JPH0623776B2 - Fluid velocity measurement method - Google Patents

Fluid velocity measurement method

Info

Publication number
JPH0623776B2
JPH0623776B2 JP61006428A JP642886A JPH0623776B2 JP H0623776 B2 JPH0623776 B2 JP H0623776B2 JP 61006428 A JP61006428 A JP 61006428A JP 642886 A JP642886 A JP 642886A JP H0623776 B2 JPH0623776 B2 JP H0623776B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
heat medium
heat
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61006428A
Other languages
Japanese (ja)
Other versions
JPS62165155A (en
Inventor
森原  淳
俊太郎 小山
知彦 宮本
貞夫 高橋
▲真▼二 田中
光広 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61006428A priority Critical patent/JPH0623776B2/en
Publication of JPS62165155A publication Critical patent/JPS62165155A/en
Publication of JPH0623776B2 publication Critical patent/JPH0623776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高温でダストの多い流体の速度を測定するの
に好適な方法に係わる。
Description: FIELD OF THE INVENTION The present invention relates to a method suitable for measuring the velocity of dusty fluids at high temperatures.

〔発明の背景〕[Background of the Invention]

現在、石炭は発電や化学原料など多くの分野で用いられ
ている。多くの場合、石炭を微粒化して燃焼、ガス化等
の高温処理を行う。このような石炭の処理を行う装置を
運転または制御をする場合、高温でダストの多い流体の
速度を測定する必要がある。
At present, coal is used in many fields such as power generation and chemical raw materials. In many cases, coal is atomized and subjected to high temperature treatment such as combustion and gasification. When operating or controlling an apparatus for treating such coal, it is necessary to measure the velocity of a dusty fluid at high temperature.

従来、流体速度の測定は熱線速度計、ピトー管、レーザ
速度計等が用いられていた。しかし、これらの機器を用
いて、高温でダストが混入した流体の速度を測定する際
には、以下に示す問題点があつた。
Conventionally, a hot wire velocimeter, a Pitot tube, a laser velocimeter, etc. have been used to measure the fluid velocity. However, when measuring the velocity of a fluid mixed with dust at a high temperature using these instruments, there were the following problems.

熱線速度計では、熱線の温度を流体よりも高温とし、熱
線から雰囲気への伝熱量を測定し速度を算出する。従つ
て、燃焼が行われているような流体では、熱線を燃焼温
度以上に設定する必要がある。一般的に熱線には、タン
ズクテン等の金属材料が用いられるので燃焼温度では断
線してしまう。従つて、熱線速度計では、高温流体の流
速測定は不可能である。
In the hot wire velocimeter, the temperature of the hot wire is higher than that of the fluid, and the amount of heat transferred from the hot wire to the atmosphere is measured to calculate the speed. Therefore, in a fluid in which combustion is performed, it is necessary to set the heat ray above the combustion temperature. Generally, a metal material such as tanzukuten is used for the heat wire, so that the wire breaks at the combustion temperature. Therefore, the hot wire velocity meter cannot measure the flow velocity of the hot fluid.

ピトー管では、流れにより生じた動圧を測定し、速度を
算出する。しかし、ダストが混入した雰囲気ではピトー
管の圧力測定孔にダストが混入し動圧の測定が困難とな
る。従つて、ピトー管では、ダストが混入した流体の速
度測定は不可能である。
In the Pitot tube, the dynamic pressure generated by the flow is measured and the velocity is calculated. However, in an atmosphere in which dust is mixed, dust is mixed in the pressure measurement hole of the pitot tube, which makes it difficult to measure the dynamic pressure. Therefore, the pitot tube cannot measure the velocity of a fluid mixed with dust.

レーザ速度計では、2本のレーザ光を交差させて干渉縞
を形成させる。そして、流体中に浮遊した微粒子が、干
渉縞を通過した際に発生する散乱光を検出して、流体の
速度を算出する。この測定法は、非接触の測定が不可能
なので高温流体にも適用できる。しかし、流体中のダス
ト濃度が濃かつたり、流体と測定部が遠かつた場合には
レーザ光が弱まり散乱光を検出できなくなる。従つてレ
ーザ速度計では、ダスト濃度が濃い流体の速度測定は不
可能である。
The laser velocimeter crosses two laser beams to form an interference fringe. Then, the scattered light generated when the fine particles suspended in the fluid pass through the interference fringes is calculated, and the velocity of the fluid is calculated. This measurement method can be applied to high-temperature fluids because non-contact measurement is impossible. However, when the dust concentration in the fluid is high or the distance between the fluid and the measurement unit is long, the laser light weakens and scattered light cannot be detected. Therefore, the laser velocity meter cannot measure the velocity of a fluid having a high dust concentration.

ダストの混入した高温流体の速度測定については、化学
工業論文集、第10巻、第2号(1984)における定方正
毅、黒澤靖志等による“微粉炭燃焼系からのNOの生
成に及ぼす1次空気流速の影響”と題する文献にて論じ
られている。本文献ではピトー管の穴を大きくし、ダス
トの流入による閉塞以前に差圧を読みとろうとしてい
る。しかし、信頼性に欠け長期に渡る測定は不可能であ
つた。
Regarding the measurement of the velocity of a high temperature fluid mixed with dust, the effects of NO x production from a pulverized coal combustion system by Masaki Sadakata, Yasushi Kurosawa et al. The effect of secondary air velocity "is discussed in the literature. In this document, the hole of the Pitot tube is enlarged to read the differential pressure before the blockage due to the inflow of dust. However, it was not reliable and long-term measurement was impossible.

〔発明の目的〕[Object of the Invention]

本発明の目的は、ダストの混入した高温流体の速度を測
定する方法を提供することである。
It is an object of the present invention to provide a method for measuring the velocity of dust-laden hot fluids.

ダストの混入した高温の流体中に挿入できる検出器には
制限がある。金属等の摩耗や高温に弱い材質を用いるこ
とはできない。従つてアルミナ等の磁性材料を用いて速
度を検知する必要がある。磁性材料で検出可能な流体の
情報は伝熱量だけである。そこで流体中に磁性材料の検
出管を挿入し、検出管内に熱媒体を流入させ、伝熱量を
求めることで速度を算出する方法を発明した。
There is a limit to the detector that can be inserted into a hot fluid containing dust. It is not possible to use materials such as metals that are susceptible to wear and high temperatures. Therefore, it is necessary to detect the velocity by using a magnetic material such as alumina. The only information about the fluid that can be detected by the magnetic material is the amount of heat transfer. Therefore, the inventors have invented a method of calculating the speed by inserting a detection tube of a magnetic material into a fluid, flowing a heat medium into the detection tube, and obtaining the amount of heat transfer.

〔発明の概要〕[Outline of Invention]

本発明の基本原理を次にのべる。円管に直角に流体が流
れる場合、円管の側面の流れに剥離が起こる。そして、
円管と流体との間に温度差があつた場合、熱伝達が行わ
れる。熱伝達は、対流と放射により行われる。レイノズ
ル数が1000以上の場合、伝熱係数hは次式で表現され
る。
The basic principle of the present invention will be described below. When the fluid flows at right angles to the circular pipe, separation occurs in the flow on the side surface of the circular pipe. And
Heat transfer occurs when there is a temperature difference between the circular tube and the fluid. Heat transfer is by convection and radiation. When the Reynolds number is 1000 or more, the heat transfer coefficient h is expressed by the following equation.

本式においてGは流量、Dは円管径、kfは熱伝導度、
は比熱、μfは粘性係数を表わす。Gは、円管の側
面を流れる流体の速度Vと流体の密度ρとの積で表現さ
れる。従つて伝熱係数hと流体の速度Vは関係は次式で
表現される。
In this equation, G is the flow rate, D is the pipe diameter, kf is the thermal conductivity,
C p represents specific heat, and μ f represents viscosity coefficient. G is expressed by the product of the velocity V of the fluid flowing on the side surface of the circular pipe and the density ρ of the fluid. Therefore, the relationship between the heat transfer coefficient h and the velocity V of the fluid is expressed by the following equation.

h=C0.6 但し また、流体の温度をT、検出器内を流れる熱媒体が、
検出管に流入する以前の温度と流出した以降の温度から
算出した平均温度をT、流体からの熱媒体への放射率
をεとすると、流体から検出器への伝熱量Qは次式で
表わされる。
h = C 1 V 0.6 However, Further, the temperature of the fluid T a, the heat medium flowing through the detector,
Assuming that the average temperature calculated from the temperature before flowing into the detection tube and the temperature after flowing out is T s and the emissivity from the fluid to the heat medium is ε, the amount of heat transfer Q 1 from the fluid to the detector is It is represented by.

=Ah(T−T) +Aε(Ta 4−Ts 4) 一方、検出管内を通過する媒体の入口温度Tsiと出口温
度Tsoの差(Tso−Tsi)と検出管内を通過する媒体が
検出器から持ち出す伝熱量Qとの間には次式で示す関
係がある。
Q 1 = Ah (T a −T s ) + A ε (T a 4 −T s 4 ) On the other hand, the difference (T so −T si ) between the inlet temperature T si and the outlet temperature T so of the medium passing through the detection tube is detected. The relationship between the amount of heat transfer Q 2 carried out from the detector by the medium passing through the tube and the amount of heat transfer Q 2 is expressed by the following equation.

=C(Tso−Tsi) 上式でCは検出管内を通過する媒体の比熱を表わす。
ここでQはQに等しいので伝熱係数h検出管の回り
を流れる流体の速度Vとの間には以下に示す関係があ
る。
Q 2 = C q G q ( T so -T si) C q In the above equation represents the specific heat of the medium passing through the detection tube.
Since Q 1 is equal to Q 2 here, the following relationship exists between the heat transfer coefficient h and the velocity V of the fluid flowing around the detection tube.

上式でCは比例定数を表わす。以上から検出管内を通
過する媒体の入口温度と出口温度などより検出管の回り
を流れる流体の速度Vを測定できる。
In the above formula, C 1 represents a proportional constant. From the above, the velocity V of the fluid flowing around the detection tube can be measured from the inlet temperature and the outlet temperature of the medium passing through the inside of the detection tube.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を第1図から第4図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図に、本発明のフローを示す。全体は熱媒体量制御
部、検出部、演算部より構成される。熱媒体量制御部
は、熱媒体供給部2、熱媒体圧力検出部4は、熱媒体圧
力調節部3より構成される。熱媒体1は、熱媒体供給部
2によつて定量化されて熱量検出用熱媒体21として、
検出部13へおくられる。熱媒体供給部2での熱媒体供
給量は供給量信号6として、演算部7へ送られる。一
方、検出部13より排出された熱量検出用熱媒体22は
熱媒体圧力検出部4により圧力測定され、熱媒体圧力調
節部3で一定圧力に設定され、その設定値は圧力信号5
として、演算部7へ送られる。次に、検出部13の詳細
を第2図,第3図により説明する。検出部13は、熱量
検出用熱媒体21の流入管15及びセンサ16、熱量検
出用熱媒体22の流出管17及び流体の温度検出素子1
8を有する温度検出管14より構成される。流入管15
の内部にはセンサ16に流入する以前の熱量検出用熱媒
体21の温度を測定する流入熱媒体測温素子19が設置
される。流入管17の内部にはセンサ16から排出され
た熱量検出用熱媒体22の温度を測定する流入熱媒体即
温素子20が設置される。センサ16は放射により熱伝
達しにくく対流により熱伝達しやすい材質にする。従つ
てアルミナ等が適当であり、siCのような黒色のもの
は不適当である。
FIG. 1 shows the flow of the present invention. The whole is composed of a heat medium amount control unit, a detection unit, and a calculation unit. The heat medium amount control unit includes a heat medium supply unit 2, and the heat medium pressure detection unit 4 includes a heat medium pressure adjustment unit 3. The heat medium 1 is quantified by the heat medium supply unit 2 and used as the heat amount detecting heat medium 21.
It is sent to the detection unit 13. The heat medium supply amount in the heat medium supply unit 2 is sent to the calculation unit 7 as a supply amount signal 6. On the other hand, the heat amount detecting heat medium 22 discharged from the detecting unit 13 is pressure-measured by the heat medium pressure detecting unit 4 and set to a constant pressure by the heat medium pressure adjusting unit 3, and the set value is the pressure signal 5
Is sent to the calculation unit 7. Next, details of the detection unit 13 will be described with reference to FIGS. The detecting unit 13 includes an inflow pipe 15 and a sensor 16 for the heat medium 21 for detecting heat quantity, an outflow pipe 17 for the heat medium 22 for detecting heat quantity, and a temperature detecting element 1 for the fluid.
It is composed of a temperature detection tube 14 having eight. Inflow pipe 15
An inflow heat medium temperature measuring element 19 for measuring the temperature of the heat amount detecting heat medium 21 before flowing into the sensor 16 is installed inside the. An inflow heat medium immediate temperature element 20 for measuring the temperature of the heat amount detecting heat medium 22 discharged from the sensor 16 is installed inside the inflow pipe 17. The sensor 16 is made of a material that does not easily transfer heat by radiation and easily transfers heat by convection. Therefore, alumina or the like is suitable, and black ones such as siC are not suitable.

演算部は検出部13の熱媒体21,22の温度差を算出
する温度差演算部11と速度を検出する速度演算部7よ
り構成される。温度差演算部11の出力12は速度演算
部7へ送られる。
The calculation unit includes a temperature difference calculation unit 11 that calculates the temperature difference between the heat mediums 21 and 22 of the detection unit 13 and a speed calculation unit 7 that detects the speed. The output 12 of the temperature difference calculation unit 11 is sent to the speed calculation unit 7.

次に本実施例1の動作について説明する。Next, the operation of the first embodiment will be described.

熱媒体1としては高圧ガスを用いる。熱媒体供給分2に
より定量供給された熱媒体1は検出部13へ送られる。
High-pressure gas is used as the heat medium 1. The heat medium 1 supplied in a fixed amount by the heat medium supply portion 2 is sent to the detection unit 13.

検出部13のセンサー16の周りの高温でダストの混入
したガスが流れるとセンサー16の周囲に強制対流によ
り雰囲気から熱の移動がおこる。従つて熱媒体1は検出
部13のセンサー16を通過する際に昇温する。そして
その際の温度差が、センサー16の前後に設置された測
温素子19,20により検出される。この検出された温
度は温度信号9,10として温度差演算部11へ入力さ
れ、算出された熱媒体の平均温度は速度演算部7へ入力
される。さらに、流体の温度検出器14で検出した流体
の温度信号8を演算部7へ入力する。熱媒体1は圧力検
出部4で圧力測定され圧力調節部3で減圧され排出され
る。
When a gas mixed with dust flows at a high temperature around the sensor 16 of the detection unit 13, heat is moved from the atmosphere due to forced convection around the sensor 16. Therefore, the heat medium 1 is heated when passing through the sensor 16 of the detection unit 13. The temperature difference at that time is detected by the temperature measuring elements 19 and 20 installed before and after the sensor 16. The detected temperature is input to the temperature difference calculation unit 11 as the temperature signals 9 and 10, and the calculated average temperature of the heat medium is input to the speed calculation unit 7. Further, the fluid temperature signal 8 detected by the fluid temperature detector 14 is input to the arithmetic unit 7. The pressure of the heat medium 1 is measured by the pressure detector 4, the pressure of the heat medium 1 is reduced by the pressure controller 3, and the heat medium 1 is discharged.

以上で、速度Vの流体中に置かれた検出部13のセンサ
ー16からつぎに示す情報が得られる。
As described above, the following information can be obtained from the sensor 16 of the detection unit 13 placed in the fluid having the velocity V.

1)熱媒体1の流量………………………………G 2)熱媒体1の検出部13センサー16を通過した際の
温度差……Tso−Tsi 3)流体温度………………………………………T また、熱媒体1の供給量Gが、供給量信号6として、
演算部7に入力され、その他にあらかじめ熱媒体1の比
熱C、流体の熱伝導度kf、比熱C、粘性係数μ
f、密度ρ、さらに検出管の外径D、検出管の表面積
A、流体から熱媒体へ放射率εを演算部に入力してお
く。
1) Flow rate of heat medium 1 ………………………………………………………………………… G q 2) Temperature difference of the heat medium 1 when passing through the sensor 13 sensor 16 T so −T si 3) Fluid temperature ............................................. T a the supply amount G q of the heat medium 1, as a supply amount signal 6,
The specific heat C q of the heat medium 1, the thermal conductivity kf of the fluid, the specific heat C p , and the viscosity coefficient μ are input to the calculation unit 7 in advance.
f, the density ρ, the outer diameter D of the detection tube, the surface area A of the detection tube, and the emissivity ε from the fluid to the heat medium are input to the calculation unit.

これから、流体速度Vを下式により求められる。From this, the fluid velocity V is obtained by the following equation.

上式を演算部7で計算させて、流体速度Vを算出する。 The fluid velocity V is calculated by causing the calculation unit 7 to calculate the above equation.

本実施例による測定結果を第4図に示す。本測定結果は
温度1500℃、ダスト濃度1g/m3の流体で行ったもので
ある。第4図でプロットが実測値を示す。第4図に示す
様に、上式の関係が満たされており高温でダストの混入
した流体の速度を十分に測定できることを示している。
The measurement results of this example are shown in FIG. The results of this measurement were performed with a fluid having a temperature of 1500 ° C. and a dust concentration of 1 g / m 3 . In FIG. 4, the plot shows the measured value. As shown in FIG. 4, the relationship of the above equation is satisfied, indicating that the velocity of the fluid mixed with dust can be sufficiently measured at high temperature.

〔発明の効果〕〔The invention's effect〕

本発明によれば高温でダストの混入したガスの速度を測
定できる。
According to the present invention, the velocity of a gas mixed with dust can be measured at a high temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の流体の速度検出手法に用いる検出装
置の説明図、第2図は第1図の検出部の側断面図、第3
図は第2図のA−A断面図、第4図は本発明による測定
結果の線図である。 1……熱媒体、2……熱媒体供給部、3……熱媒体圧力
調節部、4……熱媒体圧力検出部、7……速度演算部、
13……検出部、16……センサー。
FIG. 1 is an explanatory view of a detection device used in the fluid velocity detection method of the present invention, FIG. 2 is a side sectional view of the detection portion of FIG. 1, and FIG.
FIG. 4 is a sectional view taken along the line AA in FIG. 2, and FIG. 4 is a diagram showing measurement results according to the present invention. 1 ... Heat medium, 2 ... Heat medium supply unit, 3 ... Heat medium pressure adjustment unit, 4 ... Heat medium pressure detection unit, 7 ... Speed calculation unit,
13 ... Detector, 16 ... Sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 貞夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 田中 ▲真▼二 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 松尾 光広 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sadao Takahashi 4026 Kujimachi, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory Ltd. (72) Inventor Tanaka ▲ Shinji 2 4026 Kujicho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Mitsuhiro Matsuo 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体中に検出管を挿入し、この検出管内に
は前記流体と遮へいして比熱Cの熱媒体を流量G
流通させ、この熱媒体が検出管に流入する以前の温度T
siと流出した以降の温度Tsoを測定すると共に前記両測
定温度から平均温度Tを算出し、また上記流体の温度
を測定し、検出管が流体に接触する表面積A、流体
から熱媒体への放射率ε、流体の物性により決められる
定数Cから次式により流体の速度Vを求めることを特
徴とする流体の速度測定方法。 kf:流体の熱伝導度、C:流体の比熱、 μf:流体の粘性係数、ρ:流体の密度、D:検出管の
外径。
[Claim 1] Insert the detector tube in the fluid, the specific heat C q by shielding with the fluid in the detection tube heat medium is circulated at a flow rate of G q, previous to the heat medium flows into the sensing tube Temperature T
heat from the calculated average temperature T s from both measuring temperature, also measures the temperature T a of the fluid, the surface area A of the detection tube is in contact with the fluid, the fluid while measuring the temperature T so after flowing out with si A velocity measuring method for a fluid, characterized in that the velocity V of the fluid is obtained by the following equation from an emissivity ε to the medium and a constant C 1 determined by the physical properties of the fluid. kf: thermal conductivity of fluid, C p : specific heat of fluid, μf: viscosity coefficient of fluid, ρ: density of fluid, D: outer diameter of detection tube.
JP61006428A 1986-01-17 1986-01-17 Fluid velocity measurement method Expired - Fee Related JPH0623776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006428A JPH0623776B2 (en) 1986-01-17 1986-01-17 Fluid velocity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006428A JPH0623776B2 (en) 1986-01-17 1986-01-17 Fluid velocity measurement method

Publications (2)

Publication Number Publication Date
JPS62165155A JPS62165155A (en) 1987-07-21
JPH0623776B2 true JPH0623776B2 (en) 1994-03-30

Family

ID=11638115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006428A Expired - Fee Related JPH0623776B2 (en) 1986-01-17 1986-01-17 Fluid velocity measurement method

Country Status (1)

Country Link
JP (1) JPH0623776B2 (en)

Also Published As

Publication number Publication date
JPS62165155A (en) 1987-07-21

Similar Documents

Publication Publication Date Title
Werther Measurement techniques in fluidized beds
JP2895555B2 (en) Method for non-invasively measuring the fluidized bed level of a two-phase fluidized bed in a material processing structure
US4231262A (en) System for measuring entrained solid flow
Coombes et al. Measurement of velocity and concentration profiles of pneumatically conveyed particles using an electrostatic sensor array
Joshi et al. An analysis of combined free and forced convection heat transfer from a horizontal circular cylinder to a transverse flow
Khan et al. The measurement of instantaneous heat transfer coefficients around the circumference of a tube immersed in a high temperature fluidized bed
Patrose et al. Optical fiber probe transit anemometer for particle velocity measurements in fluidized beds
US5365326A (en) Method and apparatus for determining flow rates and concentrations in multi-phase streams
JPH0623776B2 (en) Fluid velocity measurement method
Chen et al. Experimental study of bed-to-wall heat transfer in a circulating fluidized bed
JPH0623777B2 (en) Simultaneous measurement of fluid temperature and velocity
CN206788610U (en) A kind of measurement apparatus
CN107389740A (en) A kind of on-line monitoring system of heating surface fume side wear extent and etching extent
CN110470795A (en) A kind of drying process method and device thereof based on gas phase media moisture measurement
JP3396328B2 (en) Device for monitoring particle size of circulating particles in circulating fluidized bed apparatus
JP3605820B2 (en) Dust monitor
FR2422929A1 (en) Detection method for surface deposits - uses differential heat flow measurement in comparison with reference surface
Coulthard et al. Online pulverised-fuel monitoring at Methil power station
Themelis et al. Heat transfer to clouds of particles
JPH01112114A (en) Flow velocity measuring method for high temperature granule
Pfeffer et al. Experimental determination of pressure drop and flow characteristics of dilute gas-solid suspensions
Liu et al. Concentration measurement with thermal probe for pulverized coal in the pneumatic pipeline of power plant
SU545172A1 (en) Thermal gage of two media interface
JP2659659B2 (en) Method for measuring the amount of particles circulating in a circulating fluidized bed
Ye et al. Temperature signal decoupling of heat transfer probe for gas-solids flow measurement

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees