JPH0623777B2 - Simultaneous measurement of fluid temperature and velocity - Google Patents

Simultaneous measurement of fluid temperature and velocity

Info

Publication number
JPH0623777B2
JPH0623777B2 JP61135921A JP13592186A JPH0623777B2 JP H0623777 B2 JPH0623777 B2 JP H0623777B2 JP 61135921 A JP61135921 A JP 61135921A JP 13592186 A JP13592186 A JP 13592186A JP H0623777 B2 JPH0623777 B2 JP H0623777B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
velocity
heat medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61135921A
Other languages
Japanese (ja)
Other versions
JPS62293165A (en
Inventor
森原  淳
俊太郎 小山
知彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61135921A priority Critical patent/JPH0623777B2/en
Publication of JPS62293165A publication Critical patent/JPS62293165A/en
Publication of JPH0623777B2 publication Critical patent/JPH0623777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温でダストの多い流体の温度,速度を同時
に測定するのに好適な方法に係わる。
TECHNICAL FIELD The present invention relates to a method suitable for simultaneously measuring the temperature and velocity of a dusty fluid at high temperature.

〔従来の技術〕[Conventional technology]

現在、石炭は発電や化学原料など多くの分野で用いられ
ている。多くの場合、石炭を微粒化して燃焼,ガス化等
の高温処理を行う。このような石炭の処理を行う装置を
運転または制御をする場合、高温でダストの多い流体の
温度,速度を同時に測定する必要がある。また、石炭以
外にも気固反応をおこさせる装置では、高温でダストの
多い流体の温度,速度を測定する必要がある。
At present, coal is used in many fields such as power generation and chemical raw materials. In many cases, coal is atomized and subjected to high temperature treatment such as combustion and gasification. When operating or controlling an apparatus for treating such coal, it is necessary to simultaneously measure the temperature and velocity of a fluid having a high temperature and a large amount of dust. Further, in addition to coal, it is necessary to measure the temperature and velocity of a fluid containing much dust at high temperature in a device that causes gas-solid reaction.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来、流体温度の測定は、熱電対,サクシヨンパイロメ
ータ,光学測定法等がまた流体速度の測定は熱線速度
計,ピトー管,レーザ速度計等が用いられていた。
Conventionally, a thermocouple, a saxion pyrometer, an optical measuring method and the like have been used to measure the fluid temperature, and a hot wire velocimeter, a pitot tube, a laser velocimeter and the like have been used to measure the fluid velocity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、これらの機器を用いて、高温でダストが混入し
た流体の速度を測定する際には、以下に示す問題点があ
つた。
However, when measuring the velocity of a fluid mixed with dust at a high temperature using these instruments, there were the following problems.

まず熱電対では、異なる金属を接合させその接点で生じ
る起電力が温度に依存することを利用して流体の温度を
測定する。接点の金属には、白金,タングステン等が用
いられる。しかし白金,タングステン等の金属は、高温
でダストが混入した流体中では、侵されてしまう。従つ
て、熱電対には、高温でダストが混入した流体の温度を
長期間測定できないという欠点があつた。
First, a thermocouple measures the temperature of a fluid by joining different metals and utilizing the fact that the electromotive force generated at the contact depends on the temperature. Platinum, tungsten or the like is used as the metal of the contact. However, metals such as platinum and tungsten are corroded in a fluid mixed with dust at high temperature. Therefore, the thermocouple has a drawback that the temperature of a fluid mixed with dust at a high temperature cannot be measured for a long time.

サクシヨンパイロメータでは、流体を吸引して冷却し、
冷却後の温度から流体の温度を推定する。高温でダスト
が混入した流体の温度を測定する際には、流体中のダス
トも一緒に吸引するために検知孔が閉塞する。従つて、
サクシヨンパイロメータにも、高温でダストが混入した
流体の温度を長期間測定できないという欠点がある。
With the Sacyon Pyrometer, fluid is sucked in and cooled,
The temperature of the fluid is estimated from the temperature after cooling. When measuring the temperature of a fluid in which dust is mixed at a high temperature, the dust in the fluid is also sucked together, so that the detection hole is closed. Therefore,
The saxion pyrometer also has a drawback that it cannot measure the temperature of a fluid mixed with dust at a high temperature for a long time.

光学的測定法にはNaD線やレーザ光等が用いられる。
光学的測定法は、非接触の測定が可能なので高温流体に
も適用できる。しかし、雰囲気中のダスト濃度が濃かつ
たり、流体と測定部が遠かつた場合にはNaD線やレー
ザ光が弱まり信号が検出できなくなる。従つて光学的測
定法ではダスト濃度が濃い流体の温度測定は不可能であ
る。
NaD rays, laser light, and the like are used for the optical measurement method.
The optical measurement method can be applied to a high temperature fluid because it can perform non-contact measurement. However, when the dust concentration in the atmosphere is high or the fluid and the measurement unit are far from each other, the NaD line and the laser beam are weakened and the signal cannot be detected. Therefore, the optical measurement method cannot measure the temperature of a fluid having a high dust concentration.

以上のように、光学的測定法にて高温でダストが混入し
た流体の温度を長期間測定することは困難であつた。
As described above, it has been difficult to measure the temperature of the fluid in which dust is mixed at a high temperature for a long time by the optical measurement method.

また、流体速度の測定を行う熱線速度計では、熱線の温
度を流体よりも高温とし、熱線から雰囲気への伝熱量を
測定し速度を算出する。従つて、燃焼が行われているよ
うな流体では、熱線を燃焼温度以上に設定する必要があ
る。一般的に熱線には、ダングステン等の金属材料が用
いられるので燃焼温度では断線してしまう。従つて、熱
線速度計では、高温流体の流速測定は不可能である。
Further, in a hot wire velocimeter that measures the fluid velocity, the temperature of the hot wire is set higher than that of the fluid, and the amount of heat transferred from the hot wire to the atmosphere is measured to calculate the velocity. Therefore, in a fluid in which combustion is performed, it is necessary to set the heat ray above the combustion temperature. In general, a metal material such as dangsten is used for the heat wire, so that the wire breaks at the combustion temperature. Therefore, the hot wire velocity meter cannot measure the flow velocity of the hot fluid.

ピトー管では、流れにより生じた動圧を測定し、速度を
算出する。しかし、ダストが混入した流体ではピトー管
の圧力測定孔にダストが混入し動圧の測定が困難とな
る。従つて、ピトー管では、ダストが混入した流体の速
度測定は不可能である。
In the Pitot tube, the dynamic pressure generated by the flow is measured and the velocity is calculated. However, in the case of fluid mixed with dust, the dust is mixed into the pressure measurement hole of the pitot tube, which makes it difficult to measure the dynamic pressure. Therefore, the pitot tube cannot measure the velocity of a fluid mixed with dust.

レーザ速度計では、2本のレーザ光を交差させて干渉縞
を形成させる。そして、流体中に浮遊した微粒子が、干
渉縞を通過した際に発する散乱光を検出して、流体の速
度を算出する。この測定法は、非接触の測定が可能なの
で高温流体にも適用できる。しかし、流体中のダスト濃
度が濃かつたり、流体と測定部が遠かつた場合にはレー
ザ光が弱まり散乱光を検出できなくなる。従つてレーザ
速度計では、ダスト濃度が濃い流体の速度測定は不可能
である。
The laser velocimeter crosses two laser beams to form an interference fringe. Then, the scattered light emitted when the fine particles floating in the fluid pass through the interference fringes is detected, and the velocity of the fluid is calculated. This measuring method can be applied to high-temperature fluids because non-contact measurement is possible. However, when the dust concentration in the fluid is high or the distance between the fluid and the measurement unit is long, the laser light weakens and scattered light cannot be detected. Therefore, the laser velocity meter cannot measure the velocity of a fluid having a high dust concentration.

ダストの混入した高温流体の速度測定については、化学
工学論文集,第10巻,第2号(1984)における定方
正毅,黒澤 靖志等による“微粉炭燃焼系からのNO
の生成に及ぼす1次空気流速の影響”と題する文献にて
論じられている。本文献ではピトー管の穴を大きくし、
ダストの流入による閉塞以前に差圧を読みとろうとして
いる。しかし、信頼性に欠け長期にわたる測定は不可能
であつた。
For velocity measurement of high temperature fluid mixed with dust, refer to Chemical Engineering Proceedings, Volume 10, No. 2 (1984).
Masayuki, Yasushi Kurosawa et al. "NO X from pulverized coal combustion system"
The effect of primary air velocity on the formation of air flow "is discussed in this article.
I am trying to read the differential pressure before the blockage due to the inflow of dust. However, it was not reliable and long-term measurement was impossible.

ましてや、高温でダストが混入した流体の温度,速度の
同時測定は、全く不可能であつた。
Furthermore, simultaneous measurement of the temperature and velocity of a fluid mixed with dust at high temperature was completely impossible.

本発明の目的は、ダストの混入した高温流体の温度,速
度の同時測定法を提供することである。
An object of the present invention is to provide a method for simultaneously measuring the temperature and velocity of a hot fluid containing dust.

〔問題点を解決するための手段〕[Means for solving problems]

ダストの混入した高温の流体中に挿入できる検出器には
制限がある。金属等の摩耗や高温に弱い材質を用いるこ
とはできない。従つてアルミナ等の磁性材料を用いて速
度を検知する必要がある。磁性材料で検出可能な流体の
情報は伝熱量だけである。そこで流体中に磁性材料の検
出管を挿入し、検出管内に熱媒体を流入させ、伝熱量を
求めることで温度,速度を同時に算出しようとするもの
である。
There is a limit to the detector that can be inserted into a hot fluid containing dust. It is not possible to use materials such as metals that are susceptible to wear and high temperatures. Therefore, it is necessary to detect the velocity by using a magnetic material such as alumina. The only information about the fluid that can be detected by the magnetic material is the amount of heat transfer. Therefore, a detection tube of a magnetic material is inserted into the fluid, a heat medium is caused to flow into the detection tube, and the amount of heat transfer is obtained to simultaneously calculate temperature and speed.

本発明の基本原理を次にのべる。円管に直角に流体が流
れる場合、円管の側面の流れに剥離が起る。そして、円
管と流体との間に温度差があつた場合、熱伝達が行われ
る。熱伝達は、対流と放射により行われる。レイノルズ
数が1000以上の場合、伝熱係数hは次式で表現される。
The basic principle of the present invention will be described below. When the fluid flows at right angles to the circular pipe, separation occurs in the flow on the side surface of the circular pipe. Then, when there is a temperature difference between the circular pipe and the fluid, heat transfer is performed. Heat transfer is by convection and radiation. When the Reynolds number is 1000 or more, the heat transfer coefficient h is expressed by the following equation.

本式においてGは流量,Dは円管径,kfは熱伝導度,
は比熱,μfは粘性係数を表わす。Gは、円管の側
面を流れる流体の速度Vと流体と密度ρとの積で表現さ
れる。従つて伝熱係数hとVの関係は次式で表現され
る。
In this equation, G is the flow rate, D is the pipe diameter, kf is the thermal conductivity,
C P represents the specific heat and μf represents the viscosity coefficient. G is represented by the product of the velocity V of the fluid flowing on the side surface of the circular pipe, the fluid and the density ρ. Therefore, the relationship between the heat transfer coefficient h and V is expressed by the following equation.

h=C10.6 但し また、流体の温度をT,検出器の温度をT,流体か
ら熱媒体への放射率をεとすると、流体から検出器への
伝熱量Qは次式で表わされる。
h = C 1 V 0.6 However, Further, the temperature of the fluid T a, temperature T S of the detector, when the emissivity from the fluid to the heat medium epsilon, the amount of heat transfer to Q 1 to the detector from the fluid is expressed by the following equation.

1=Ah(T−T) +Aε(Ta 4−TS 4) 一方、検出管内を通過する流体の入口温度TSiと出口温
度TS0の差(TS0−TS1)と検出管内を通過する媒体が
検出器から持ち出す伝熱量Qとの間には次式で示す関
係がある。
Q 1 = Ah (T a −T S ) + A ε (T a 4 −T S 4 ) On the other hand, the difference (T S0 −T S1 ) between the inlet temperature T Si and the outlet temperature T S0 of the fluid passing through the detection tube is detected. The relationship between the amount of heat transfer Q 2 carried out from the detector by the medium passing through the tube and the amount of heat transfer Q 2 is expressed by the following equation.

=Cqq(TS0−TS1) 上式でCは検出管内を通過する媒体の比熱を表わす。
ここでQはQに等しい。従つて次式が成立する。
Q 2 = C q G q ( T S0 -T S1) C q In the above equation represents the specific heat of the medium passing through the detection tube.
Here Q 1 is equal to Q 2 . Therefore, the following equation is established.

qq(TS0−TS1)/A= V0.6(T−T)+ε(Ta 4−TS 4) 熱媒体の流量をGq +,Gq -で流通させた場合、上式は以
下の様に表せる。
C q G q (T S0 -T S1) / A = V 0.6 C 1 (T a -T S) + ε a flow rate of (T a 4 -T S 4) heat medium G q +, G q - allowed to flow at Then, the above equation can be expressed as follows.

ここで、添え字+-は流量 で測定された温度を、Tは、平均温度(TS0−TS1
/2を表す。以上の2式の差を取り、Vについて整理す
ると次式が得られる。
Where the subscript + -is the flow rate The temperature measured by T S is the average temperature (T S0 −T S1 ).
/ 2. Taking the difference between the above two expressions and rearranging V, the following expression is obtained.

この様に、流体の速度Vを算出することができる。更
に、求められた速度Vを用いてTを次式から求めるこ
とができる。
In this way, the velocity V of the fluid can be calculated. Furthermore, it is possible to determine the T a with a speed V obtained from the following equation.

以上の様にして流体の速度V,流体の温度Tを同時に
測定することができる。
It can be simultaneously measured fluid velocity V, and the temperature T a of the fluid in the manner described above.

〔実施例〕〔Example〕

以下本発明の実施例を第1図から第5図を用いて説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図に、本発明のフローを示す。全体の熱媒体量制御
部、検出部、演算部より構成される。熱媒体量制御部
は、熱媒体供給部2、熱媒体圧力検出部4、熱媒体圧力
調節部3より構成される。熱媒体1は、熱媒体供給部2
によつて定量化されて熱量検出用熱媒体21として、検
出部13へおくられる。熱媒体供給部2での熱媒体供給
量は演算部7より送られた供給量信号6により設定され
る。熱媒体1の供給量は少なくとも3点以上変化させ
る。
FIG. 1 shows the flow of the present invention. It is composed of an entire heat medium amount control unit, a detection unit, and a calculation unit. The heat medium amount control unit includes a heat medium supply unit 2, a heat medium pressure detection unit 4, and a heat medium pressure adjustment unit 3. The heat medium 1 is the heat medium supply unit 2
Is quantified by and is sent to the detection unit 13 as the heat medium 21 for detecting heat quantity. The heat medium supply amount in the heat medium supply unit 2 is set by the supply amount signal 6 sent from the calculation unit 7. The supply amount of the heat medium 1 is changed by at least three points.

一方、検出部13より排出された熱量検出用熱媒体22
は熱媒体圧力検出部4により圧力測定され、熱媒体圧力
調節部3で演算部7より送られた圧力信号5により一定
圧力に設定される。
On the other hand, the heat amount detecting heat medium 22 discharged from the detecting unit 13
Is measured by the heat medium pressure detector 4, and the heat medium pressure adjuster 3 sets a constant pressure by the pressure signal 5 sent from the calculator 7.

次に、検出部13の詳細を第2図,第3図により説明す
る。検出部13は、熱量検出用熱媒体21の流入管15
及びセンサ16、熱量検出用熱媒体22の流出管17よ
り構成される。流入管15の内部にはセンサ16に流入
する以前の熱量検出用熱媒体21の温度を測定する流入
熱媒体測定素子19が設置される。流入管17の内部に
はセンサ16から排出された熱量検出用熱媒体22の温
度を測定する流入熱媒体測温素子20が設置される。セ
ンサ16は放射により熱伝達しにくく対流により熱伝達
しやすい材質にする。従つてアルミナ等が適当でありS
iCのような黒色のものは不適当である。
Next, details of the detection unit 13 will be described with reference to FIGS. The detection unit 13 includes the inflow pipe 15 of the heat medium 21 for detecting heat quantity.
And a sensor 16 and an outflow pipe 17 for the heat medium 22 for detecting heat quantity. An inflow heat medium measuring element 19 for measuring the temperature of the heat amount detecting heat medium 21 before flowing into the sensor 16 is installed inside the inflow pipe 15. An inflow heat medium temperature measuring element 20 that measures the temperature of the heat amount detecting heat medium 22 discharged from the sensor 16 is installed inside the inflow pipe 17. The sensor 16 is made of a material that does not easily transfer heat by radiation and easily transfers heat by convection. Therefore, alumina is suitable and S
A black one such as iC is inappropriate.

演算部は検出部13の熱媒体21,22の温度差を算出
する温度差演算部11と速度を算出する速度演算部7よ
り構成される。温度差演算部11の出力12は速度演算
部7へ送られる。
The calculation unit includes a temperature difference calculation unit 11 that calculates the temperature difference between the heat mediums 21 and 22 of the detection unit 13 and a speed calculation unit 7 that calculates the speed. The output 12 of the temperature difference calculation unit 11 is sent to the speed calculation unit 7.

次に本実施例1の動作について説明する。熱媒体1とし
ては高圧ガス等を用いる。熱媒体供給部2により定量供
給された熱媒体1は検出部13へ送られる。
Next, the operation of the first embodiment will be described. As the heat medium 1, high pressure gas or the like is used. The heat medium 1 supplied in a fixed amount by the heat medium supply unit 2 is sent to the detection unit 13.

検出部13のセンサー16の周りの高温でダストの混入
したガスが流れるとセンサー16の周囲に強制対流によ
り流体から熱の移動がおこる。従つて熱媒体1は検出部
13のセンサー16を通過する際に昇温する。そしてそ
の際の温度差が、センサー16の前後に設置された測温
素子19,20により検出される。この検出された温度
は温度信号9,10として温度差演算部11へ入力さ
れ、算出された熱媒体の平均温度は速度演算部7へ入力
される。熱媒体1は圧力検出部4で圧力測定された圧力
調節部3で減圧され排出される。
When a gas mixed with dust flows at a high temperature around the sensor 16 of the detection unit 13, heat is moved from the fluid around the sensor 16 by forced convection. Therefore, the heat medium 1 is heated when passing through the sensor 16 of the detection unit 13. The temperature difference at that time is detected by the temperature measuring elements 19 and 20 installed before and after the sensor 16. The detected temperature is input to the temperature difference calculation unit 11 as the temperature signals 9 and 10, and the calculated average temperature of the heat medium is input to the speed calculation unit 7. The heat medium 1 is decompressed by the pressure adjusting unit 3 whose pressure is measured by the pressure detecting unit 4 and discharged.

以上に示した動作を、熱媒体1の供給量を3条件変化さ
せて行う。これから温度T、速度Vの流体中に置かれ
た検出部13のセンサーからつぎに示す情報が得られ
る。
The operation described above is performed by changing the supply amount of the heat medium 1 under three conditions. Now the temperature T a, the following information from the sensor of the detection unit 13 placed in a fluid velocity V is obtained.

1)熱媒体1の流量……Gq1,Gq2,Gq3 2)熱媒体1の検出部13のセンサー16を通過する前
の温度……Ti1,Ti2,Ti3 3)熱媒体1の検出部13のセンサー16を通過した後
の温度……T01,T02,T03 これから、変数f,f,fを次式により求められ
る。
1) Flow rate of the heat medium 1 ... G q1 , G q2 , G q3 2) Temperature of the heat medium 1 before passing through the sensor 16 of the detection unit 13 T i1 , T i2 , T i3 3) Heat medium 1 After passing through the sensor 16 of the detection unit 13 ... T 01 , T 02 , T 03 From this, the variables f 1 , f 2 , f 3 can be obtained by the following equation.

=Cqq1(T01−Ti1)/A f=Cqq2(T02−Ti2)/A f=Cqq3(T03−Ti3)/A ここで、Cは、熱媒体1の比熱であり、Aはセンサ1
6の断面積を表す。これらは、いずれも既知量である。
次に、変数TS1,TS2,TS3を次式により求める。
f 1 = C q G q1 (T 01 −T i1 ) / A f 2 = C q G q2 (T 02 −T i2 ) / A f 3 = C q G q3 (T 03 −T i3 ) / A where , C q is the specific heat of the heat medium 1, and A is the sensor 1
6 represents a cross-sectional area of 6. These are all known amounts.
Next, the variables T S1 , T S2 , and T S3 are calculated by the following equation.

S1=(T01−Ti1)/2 TS2=(T02−Ti2)/2 TS3=(T03−Ti3)/2 以上から次に示す行列式が得られる。T S1 = (T 01 −T i1 ) / 2 T S2 = (T 02 −T i2 ) / 2 T S3 = (T 03 −T i3 ) / 2 The following determinant is obtained.

但し これから、次式により、未知数a,b,c,が求まる。 However From this, the unknowns a, b, and c are obtained by the following equation.

ここで未知数a,b,c,は次式で示される。 Here, the unknowns a, b, c are expressed by the following equations.

a=V0.61a+εTa 4 b=V0.6 c=ε 未知数cから、放射率εが求まる。更に、b,cをaに
代入すれば、流体温度Tが求まる。更に、Cを次式
により求まる。
From a = V 0.6 C 1 T a + εT a 4 b = V 0.6 C 1 c = ε unknowns c, emissivity epsilon is obtained. Further, by substituting b and c into a, the fluid temperature T a can be obtained. Further, C 1 is obtained by the following equation.

は流体固有の値である。各定数の温度により変化す
るので、流体の組成及び温度Tから求める。
C 1 is a value specific to the fluid. Since changes the temperature of the constant determined from the composition and temperature T a of the fluid.

未知数bをCで割ることにより流体速度Vが得られ
る。以上から、流体温度T、流体速度Vを同時に測定
することができる。
The fluid velocity V is obtained by dividing the unknown b by C 1 . From the above, it is possible to measure the fluid temperature T, the fluid velocity V a at the same time.

次に、本発明を用いて、測定を行つた結果を第4図及び
第5図に示す。
Next, FIG. 4 and FIG. 5 show the results of measurement performed using the present invention.

被測定流体は、微粉炭を燃焼した排ガスであり、水冷の
熱交換器により300℃〜1500℃に変化させて測定し
た。また、バイパスさせることで、10〜60m/s森に
速度を変化させて測定を行なつた。
The fluid to be measured is an exhaust gas obtained by burning pulverized coal, and was measured by changing the temperature from 300 ° C to 1500 ° C with a water-cooled heat exchanger. In addition, the measurement was performed by changing the speed to 10-60 m / s forest by bypassing.

温度の測定結果を第4図に示す。軸横は、検出部13の
近くに設置した熱電対の温度を、縦軸は検出部13によ
り求めた温度の測定結果を示す。流体を高温にすると、
放射による伝熱量が対流による伝熱量に比べて大きくな
るため、精度を向上させるため、熱媒体1の流量を大き
くした。第4図に示すように、高温にしても十分に測定
が可能である。
The temperature measurement results are shown in FIG. The horizontal axis represents the temperature of the thermocouple installed near the detection unit 13, and the vertical axis represents the measurement result of the temperature obtained by the detection unit 13. When the fluid gets hot,
Since the amount of heat transfer by radiation is larger than the amount of heat transfer by convection, the flow rate of the heat medium 1 is increased in order to improve accuracy. As shown in FIG. 4, the measurement can be sufficiently performed even at a high temperature.

速度の測定結果を第5図に示す。横軸は、マスバランス
により算出した流体の速度を、縦軸は検出部13により
求めた速度の測定結果を示す。温度測定の場合と同様
に、流体を高温にすると、放射による伝熱量が対流によ
る伝熱量に比べて大きくなるため、精度を向上させるた
め、熱媒体1の流量を大きくした。高温にしても十分に
測定が可能なことを示している。
The speed measurement results are shown in FIG. The horizontal axis represents the velocity of the fluid calculated by mass balance, and the vertical axis represents the measurement result of the velocity obtained by the detection unit 13. As in the case of temperature measurement, when the temperature of the fluid is increased, the amount of heat transfer by radiation becomes larger than the amount of heat transfer by convection, so the flow rate of the heat medium 1 is increased in order to improve accuracy. It shows that the measurement can be performed sufficiently even at high temperature.

以上から、本発明により温度、速度の同時測定を行うこ
とができた。
From the above, the present invention enabled simultaneous measurement of temperature and velocity.

〔発明の効果〕〔The invention's effect〕

本発明によれば高温のダストの混入したガスの速度を測
定できる。
According to the present invention, the velocity of a gas mixed with high temperature dust can be measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の流体温度・速度の同時測定方法に用い
る検出装置の説明図、第2図は第1図検出部の側断面
図、第3図は第2図のA−A断面図、第4図は本発明に
よる温度測定結果の線図、第5図は本発明による速度測
定結果の線図である。 1……熱媒体、2……熱媒体供給部、3……熱媒体圧力
調節部、4……熱媒体圧力検出部、7……速度演算部、
13……検出部、16……センサ。
FIG. 1 is an explanatory view of a detection device used in the method for simultaneously measuring fluid temperature and velocity according to the present invention, FIG. 2 is a side sectional view of a detecting portion in FIG. 1, and FIG. FIG. 4 is a diagram of temperature measurement results according to the present invention, and FIG. 5 is a diagram of velocity measurement results according to the present invention. 1 ... Heat medium, 2 ... Heat medium supply unit, 3 ... Heat medium pressure adjustment unit, 4 ... Heat medium pressure detection unit, 7 ... Speed calculation unit,
13 ... Detector, 16 ... Sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体中に検出管を挿入し、この検出管内に
は前記流体と遮へいして比熱がCの熱媒体を流量 で流通させ、該熱媒体が検出管に流入する以前の温度T
Si、流出した以降の温度TS0を各流量において測定し、
外径Dの検出管が流体に接触する表面積A、流体から熱
媒体への熱放射率ε、流体の物性により決められる定数
から次式により流体の速度V、温度Tを同時に求
めることを特徴とする流体温度・速度の同時測定方法。 添え字+-:流量 で測定された温度 T:平均温度(TS0−TSi)/2 但し kf:流体の熱伝導度kf,C:流体の比熱 μf:流体の粘性係数μf, ρ:密度
1. A detection tube is inserted into a fluid, and a heat medium having a specific heat of C q is flown into the detection tube by shielding the fluid from the fluid. Temperature T before the heat medium flows into the detection tube.
Si , temperature T S0 after flowing out is measured at each flow rate,
Surface area detection tube outer diameter D is in contact with the fluid A, the thermal emissivity of the fluid to the heat medium epsilon, be determined fluid velocity V, and the temperature T a at the same time by the following equation from the constant C 1, which is determined by the physical properties of the fluid Simultaneous measurement method of fluid temperature and velocity. Subscript +-: Flow rate Temperature T S : average temperature (T S0 −T Si ) / 2 kf: thermal conductivity of fluid kf, C P : specific heat of fluid μf: viscosity coefficient of fluid μf, ρ: density
JP61135921A 1986-06-13 1986-06-13 Simultaneous measurement of fluid temperature and velocity Expired - Fee Related JPH0623777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135921A JPH0623777B2 (en) 1986-06-13 1986-06-13 Simultaneous measurement of fluid temperature and velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135921A JPH0623777B2 (en) 1986-06-13 1986-06-13 Simultaneous measurement of fluid temperature and velocity

Publications (2)

Publication Number Publication Date
JPS62293165A JPS62293165A (en) 1987-12-19
JPH0623777B2 true JPH0623777B2 (en) 1994-03-30

Family

ID=15162962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135921A Expired - Fee Related JPH0623777B2 (en) 1986-06-13 1986-06-13 Simultaneous measurement of fluid temperature and velocity

Country Status (1)

Country Link
JP (1) JPH0623777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124457A (en) * 2015-04-20 2016-10-28 한양대학교 산학협력단 System for measuring temperature
JP2020525764A (en) * 2017-06-28 2020-08-27 アイオートポン エッセエッレエッレ SYSTEM AND METHOD FOR CALCULATION OF AIR TEMPERATURE OF EXTERNAL ENVIRONMENT WITH CORRECTION OF RADIATION ERROR, AND SENSOR DEVICE USABLE IN THE SYSTEM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499357B2 (en) * 2001-03-13 2002-12-31 Factory Mutual Research Corporation Heat flux measurement pipe and method for determining sprinkler water delivery requirement
CN103868558B (en) * 2014-03-20 2017-01-04 迈瑞尔实验设备(上海)有限公司 A kind of powder flow on-line detecting system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124457A (en) * 2015-04-20 2016-10-28 한양대학교 산학협력단 System for measuring temperature
JP2020525764A (en) * 2017-06-28 2020-08-27 アイオートポン エッセエッレエッレ SYSTEM AND METHOD FOR CALCULATION OF AIR TEMPERATURE OF EXTERNAL ENVIRONMENT WITH CORRECTION OF RADIATION ERROR, AND SENSOR DEVICE USABLE IN THE SYSTEM

Also Published As

Publication number Publication date
JPS62293165A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
Junkhan et al. Investigation of turbulators for fire tube boilers
Orlando et al. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature
US4514096A (en) Furnace wall ash deposit fluent phase change monitoring system
JPH0623777B2 (en) Simultaneous measurement of fluid temperature and velocity
Smith et al. Experimental investigation of flow turbulence effects on premixed methane-air flames
US20040113081A1 (en) Gas velocity measurement by infrared radiation absorption
JPH0623776B2 (en) Fluid velocity measurement method
Coulthard et al. Online pulverised-fuel monitoring at Methil power station
Afgan et al. Instrument for thermal radiation flux measurement in high temperature gas flow (Cuernavaca instrument)
Tariq et al. Flow and heat transfer in a rectangular duct with single rib and two ribs mounted on the bottom surface
JP3396328B2 (en) Device for monitoring particle size of circulating particles in circulating fluidized bed apparatus
US6382024B1 (en) Thermocouple boundary layer rake
Alavizadeh An experimental investigation of radiative and total heat transfer around a horizontal tube immersed in a high temperature gas-solid fluidized bed
Flamant et al. Temperature distribution near a heat exchanger wall immersed in high-temperature packed and fluidized beds
JPH0721551Y2 (en) Furnace temperature measuring device
Phaneuf et al. Flow characteristics in solid fuel ramjets
Hedlund et al. Local swirl chamber heat transfer and flow structure at different Reynolds numbers
Ye et al. Temperature signal decoupling of heat transfer probe for gas-solids flow measurement
JPH01112114A (en) Flow velocity measuring method for high temperature granule
Di Cristina et al. Comparison of two flow measurement devices for use in fire experiments
Skocypec et al. Spectral emission measurements from planar mixtures of gas and particulates
Kueh Development and Application of Methods to Measure Temperatures of Flowing Particles in Suspension
Mungekar et al. Flow Visualization Using Particle Track Imaging in Low Strain Rate Sooty laminar Flames
Mumford et al. An Investigation of the Variation in Heat Absorption in a Pulverized-Coal-Fired Water-Cooled Steam-Boiler Furnace: IV—Comparison and Correlation of the Results of Furnace Heat-Absorption Investigations
Frankenfield The effect of particle size on radiative heat transfer in high temperature fluidized beds

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees