this case, it is possible to take measures such as replenishment of the fine fluid material and discharge of the coarse particles out of the system.

【0023】図2は図1の実施形態を変形した別の実施
形態を示す図である。この実施形態では、図1の構成に
加え、粒子層(流動層)の空げき率εを正確に知る目的
で、粒子層の単位長さあたりの圧損を差圧計33で測定
できるようにしたものである。圧損を測定する部分の長
さをL,測定された圧損をΔpとすると粒子層のかさ密
度ρb は次の(4)式で求まるので、粒子径の変化をよ
り正確に推定することが可能になる。
FIG. 2 is a diagram showing another embodiment obtained by modifying the embodiment of FIG. In this embodiment, in addition to the configuration shown in FIG. 1, the pressure loss per unit length of the particle layer can be measured by the differential pressure gauge 33 for the purpose of accurately knowing the porosity ε of the particle layer (fluidized bed). It is. Assuming that the length of the part where the pressure loss is measured is L and the measured pressure loss is Δp, the bulk density ρ b of the particle layer is obtained by the following equation (4), so that the change in the particle diameter can be more accurately estimated. become.

【0024】[0024]

【数4】 (Equation 4)

【0025】[0025]

【発明の効果】以上説明したように、本発明は、循環流
動層装置において、流動層方式の外部熱交換器内に設置
した伝熱プローブによって同プローブと循環粒子間の伝
熱係数を求め、これにより循環粒子の粒度変化を知る粒
度監視装置であって、これにより次のような効果が得ら
れる。
As described above, according to the present invention, in a circulating fluidized bed apparatus, a heat transfer probe installed in a fluidized bed type external heat exchanger determines a heat transfer coefficient between the probe and circulating particles. This is a particle size monitoring device that knows the change in the particle size of the circulating particles, and has the following effects.

【0026】循環流動層装置における循環粒子の物性変
化を連続的に、かつ、迅速に把握することが可能になる
ため、循環粒子の物性変動に起因する不具合の発生を容
易に検知することが可能になり、また種々の運転操作の
影響を具体的に評価できるようになるなど、循環流動層
装置の性能向上、信頼性向上に寄与するものであり、実
用上、非常に有益である。
Since the change in the physical properties of the circulating particles in the circulating fluidized bed apparatus can be continuously and promptly grasped, it is possible to easily detect the occurrence of a trouble due to the fluctuation in the physical properties of the circulating particles. And contributes to the improvement of the performance and reliability of the circulating fluidized bed apparatus, for example, by being able to specifically evaluate the effects of various driving operations, and is very useful in practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る循環流動層ボイラ
の構成図。
FIG. 1 is a configuration diagram of a circulating fluidized bed boiler according to an embodiment of the present invention.

【図2】別の実施形態に係わる循環流動層ボイラの構成
図。
FIG. 2 is a configuration diagram of a circulating fluidized bed boiler according to another embodiment.

【図3】空げき率と粒子径と伝熱係数との関係を示す線
図。
FIG. 3 is a diagram showing a relationship between a void ratio, a particle diameter, and a heat transfer coefficient.

【図4】本発明の装置で用いる伝熱プローブの構造例を
示す断面図。
FIG. 4 is a sectional view showing a structural example of a heat transfer probe used in the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 サイクロン 3 外部熱交換器 4 スタンドパイプ 5a,5b,5c ブロア 6 燃料供給装置 7 対流伝熱面 8 バグフィルタ 9 誘引ファン 10 煙突 11 灰取出し装置 26 温度検出端 27 伝熱プローブ 28 演算器 29 電力調整器 30 演算器 31 ヒータ 32 熱電対 DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Cyclone 3 External heat exchanger 4 Stand pipe 5a, 5b, 5c Blower 6 Fuel supply device 7 Convection heat transfer surface 8 Bag filter 9 Attraction fan 10 Chimney 11 Ash extraction device 26 Temperature detection end 27 Heat transfer probe 28 Calculation Unit 29 power regulator 30 operation unit 31 heater 32 thermocouple

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室、及び同燃焼室から燃焼ガスと共
に流出する粒子を受入れて冷却後、同燃焼室へ戻す流動
層方式の外部熱交換器を有する循環流動層装置におい
て、前記外部熱交換器内に設置した伝熱プローブを用い
て同プローブと循環粒子間の伝熱係数を求め、これによ
り循環粒子の粒度変化を知る粒度監視装置であって、前
記プローブと循環粒子との間の温度差を測定する手段、
および前記温度差を発生させるのに要したエネルギを測
定する手段を有することを特徴とする循環流動層装置の
循環粒子粒度監視装置。
1. A circulating fluidized bed apparatus having a combustion chamber and a fluidized bed external heat exchanger that receives particles flowing out of the combustion chamber together with combustion gas, cools the particles, and returns the particles to the combustion chamber. Using a heat transfer probe installed in the vessel to determine the heat transfer coefficient between the probe and the circulating particles, a particle size monitoring device that knows the change in particle size of the circulating particles, the temperature between the probe and the circulating particles Means for measuring the difference,
And a means for measuring the energy required to generate the temperature difference.
JP28377096A 1996-10-25 1996-10-25 Circulating particle size monitor for circulating fluidized-bed apparatus Pending JPH10132212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28377096A JPH10132212A (en) 1996-10-25 1996-10-25 Circulating particle size monitor for circulating fluidized-bed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28377096A JPH10132212A (en) 1996-10-25 1996-10-25 Circulating particle size monitor for circulating fluidized-bed apparatus

Publications (1)

Publication Number Publication Date
JPH10132212A true JPH10132212A (en) 1998-05-22

Family

ID=17669900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28377096A Pending JPH10132212A (en) 1996-10-25 1996-10-25 Circulating particle size monitor for circulating fluidized-bed apparatus

Country Status (1)

Country Link
JP (1) JPH10132212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840578A (en) * 2011-06-23 2012-12-26 中国科学院工程热物理研究所 Compact parallel connection type external fluidized bed heat exchanger
CN105042582A (en) * 2015-07-22 2015-11-11 华北电力大学 Monitoring system and method for heat released from hearth of circulated fluidized bed boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840578A (en) * 2011-06-23 2012-12-26 中国科学院工程热物理研究所 Compact parallel connection type external fluidized bed heat exchanger
CN102840578B (en) * 2011-06-23 2015-06-24 中国科学院工程热物理研究所 Compact parallel connection type external fluidized bed heat exchanger
CN105042582A (en) * 2015-07-22 2015-11-11 华北电力大学 Monitoring system and method for heat released from hearth of circulated fluidized bed boiler

Similar Documents

Publication Publication Date Title
US4722610A (en) Monitor for deposition on heat transfer surfaces
AU618662B2 (en) Passive acoustics process to monitor fluidized bed flow
US4408568A (en) Furnace wall ash monitoring system
EP2354783B1 (en) Thermal inspection system and method incorporating external flow
US4514096A (en) Furnace wall ash deposit fluent phase change monitoring system
Khan et al. The measurement of instantaneous heat transfer coefficients around the circumference of a tube immersed in a high temperature fluidized bed
JPH10132212A (en) Circulating particle size monitor for circulating fluidized-bed apparatus
WO2021004106A1 (en) Online monitoring device for deposit thickness on bottom of horizontal flue, and method
JP3396328B2 (en) Device for monitoring particle size of circulating particles in circulating fluidized bed apparatus
US4571094A (en) Furnace wall ash monitoring system
JP3432808B2 (en) Ash melting temperature monitoring sensor
JPH0623777B2 (en) Simultaneous measurement of fluid temperature and velocity
JP2518838B2 (en) Method and apparatus for controlling fluidized medium of fluidized bed combustion furnace
CA1174326A (en) Furnace wall ash monitoring system
KR100544237B1 (en) Apparatus for measuring fouling of boiler for power station
Temu et al. Development and testing of a probe to monitor gas-side fouling in cross flow
JPH0617067Y2 (en) Thermal stress monitoring device for thick-walled tubular structures
SU1008604A1 (en) Device for measuring temperature in metallurgical furnaces
JPH10160601A (en) Pressure detection method
Lewis Tests of sodium boiling in a single tube-in-shell heat exchanger over the range 1720 to 1980 F (1211 to 1355 K)
RU1789883C (en) Device for measuring heat transfer parameters
JPS59183354A (en) Measurement of unburnt component in coal ash
Nsofor et al. Forced-convection gas-to-wall heat transfer in a packed bed for high-temperature energy storage
RU2034244C1 (en) Device for measurement of local value of heat flux density
RU2138862C1 (en) Method of check of clearance between technological channel and graphite lining of nuclear reactor, tyre pbmk

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107