JPH10130056A - Silicon carbide ceramic and its production - Google Patents

Silicon carbide ceramic and its production

Info

Publication number
JPH10130056A
JPH10130056A JP8286495A JP28649596A JPH10130056A JP H10130056 A JPH10130056 A JP H10130056A JP 8286495 A JP8286495 A JP 8286495A JP 28649596 A JP28649596 A JP 28649596A JP H10130056 A JPH10130056 A JP H10130056A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
silicon
carbon
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8286495A
Other languages
Japanese (ja)
Other versions
JP3125246B2 (en
Inventor
Tsuneyuki Kanai
恒行 金井
Akio Chiba
秋雄 千葉
Motoyuki Miyata
素之 宮田
Yuichi Sawai
裕一 沢井
Yoshiyuki Yasutomi
義幸 安富
Kunihiro Maeda
邦裕 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08286495A priority Critical patent/JP3125246B2/en
Publication of JPH10130056A publication Critical patent/JPH10130056A/en
Application granted granted Critical
Publication of JP3125246B2 publication Critical patent/JP3125246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat resistance, toughness and high-temp. strength by compacting and calcining a mixture of SiC with C and specified polytitanocarbosilane and infiltrating molten Si. SOLUTION: A powdery mixture is prepd. by mixing SiC with C, 5-20vol.% polytitanocarbosilane having a mol.wt. of >=2,500 based on the total amt. of the SiC and C, and org. binder and an org. solvent. This mixture is compacted under about 1 ton/cm<2> pressure and the resultant compact is heat-treated at 800-1,700 deg.C in a vacuum of about 0.01Torr or in an inert gaseous atmosphere to form a temporary sintered compact having about 70% relative density. About 2 times (weight) as much Si as the temporary sintered compact is put on the compact and heat-treated at 1,450-1,700 deg.C for >=0.5hr in a vacuum of 3-0.01Torr. By this heat treatment, molten Si is infiltrated and the objective SiC ceramic having SiC grains of 10-100nm grain diameter and SiC grains of >100nm grain diameter and not contg. free atomic Si is obtd. In the ceramic, Si, C and O elements account for >=99.9wt.% of the constituent elements of the sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素セラミッ
クス及びその製造方法に係り、特に、750〜1,57
3°Kの中間温度での耐熱性に優れ、しかも靭性及び
1,500°C以上の温度での高温強度に優れたニアネ
ットシェイプ性を有する炭化珪素セラミックス及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide ceramic and a method for producing the same, and more particularly, to 750 to 1,57.
The present invention relates to a silicon carbide ceramic having excellent heat resistance at an intermediate temperature of 3 ° K, near-net shape having excellent toughness and high-temperature strength at a temperature of 1,500 ° C or higher, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から行われているセラミックスの焼
結方法の1つとして反応焼結法がある。この方法によれ
ば、成形体の時の寸法と焼結された後の寸法が殆ど変わ
らないニアネットシェイプ性を有するセラミックスを製
造できるので、複雑な形状の精密部品としてのセラミッ
クスを焼結することができ、また、低コストで焼結でき
るので、セラミックスを工業的に量産するための焼結方
法として極めて有利な方法である。
2. Description of the Related Art One of the conventional sintering methods for ceramics is a reaction sintering method. According to this method, it is possible to manufacture a ceramic having a near net shape in which the dimensions at the time of the molded body and the dimensions after sintering hardly change, so that the ceramic as a precision part having a complicated shape is sintered. This is a very advantageous method as a sintering method for industrially mass-producing ceramics because it can be sintered at low cost.

【0003】このような反応焼結法の一例として、例え
ば特公昭45−38061号公報に、SiC粉末と炭素
との混合物から成る成形体に1,600〜1,700°
Cの温度で溶融珪素を含浸させ、この溶融珪素を成形体
中の炭素と反応させてSiCの焼結体を形成させる反応
焼結法が開示されている。この反応焼結法は、上述した
優れた特徴を有するが、この方法で得られる炭化珪素セ
ラミックスの強度が、一般に、300〜500MPa程
度と低く、しかも1,200°C以上の高温ではその強
度が急激に低下するという欠点も有している。これは、
含浸された未反応の原子状珪素(金属珪素)が10%程
度焼結体中に残留するため、室温での強度は脆性的な珪
素の破壊挙動に支配されて低くなってしまい、また、高
温での強度は、珪素の融点が1,412°Cであるた
め、1,200°C付近から焼結体の軟化現象が始まっ
てしまって、急激に低下してしまうためである。
As an example of such a reaction sintering method, for example, Japanese Patent Publication No. 45-38061 discloses that a compact formed from a mixture of SiC powder and carbon is formed at 1,600 to 1,700 °.
A reaction sintering method has been disclosed in which molten silicon is impregnated at a temperature of C and the molten silicon is reacted with carbon in a compact to form a SiC sintered body. Although this reaction sintering method has the above-mentioned excellent characteristics, the strength of silicon carbide ceramics obtained by this method is generally as low as about 300 to 500 MPa, and the strength is high at a high temperature of 1,200 ° C. or more. It also has the disadvantage that it drops sharply. this is,
Since about 10% of the unreacted atomic silicon (metallic silicon) impregnated remains in the sintered body, the strength at room temperature is controlled by the brittle silicon fracture behavior, and becomes lower. Is because the melting point of silicon is 1,412 ° C., and the softening phenomenon of the sintered body starts around 1,200 ° C., and the strength sharply decreases.

【0004】このような欠点を解消するために、特開平
5−163065号公報に開示された方法では、モリブ
デン、タングステン、炭化モリブデン、炭化タングステ
ン、珪化モリブデン、珪化タングステン及びこれらの混
合物などの反応性粉末を成形体中に含浸させることによ
り、焼結体中に遊離した金属珪素が残留しないようにし
ている。
In order to solve such disadvantages, the method disclosed in Japanese Patent Application Laid-Open No. 5-163065 discloses a method of reacting molybdenum, tungsten, molybdenum carbide, tungsten carbide, molybdenum silicide, tungsten silicide, and mixtures thereof. By impregnating the powder into the compact, free metallic silicon is prevented from remaining in the sintered body.

【0005】[0005]

【発明が解決しようとする課題】この特開平5−163
065号公報に開示された方法では、成形体中に溶融含
浸された珪素が反応性粉末に反応して、焼結後の焼結体
中での原子状の金属珪素の残留は少なくなるものの、珪
素と反応性粉末との反応により珪化モリブデン、珪化タ
ングステン等が生成されて焼結体中に残留し、焼結体の
耐酸化特性を劣化させてしまい、それにより耐熱性が劣
化するという問題点が生じる。すなわち、焼結体中のこ
れらの物質の耐酸化特性は、焼結体の使用環境、すなわ
ち温度及び酸素分圧、によって大きく変化するが、およ
そ750〜1,573°Kの温度においては、珪素とモ
リブデンあるいはタングステンの酸化が同時に進行し、
SiOの他に、MoO3あるいはWO3が生成・蒸発し、
いわゆる「ペスト」現象が生じてしまう。このため、こ
れらの温度範囲では、焼結体の耐熱性が極めて悪くなっ
てしまうのである。
The problem to be solved by the present invention is disclosed in Japanese Patent Laid-Open No. 5-163.
In the method disclosed in Japanese Patent No. 065, the silicon melt-impregnated in the molded body reacts with the reactive powder, and the residual amount of atomic metallic silicon in the sintered body after sintering is reduced. Molybdenum silicide, tungsten silicide, etc. are generated by the reaction between silicon and the reactive powder and remain in the sintered body, deteriorating the oxidation resistance of the sintered body, thereby deteriorating the heat resistance. Occurs. That is, the oxidation resistance of these substances in the sintered body greatly changes depending on the use environment of the sintered body, that is, the temperature and the oxygen partial pressure, but at a temperature of about 750 to 1,573 ° K, silicon And the oxidation of molybdenum or tungsten proceeds simultaneously,
In addition to SiO, MoO 3 or WO 3 is generated and evaporated,
The so-called "pest" phenomenon occurs. For this reason, in these temperature ranges, the heat resistance of the sintered body is extremely deteriorated.

【0006】本発明は、このような従来の炭化珪素セラ
ミックス及びその製造方法の欠点を解消するためになさ
れたものであり、特に中間温度での耐熱性の低下による
材料劣化がなく、高温強度及び靭性に優れ、しかもニア
ネットシェイプ性を有する炭化珪素セラミックス及びそ
の製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned drawbacks of the conventional silicon carbide ceramics and the method of manufacturing the same. In particular, there is no material deterioration due to a decrease in heat resistance at an intermediate temperature, and high-temperature strength and It is an object of the present invention to provide a silicon carbide ceramic having excellent toughness and near-net shape, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の炭化珪素セラミ
ックスは、10nm乃至1,000nm程度の粒径の炭
化珪素の結晶群とそれよりも大きな粒径の炭化珪素の結
晶群とを有し、Si元素、C元素及びO元素により焼結
体を構成する元素の99.9重量%以上が占められお
り、かつ焼結体が遊離した原子状Siを実質的に含有し
ていないものである。すなわち、珪素、モリブデンある
いはタングステン等の酸化し易い元素を焼結体が含有し
ていないので、中間温度での耐熱性の低下がなく、高温
強度及び靭性に優れ、しかもニアネットシェイプ性を有
する炭化珪素セラミックスが得られる。
The silicon carbide ceramic of the present invention has a crystal group of silicon carbide having a particle size of about 10 nm to 1,000 nm and a crystal group of silicon carbide having a larger particle size. At least 99.9% by weight of the elements constituting the sintered body is occupied by the Si element, the C element and the O element, and the sintered body does not substantially contain free atomic Si. That is, since the sintered body does not contain an easily oxidizable element such as silicon, molybdenum, or tungsten, there is no decrease in heat resistance at an intermediate temperature, and high-temperature strength and toughness, and a near-net-shaped carbonized material. A silicon ceramic is obtained.

【0008】また、10nm乃至1,000nm程度の
粒径の炭化珪素の結晶群とそれよりも大きな粒径の炭化
珪素の結晶群とを有し、Si元素、C元素、O元素及び
Ti元素により焼結体を構成する元素の99.9重量%
以上が占められており、かつ焼結体が遊離した原子状S
iを実質的に含有していないものである。すなわち、同
様に、珪素、モリブデンあるいはタングステン等の酸化
し易い元素を焼結体が含有していないので、中間温度で
の耐熱性の低下がなく、高温強度及び靭性に優れ、しか
もニアネットシェイプ性を有する炭化珪素セラミックス
が得られる。
Further, it has a crystal group of silicon carbide having a particle diameter of about 10 nm to 1,000 nm and a crystal group of silicon carbide having a particle diameter larger than that, and is composed of Si element, C element, O element and Ti element. 99.9% by weight of the elements constituting the sintered body
The above is occupied, and the atomic S
i does not substantially contain i. That is, similarly, since the sintered body does not contain an easily oxidizable element such as silicon, molybdenum, or tungsten, there is no decrease in heat resistance at an intermediate temperature, high strength at high temperature and toughness, and near net shape property. Is obtained.

【0009】また、焼結体が、60体積%以下の炭素連
続繊維、炭化珪素連続繊維又は炭化珪素ウイスカを更に
含有するものである。これらの炭素連続繊維、炭化珪素
連続繊維又は炭化珪素ウイスカにより、炭化珪素セラミ
ックスの機械的強度が更に強化される。
Further, the sintered body further contains 60% by volume or less of continuous carbon fiber, continuous silicon carbide fiber or silicon carbide whisker. The mechanical strength of the silicon carbide ceramic is further enhanced by these carbon continuous fibers, silicon carbide continuous fibers, or silicon carbide whiskers.

【0010】本発明の炭化珪素セラミックスの製造方法
は、炭化珪素、炭素及び平均分子量が2,500以上の
ポリカルボシランを炭化珪素及び炭素に対して5乃至2
0体積%の割合で混合して成形する工程と、この成形し
た混合物を仮焼して仮焼結体とする工程と、この仮焼結
体に溶融珪素を加熱しながら溶浸させる工程とを備えた
ものである。すなわち、分子量2,500以上のポリカ
ルボシランは結晶化によりβ−SiCと非晶質の炭素と
に分解し、この過剰な炭素と原子状の珪素とが反応し
て、遊離した珪素の焼結体中の残留が阻止される。ま
た、ポリカルボシランの炭化珪素及び炭素に対する体積
比が5%より少な過ぎると遊離珪素が除去し切れずに焼
結体中に残留して焼結体の強度の劣化を招き、逆に20
%より多過ぎると非晶質の炭素が焼結体中に残留してや
はり焼結体の強度、靭性等の特性を劣化させてしまう。
上記要件を備えることにより、金属珪素や非晶質の炭素
を含有せず、中間温度での耐熱性の低下がなく、高温強
度及び靭性に優れ、しかもニアネットシェイプ性を有す
る炭化珪素セラミックスが得られる。
The method for producing silicon carbide ceramics according to the present invention is characterized in that silicon carbide, carbon and polycarbosilane having an average molecular weight of 2,500 or more are added to silicon carbide and carbon in an amount of 5 to 2 parts.
A step of mixing and molding at a ratio of 0% by volume, a step of calcining the molded mixture to form a temporary sintered body, and a step of infiltrating the temporary sintered body with molten silicon while heating. It is provided. That is, polycarbosilane having a molecular weight of 2,500 or more is decomposed into β-SiC and amorphous carbon by crystallization, and the excess carbon reacts with atomic silicon to sinter the liberated silicon. Residuals in the body are prevented. If the volume ratio of polycarbosilane to silicon carbide and carbon is less than 5%, free silicon cannot be completely removed and remains in the sintered body, resulting in deterioration of the strength of the sintered body.
%, The amorphous carbon remains in the sintered body and also deteriorates the properties such as strength and toughness of the sintered body.
By satisfying the above requirements, it is possible to obtain a silicon carbide ceramic which does not contain metallic silicon or amorphous carbon, has no decrease in heat resistance at an intermediate temperature, has excellent high-temperature strength and toughness, and has near net shape. Can be

【0011】また、炭化珪素、炭素及び平均分子量が
2,500以上のポリチタノカルボシランを炭化珪素及
び炭素に対して5乃至20体積%の割合で混合し成形す
る工程と、この成形した混合物を仮焼して仮焼結体とす
る工程と、この仮焼結体に溶融珪素を加熱しながら溶浸
させる工程とを備えたものである。分子量2,500以
上のポリチタノカルボシランも、ポリカルボシランと同
様に、結晶化によりβ−SiCと非晶質の炭素とに分解
し、この過剰な炭素と原子状の珪素とが反応して、遊離
した珪素の焼結体中の残留が阻止される。また、ポリチ
タノカルボシランの炭化珪素及び炭素に対する体積比が
5%より少な過ぎると遊離珪素が除去し切れずに焼結体
中に残留して焼結体の強度の劣化を招き、逆に20%よ
り多過ぎると非晶質の炭素が焼結体中に残留してやはり
焼結体の強度、靭性等の特性を劣化させてしまう。上記
要件を備えることにより、金属珪素や非晶質の炭素を含
有せず、中間温度での耐熱性の低下がなく、高温強度及
び靭性に優れ、しかもニアネットシェイプ性を有する炭
化珪素セラミックスが得られる。
A step of mixing and molding silicon carbide, carbon and polytitanocarbosilane having an average molecular weight of 2,500 or more with respect to silicon carbide and carbon at a ratio of 5 to 20% by volume; And a step of infiltrating the pre-sintered body with molten silicon while heating the pre-sintered body. Polytitanocarbosilane having a molecular weight of 2,500 or more also decomposes into β-SiC and amorphous carbon by crystallization similarly to polycarbosilane, and this excess carbon reacts with atomic silicon. As a result, the remaining silicon in the sintered body is prevented. On the other hand, if the volume ratio of polytitanocarbosilane to silicon carbide and carbon is less than 5%, free silicon cannot be completely removed and remains in the sintered body, resulting in deterioration of the strength of the sintered body. If it is more than 20%, amorphous carbon remains in the sintered body, and also deteriorates properties such as strength and toughness of the sintered body. By satisfying the above requirements, it is possible to obtain a silicon carbide ceramic which does not contain metallic silicon or amorphous carbon, has no decrease in heat resistance at an intermediate temperature, has excellent high-temperature strength and toughness, and has near net shape. Can be

【0012】また、炭素連続繊維、炭化珪素連続繊維又
は炭化珪素ウイスカ中に混合物を充填する工程を更に備
えたものである。これにより、これらの炭素連続繊維、
炭化珪素連続繊維又は炭化珪素ウイスカにより焼結体中
が複合化され、炭化珪素セラミックスの機械的強度が更
に強化される。
The method may further include a step of filling the mixture into the carbon continuous fiber, the silicon carbide continuous fiber, or the silicon carbide whisker. Thereby, these carbon continuous fibers,
The sintered body is compounded by the silicon carbide continuous fibers or the silicon carbide whiskers, and the mechanical strength of the silicon carbide ceramic is further enhanced.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施の形態を説
明する。図1は、本発明の炭化珪素セラミックスの一実
施の形態の結晶組織を示す結晶組織図である。この実施
の形態の炭化珪素セラミックスは3種類の平均粒径から
成る炭化珪素結晶群から成る。参照符号1は最も平均粒
径の大きな炭化珪素結晶群を示し、符号2は中間サイズ
の炭化珪素結晶群を示し、符号3は最も小さな平均粒径
を有する炭化珪素結晶群を示す。参照符号1及び2の炭
化珪素結晶群の平均粒径は、概ね0.3μm乃至10μ
mであり、符号3の炭化珪素結晶群の平均粒径は10n
m乃至1,000nmである。符号1及び2の炭化珪素
結晶群は、本実施の形態の炭化珪素セラミックスを製造
する際の出発原料として用いたSiC粉末粒子表面に、
SiCが反応によって成長して塗布されたSiC粒子で
あり、一方符号3の炭化珪素結晶群は、本実施の形態の
炭化珪素セラミックスを製造する際に添加したポリカル
ボシラン又はポリチタノカルボシランの分解又は非晶質
炭素と残留Siとの反応により生成したSiC微粒子で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. FIG. 1 is a crystal structure diagram showing a crystal structure of one embodiment of the silicon carbide ceramics of the present invention. The silicon carbide ceramics of the present embodiment is composed of a silicon carbide crystal group having three types of average particle sizes. Reference numeral 1 denotes a silicon carbide crystal group having the largest average particle diameter, reference numeral 2 denotes a silicon carbide crystal group having an intermediate size, and reference numeral 3 denotes a silicon carbide crystal group having the smallest average particle diameter. The average particle size of the silicon carbide crystal groups denoted by reference numerals 1 and 2 is approximately 0.3 μm to 10 μm.
m, and the average particle size of the silicon carbide crystal group denoted by reference numeral 3 is 10 n.
m to 1,000 nm. The silicon carbide crystal groups denoted by reference numerals 1 and 2 are formed on the surface of SiC powder particles used as a starting material when manufacturing the silicon carbide ceramics of the present embodiment.
The SiC particles are SiC particles grown and applied by reaction, and the silicon carbide crystal group denoted by reference numeral 3 is composed of polycarbosilane or polytitanocarbosilane added when manufacturing the silicon carbide ceramics of the present embodiment. These are SiC fine particles generated by decomposition or reaction between amorphous carbon and residual Si.

【0014】本発明の他の実施の形態の炭化珪素セラミ
ックスにおいては、炭素又は炭化珪素を主成分とした長
繊維又はウイスカが焼結体中の体積割合で60%以下と
なるように混入され複合化されている。このようにして
更に機械的強度が高められる。なお、炭素又は炭化珪素
を主成分とした長繊維又はウイスカの体積割合が60%
より大きいと、SiCマトリックスの有する耐熱特性、
対酸化特性等の特性が十分に発揮できず、耐久性の乏し
い炭化珪素セラミックスとなってしまう。
In a silicon carbide ceramic according to another embodiment of the present invention, long fibers or whiskers containing carbon or silicon carbide as a main component are mixed so as to be 60% or less by volume in the sintered body, and the composite is mixed. Has been In this way, the mechanical strength is further increased. The volume ratio of long fibers or whiskers containing carbon or silicon carbide as a main component is 60%.
If it is larger, the heat resistance properties of the SiC matrix,
Characteristics such as oxidation resistance cannot be sufficiently exhibited, resulting in a silicon carbide ceramic having poor durability.

【0015】次に、本発明の炭化珪素セラミックスの製
造方法の一実施の形態について説明する。本実施の形態
においては炭化珪素及び炭素に添加する有機珪素ポリマ
ーとしてポリカルボシランを用いているが、ポリチタノ
カルボシランを用いた場合もポリカルボシランを用いた
場合とほぼ同様な効果が得られる。
Next, an embodiment of the method for producing a silicon carbide ceramic of the present invention will be described. In this embodiment, polycarbosilane is used as the organic silicon polymer to be added to silicon carbide and carbon.However, even when polytitanocarbosilane is used, substantially the same effect as when polycarbosilane is used is obtained. Can be

【0016】本実施の形態の製造法において、ポリカル
ボシランは温度の上昇によりアモルファス状態から結晶
質へと変化する。平均分子量が800〜2,000と低
いポリカルボシランは80〜245°Cで完全溶融する
ため、健全な焼結体を得るためには大気中での不融化が
必要となる。この不融化処理を行ったポリカルボシラン
の典型的な化学組成はSi341と成ることが知られ
ている。成形体にSiを含浸させる1,600°C前後
の温度では、Si341は分解してSO又はCOガス
を生成してSiCに変化する。
In the manufacturing method of the present embodiment, the polycarbosilane changes from an amorphous state to a crystalline state with an increase in temperature. Since polycarbosilane having an average molecular weight as low as 800 to 2,000 is completely melted at 80 to 245 ° C., infusibility in the air is required to obtain a sound sintered body. It is known that a typical chemical composition of the polycarbosilane subjected to the infusibilization treatment is Si 3 C 4 O 1 . At a temperature of about 1,600 ° C. at which the formed body is impregnated with Si, Si 3 C 4 O 1 is decomposed to generate SO or CO gas and change to SiC.

【0017】一方、本実施の形態においては、炭化珪素
及び炭素に平均分子量が2,500以上のポリカルボシ
ランを添加して混合するが、このような平均分子量が
2,500以上のポリカルボシランは、加熱により部分
的に溶融するものの、完全には溶融せず、大気中での不
融化処理は不要となる。不融化処理を行わないポリカル
ボシランの熱分解後の化学組成はSi34である。この
化学組成は、不融化処理を行ったポリカルボシランの化
学組成Si341に比べて、酸素元素を含有しない。
したがって、1,700°Cまでの熱処理を行ってもS
O又はCOガスが生成されないため、重量変化が2〜3
%と小さく、過剰炭素の大部分は熱分解後にも残留し
て、β−SiCと非晶質炭素との混合状態となる(T.
Shimoo, T.Hayatu, M.Taked
a, H.Ichikawa, T.Seguchi,
K.Okamura, ”Journal of t
heCeramic Society of Japa
n”, 102, pp.1,141−47(199
4)参照)。このため、珪素の溶融温度(1,410°
C)以上で仮焼結体中に含浸された珪素は、初めに出発
原料中に含まれる炭素と反応し、次いで出発原料中の炭
素がなくなると、なお残留した珪素はポリカルボシラン
が分解してできた非晶質炭素と反応する。すなわち、
1,600°C前後の温度で有機珪素ポリマーは結晶化
によりβ−SiCと非晶質炭素とに分解され、この過剰
な非晶質炭素と成形体中の原子状の金属珪素との反応が
生じるのである。このため、平均分子量の大きなポリカ
ルボシランを用いることによって初めて焼結体中の残留
Siの除去が可能となるのである。ポリチタノカルボシ
ランについても全く同様のことが言える。
On the other hand, in the present embodiment, polycarbosilane having an average molecular weight of 2,500 or more is added to silicon carbide and carbon and mixed, and such a polycarbosilane having an average molecular weight of 2,500 or more is mixed. Although is partially melted by heating, it is not completely melted, and the infusibilizing treatment in the air is not required. The chemical composition of the polycarbosilane not subjected to the infusibilization treatment after thermal decomposition is Si 3 C 4 . This chemical composition does not contain an oxygen element as compared with the chemical composition Si 3 C 4 O 1 of the polycarbosilane subjected to the infusibilizing treatment.
Therefore, even if heat treatment up to 1,700 ° C. is performed, S
Since O or CO gas is not generated, the weight change is 2-3.
%, And most of the excess carbon remains after the pyrolysis, resulting in a mixed state of β-SiC and amorphous carbon (T.
Shimoo, T .; Hayato, M .; Taked
a, H .; Ichikawa, T .; Seguchi,
K. Okamura, "Journal of the
heCeramic Society of Japan
n ", 102, pp. 1, 141-47 (199
4)). For this reason, the melting temperature of silicon (1,410 °
C) The silicon impregnated in the preliminary sintered body as described above first reacts with the carbon contained in the starting material, and when the carbon in the starting material disappears, the remaining silicon is decomposed by polycarbosilane, Reacts with the resulting amorphous carbon. That is,
At a temperature of about 1,600 ° C., the organosilicon polymer is decomposed into β-SiC and amorphous carbon by crystallization, and the reaction between the excess amorphous carbon and the atomic metallic silicon in the compact is performed. It will happen. Therefore, the use of polycarbosilane having a large average molecular weight makes it possible to remove residual Si from the sintered body for the first time. The same is true for polytitanocarbosilane.

【0018】本実施の形態の炭化珪素セラミックスの製
造方法においては、炭化珪素粉末と、炭素源であるカー
ボンブラックと、平均分子量が2,500以上のポリカ
ルボシラン粉末を混合し、これに結合材としてフェノー
ル樹脂を加え、キシレン溶媒中でボールミル混合により
混合粉体とする。この混合粉体を1ton/cm2程度
の圧力でCIP成形し、0.01Torr程度の真空中
又は不活性ガス雰囲気中で800〜1,700°Cで数
時間の熱処理を行い、相対密度が約70%の仮焼結体と
する。なお、混合及び成形は、それぞれボールミル及び
CIPに限られるものではない。この仮焼結体の上に約
2倍の重量の金属Siを乗せ、3〜0.01Torrの
真空中、1,450〜1,700°Cで0.5〜数十時
間の熱処理を行ってSiの含浸処理を行う。ここで、炭
化珪素粉末と、カーボンブラック乃至その他の炭素源と
に対するポリカルボシランの混合量は5〜20体積%と
することが望ましい。ポリカルボシランの混合量が5%
より少な過ぎると金属珪素が焼結体中に残留して室温及
び高温での焼結体の強度が低下し、逆に20%より多過
ぎると有機珪素化合物が分解してできた炭素が焼結体中
に残留して焼結体の強度や靭性等の機械的特性が劣化し
てしまうからである。なお、以上の説明は全てポリチタ
ノカルボシランを用いた場合にも当てはまる。
In the method for producing silicon carbide ceramics of the present embodiment, silicon carbide powder, carbon black as a carbon source, and polycarbosilane powder having an average molecular weight of 2,500 or more are mixed, and Phenolic resin is added, and mixed powder is obtained by ball mill mixing in a xylene solvent. This mixed powder is subjected to CIP molding under a pressure of about 1 ton / cm 2 , and heat-treated at 800 to 1,700 ° C. for several hours in a vacuum of about 0.01 Torr or in an inert gas atmosphere, so that the relative density is about 70% pre-sintered body. The mixing and molding are not limited to the ball mill and the CIP, respectively. About twice the weight of metal Si is placed on the pre-sintered body and heat-treated at 1,450 to 1,700 ° C for 0.5 to several tens of hours in a vacuum of 3 to 0.01 Torr. Impregnation with Si is performed. Here, the mixing amount of the polycarbosilane with respect to the silicon carbide powder and carbon black or another carbon source is desirably 5 to 20% by volume. 5% polycarbosilane
If the amount is too small, the metallic silicon remains in the sintered body and the strength of the sintered body at room temperature and high temperature decreases, and if it is more than 20%, the carbon formed by decomposition of the organic silicon compound is sintered. This is because they remain in the body and deteriorate mechanical properties such as strength and toughness of the sintered body. Note that the above description also applies to the case where polytitanocarbosilane is used.

【0019】上述した本実施の形態の炭化珪素セラミッ
クスの製造方法により得られた炭化珪素セラミックス
は、モリブデン及びタングステンを含まないため、中間
温度域での耐熱性の劣化がなく、また、破壊靭性値は、
約6MPa・√m、1,500°Cでの4点曲げ強度が
800MPaとなる。従来の反応焼結法によって製造し
たSiCセラミックスの特性値(4点曲げ強度200〜
400MPa、破壊靭性値3〜4MPa・√m)と比較
すると、かなり特性の向上が得られている。
Since the silicon carbide ceramics obtained by the above-described method for manufacturing silicon carbide ceramics of the present embodiment does not contain molybdenum and tungsten, there is no deterioration in heat resistance in an intermediate temperature range and the fracture toughness value Is
The 4-point bending strength at about 6 MPa · √m and 1,500 ° C. becomes 800 MPa. Characteristic values of SiC ceramics manufactured by the conventional reaction sintering method (four-point bending strength 200 to
(400 MPa, fracture toughness value of 3 to 4 MPa · √m), considerably improved characteristics are obtained.

【0020】次に、本発明の炭化珪素セラミックスの製
造方法の他の実施の形態を説明する。繊維束が500〜
3,00本程度の炭化珪素又は炭素繊維の連続繊維を用
いて、1次元、2次元、3次元に繊維を配置し賦形化を
行う。1次元配置では繊維の1次元配向、2次元配置で
は平織り、朱子織り、絡み織り、3次元配置では直交組
織織り、絡み組織織りが望ましい。ウイスカを用いる場
合には、マット状の不織体を用いるのが望ましい。この
ときの繊維含有率V1は60%以下であるものを使用す
る。この繊維構造体に、炭化珪素マトリックスを形成す
るための組織粉末を充填する。充填方法としては、スラ
リー化して充填する方法が簡便であるが、これに限定さ
れない。すなわち、炭化珪素粉末と、カーボンブラック
と、残部平均分子量が2,500以上のポリカルボシラ
ン粉末又はポリチタノカルボシランとを含む粉体を加
え、例えばキシレン溶媒中でボールミル混合して粉体ス
ラリーとする。このスラリーを加圧含浸によって繊維構
造体に含浸する。この含浸体を0.01Torr程度の
真空中又は不活性ガス雰囲気中で800〜1,700°
Cで数時間の熱処理を行い仮焼結体とし、この仮焼結体
の上に約2倍の重量の金属Siを載せ、3〜0.01T
orrの真空中、1,450〜1700°Cで0.5〜
数十時間の熱処理を行いSiの含浸処理を行う。このよ
うにして、長繊維又はウイスカによって強化された炭化
珪素セラミックスを得ることができる。この炭化珪素セ
ラミックスの4点曲げ強度は約800MPaで長繊維を
含まないものと同程度であるが、破壊靭性値は約20M
Pa・√m程度と大きなものも得ることができる。
Next, another embodiment of the method for producing a silicon carbide ceramic of the present invention will be described. Fiber bundle is 500 ~
Using about 3,000 continuous fibers of silicon carbide or carbon fiber, the fibers are arranged one-dimensionally, two-dimensionally, and three-dimensionally to perform shaping. In one-dimensional arrangement, one-dimensional orientation of fibers is preferable, in two-dimensional arrangement plain weave, satin weave, and entanglement weave, and in three-dimensional arrangement, orthogonal weave and entanglement weave are desirable. When whiskers are used, it is desirable to use a mat-shaped non-woven body. Fiber content V 1 of the this time to use not more than 60%. The fibrous structure is filled with a tissue powder for forming a silicon carbide matrix. As a filling method, a method of making a slurry and filling is simple, but not limited to this. That is, a powder containing silicon carbide powder, carbon black, and a polycarbosilane powder or a polytitanocarbosilane having a balance average molecular weight of 2,500 or more is added, and the powder slurry is mixed by ball milling in a xylene solvent, for example. And The slurry is impregnated with the slurry by pressure impregnation. This impregnated body is 800-1700 ° in a vacuum of about 0.01 Torr or in an inert gas atmosphere.
C. A heat treatment is performed for several hours to form a pre-sintered body. On the pre-sintered body, about twice the weight of metal Si is placed, and 3 to 0.01 T
0.5-1 at 1,450-1700 ° C in a vacuum of orr
Heat treatment is performed for several tens of hours to perform Si impregnation. Thus, silicon carbide ceramics reinforced by long fibers or whiskers can be obtained. This silicon carbide ceramic has a four-point bending strength of about 800 MPa, which is almost the same as that containing no long fiber, but has a fracture toughness of about 20 M.
As large as about Pa · √m can be obtained.

【0021】上述した本発明による炭化珪素セラミック
ス及び本発明の炭化珪素セラミックスの製造方法により
製造した炭化珪素セラミックスを用いてガスタービン用
の動翼、静翼、燃焼器等の高温耐熱部材、核融合炉用の
対向プラズマ部材、及び半導体用放熱板を製造すること
ができ、長繊維又はウイスカを用いて複合化した炭化珪
素セラミックスを用いる場合には、使用環境において上
記高温耐熱部材、対向プラズマ部材及び放熱板が受ける
主応力方向と繊維軸の主要な方向とを一致させることに
よって、更に高強度、高耐久性を有する部材及び放熱板
として機能させることができる。
Using the above-described silicon carbide ceramics according to the present invention and the silicon carbide ceramics manufactured by the method for manufacturing silicon carbide ceramics according to the present invention, high-temperature heat-resistant members such as moving blades, stationary blades, and combustors for gas turbines, and nuclear fusion. A counter plasma member for a furnace, and a heat sink for semiconductors can be manufactured, and when using silicon carbide ceramics compounded using long fibers or whiskers, the high temperature heat-resistant member, the counter plasma member and By matching the main stress direction applied to the heat sink with the main direction of the fiber axis, it is possible to function as a member having higher strength and high durability and a heat sink.

【0022】[0022]

【実施例1】平均粒径2μmのα型炭化珪素粉末と、平
均粒径0.01μmのカーボンブラックと、平均分子量
が3,400のポリカルボシラン粉末とを表1の試料番
号1〜5の組成になるように秤量し、全体を100gと
した。これに粘結剤としてフェノール樹脂を1g、キシ
レンを140cc加え、SiCボールを用いてボールミ
ル混合し、混合粉体を得た。この混合粉体を1,000
kg/cm2の圧力で成形した後、0.01Torrの
真空中で1,000°Cで1時間の熱処理を行い仮焼結
体とした。このとき、仮焼結体の相対密度は約70%で
あった。この仮焼結体の上に約2倍の重量の金属珪素を
載せ、0.01Torrの真空中、1,600°Cで1
時間の熱処理を行い、仮焼結体中にSiを含浸させ焼結
体とした。
Example 1 An α-type silicon carbide powder having an average particle size of 2 μm, carbon black having an average particle size of 0.01 μm, and a polycarbosilane powder having an average molecular weight of 3,400 were prepared as shown in Table 1 by sample numbers 1 to 5. It was weighed so that it might become a composition, and the whole was 100 g. 1 g of a phenol resin as a binder and 140 cc of xylene were added, and the mixture was mixed in a ball mill using SiC balls to obtain a mixed powder. This mixed powder is 1,000
After molding at a pressure of kg / cm 2 , heat treatment was performed at 1,000 ° C. for 1 hour in a vacuum of 0.01 Torr to obtain a temporary sintered body. At this time, the relative density of the temporary sintered body was about 70%. About twice the weight of metallic silicon is placed on the pre-sintered body, and is placed in a vacuum of 0.01 Torr at 1,600 ° C. for 1 hour.
Heat treatment was performed for a long time, and the temporary sintered body was impregnated with Si to obtain a sintered body.

【0023】ICP分析を行った結果、いずれの試料も
(Si+C+O)元素の重量の合計が試料全体の99.
9重量%以上を占めることが判明した。また、残留金属
珪素の有無を検討するために、この珪素を含浸させた炭
化珪素セラミックスを研磨した後金属珪素の融点より約
1,000°C高い1,500°Cに加熱し、試料表面
の組織変化を観察した。試料番号1では珪素が溶出した
跡が見られたが、試料番号2〜5では珪素が溶出した形
跡はなく、実質的な珪素の残留は認められなかった。
As a result of ICP analysis, the sum of the weights of the (Si + C + O) elements of all the samples was 99.
It was found to account for more than 9% by weight. Further, in order to examine the presence or absence of residual metallic silicon, the silicon carbide ceramic impregnated with the silicon was polished, and then heated to 1,500 ° C., which was about 1,000 ° C. higher than the melting point of metallic silicon, and the surface of the sample was removed. The histological changes were observed. Sample No. 1 showed traces of silicon elution, while Sample Nos. 2 to 5 showed no trace of silicon elution, and no substantial silicon residue was observed.

【0024】焼結体の平均粒径の分布測定は、珪素を含
浸させた焼結体を研磨して鏡面にした後、赤血カリウム
と水酸化ナトリムの煮沸溶液中で腐食させ、SiCの血
漿粒界を際立たせた。この試料の各結晶粒の面積比を画
像処理によって求め平均粒径とした。また、中間温度域
での耐熱性の低下を調べるために、1,000°Kで2
0時間大気中で保持した試料を室温状態中に移し、4点
曲げ強度を測定した。試料の強度、破壊靭性値は、JI
S4点曲げ試験法により評価した。また、破壊靭性値
は、鏡面に磨いた試験片表面にビッカース圧子を押しつ
け、圧痕の四隅から対角線の延長上に亀裂を発生させ、
圧痕の対角長を測定してIF(Indentation
Fracture)法により評価した。
The distribution of the average particle size of the sintered body was measured by polishing the silicon-impregnated sintered body to a mirror surface, and then corroding the silicon body in a boiling solution of red blood potassium and sodium hydroxide to obtain a plasma of SiC. Grain boundaries are highlighted. The area ratio of each crystal grain of this sample was determined by image processing and defined as an average particle size. In addition, in order to examine the decrease in heat resistance in the intermediate temperature range, a temperature of 1,000 ° K
The sample held in the atmosphere for 0 hours was moved to a room temperature state, and the four-point bending strength was measured. The strength and fracture toughness of the sample were determined by JI
It was evaluated by the S4 point bending test method. In addition, the fracture toughness value is determined by pressing a Vickers indenter against the surface of a specimen polished to a mirror surface, generating a crack on the diagonal extension from the four corners of the indentation,
The diagonal length of the indentation was measured, and IF (Indentation
(Fracture) method.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、本実施例の炭化
珪素セラミックスは、1,500°Cまで実質的な強度
劣化がなく、室温での4点曲げ強度約800MPa、I
F法により破壊靭性値が約6MPa・√mの特性を有す
る。
As is clear from Table 1, the silicon carbide ceramics of the present example did not substantially deteriorate in strength up to 1,500 ° C., had a four-point bending strength at room temperature of about 800 MPa,
It has the characteristic that the fracture toughness value is about 6 MPa · √m by the F method.

【0027】[0027]

【実施例2】平均分子量が2,000〜5,000のポ
リカルボシランを用いた他は実施例1の試料番号3の試
料と同様に、粉末の混合、成形、仮焼結を行った。この
仮焼結体の上に、約2倍の重量の金属珪素を載せ、0.
01Torrの真空中で1,600°C、10時間の条
件で珪素含浸を行った。仮焼結体伸そう体密度はアルキ
メデス法により、反応焼結後の強度は実施例1と同様の
方法で評価した。
Example 2 Powder was mixed, molded and pre-sintered in the same manner as in the sample No. 3 of Example 1 except that polycarbosilane having an average molecular weight of 2,000 to 5,000 was used. On the pre-sintered body, about twice the weight of metallic silicon was placed.
The silicon impregnation was performed at 1600 ° C. for 10 hours in a vacuum of 01 Torr. The density of the calcined body was evaluated by the Archimedes method, and the strength after reaction sintering was evaluated by the same method as in Example 1.

【0028】[0028]

【表2】 [Table 2]

【0029】ポリカルボシランの平均分子量が2,50
0以下のものは、仮焼時の加熱によって完全溶融、低分
子量ポリマーの分解・蒸発等による発泡現象が起こり、
相対密度は52%程度と向上しない。一方、平均分子量
が2,500以上のものでは、完全溶融は生じず、更に
分解・蒸発も少ないため、約70%程度の相対密度のも
のが得られる。このため、本発明による試料番号7〜9
の試料の室温強度は、本発明によらない試料番号6の試
料のそれに比べて、著しく大ききくなることが表2から
も明らかである。
The average molecular weight of the polycarbosilane is 2,50.
In the case of 0 or less, heating during calcination causes complete melting, foaming phenomenon due to decomposition and evaporation of low molecular weight polymer, etc.,
The relative density does not improve to about 52%. On the other hand, when the average molecular weight is 2,500 or more, complete melting does not occur, and further, decomposition and evaporation are small, so that a material having a relative density of about 70% can be obtained. Therefore, Sample Nos. 7 to 9 according to the present invention were used.
It is also evident from Table 2 that the room temperature strength of the sample No. 6 is significantly higher than that of the sample No. 6 not according to the present invention.

【0030】[0030]

【実施例3】平均分子量が3,000のポリチタノカル
ボシランをポリカルボシランの代わりに用いた他は実施
例1と同様にして炭化珪素セラミックスの試料を作製し
た。表3に示すように、ポリチタノカルボシランの含有
料を変化させて、粉末の混合、成形、仮焼結を行った。
この仮焼結体の上に、約2倍の重量の金属珪素を載せ、
0.01Torrの真空中で反応時間を10時間、焼結
温度を1,600°Cとして、珪素を含浸させながら焼
結体とした。焼結後の試料のICP分析の結果、いずれ
の試料も(Si+C+O+Ti)元素の重量の合計が、
試料全体の重量の99.9重量%以上占めることが判明
した。反応焼結後の残留珪素の有無、平均粒径、強度、
破壊靭性値を、実施例1と同様の方法で評価し、表3に
示す。
Example 3 A silicon carbide ceramic sample was prepared in the same manner as in Example 1 except that polytitanocarbosilane having an average molecular weight of 3,000 was used instead of polycarbosilane. As shown in Table 3, the mixing, molding, and temporary sintering of the powder were performed while changing the content of the polytitanocarbosilane.
On this temporary sintered body, put about twice the weight of metallic silicon,
At a reaction time of 10 hours and a sintering temperature of 1,600 ° C. in a vacuum of 0.01 Torr, a sintered body was obtained while impregnating silicon. As a result of ICP analysis of the sample after sintering, the total weight of the (Si + C + O + Ti) element was
It turned out to account for 99.9% by weight or more of the weight of the whole sample. Presence of residual silicon after reaction sintering, average particle size, strength,
The fracture toughness value was evaluated in the same manner as in Example 1, and is shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】表3より、ポリチタノカルボシランを用い
た場合もはポリカルボシランを用いた場合と同様の効果
が得られることが分かる。
From Table 3, it can be seen that the same effect can be obtained when polytitanocarbosilane is used, as well as when polycarbosilane is used.

【0033】[0033]

【実施例4】繊維束500本の炭化珪素の連続繊維を用
いて、繊維の充填率の異なる3種類の直交組織3次元織
物からなる繊維構造体を製造した。実施例1の試料番号
3の試料と全く同様の組成粉末を用いてスラリーとし、
この繊維構造体に充填した。すなわち、平均粒径2μm
のα型炭化珪素粉末と、平均粒径0.001μmのカー
ボンブラックと、平均分子量が3,400のポリカルボ
シラン粉末とを用い、これに粘結剤としてフェノール樹
脂を1g、キシレンを140cc加え、SiCボールを
用いてボールミルにて混合し、スラリーを得た。このス
ラリーを加圧含浸によって繊維構造体に充填した。この
含浸体を乾燥させた後、0.01Torrの真空中で
1,000°Cで1時間の熱処理を行い、仮焼結体とし
た。この仮焼結体の上に、約2倍の重量の金属珪素を載
せ、0.01Torrの真空中、1,600°Cで1時
間の熱処理を行い、珪素を仮焼結体中に含浸させた。反
応焼結後の強度、破壊靭性値は、実施例1の試料と同様
の方法で評価した。その結果を表4に示す。
Example 4 Using a continuous fiber of 500 pieces of silicon carbide fiber bundles, a fibrous structure composed of three types of three-dimensional fabrics having orthogonal structures having different fiber filling rates was manufactured. A slurry was prepared using exactly the same composition powder as the sample of Sample No. 3 of Example 1,
The fiber structure was filled. That is, the average particle size is 2 μm
Α-type silicon carbide powder, carbon black having an average particle diameter of 0.001 μm, and polycarbosilane powder having an average molecular weight of 3,400, and 1 g of a phenol resin as a binder and 140 cc of xylene were added thereto. The mixture was mixed by a ball mill using SiC balls to obtain a slurry. The fiber structure was filled with the slurry by pressure impregnation. After drying the impregnated body, it was subjected to a heat treatment at 1,000 ° C. for 1 hour in a vacuum of 0.01 Torr to obtain a temporary sintered body. About twice the weight of metallic silicon is placed on this temporary sintered body, and heat treatment is performed at 1600 ° C. for 1 hour in a vacuum of 0.01 Torr to impregnate the silicon into the temporary sintered body. Was. The strength and fracture toughness after reaction sintering were evaluated in the same manner as in the sample of Example 1. Table 4 shows the results.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【実施例5】繊維束500本の炭素連続繊維を用いて作
製した繊維の充填率が41%の直交組織3次元織物と炭
化珪素ウイスカとをそれぞれ用いて200g/m2のマ
ットを製造した。これらの繊維構造体に実施例1の試料
番号3の試料と全く同様の組成粉末を用いてスラリーと
し、加圧含浸によって各繊維構造体にこのスラリーを含
浸せしめた。これらの含浸体を乾燥させた後、0.01
Torrの真空中で1,000°Cで1時間の熱処理を
行い仮焼結体とし、これらの仮焼結体の上に約2倍の重
量の金属珪素を載せ、0.01Torrの真空中、1,
600°Cで1時間の熱処理を行い反応焼結させた。反
応焼結後の強度、破壊靭性値は、実施例1と全く同様の
方法で評価した。その結果、炭素連続繊維を用いた構造
体では、曲げ強度890MPa、破壊靭性値18MPa
・√mの値が、また、炭化珪素ウイスカマット構造体で
は、曲げ強度830MPa、破壊靭性値23MPa・√
mの値が得られた。
Example 5 A mat of 200 g / m 2 was manufactured using a three-dimensional woven fabric having an orthogonal structure with a fiber filling ratio of 41% and a silicon carbide whisker prepared using 500 continuous carbon fibers. These fiber structures were slurried using the same composition powder as the sample No. 3 of Example 1, and each fiber structure was impregnated with the slurry by pressure impregnation. After drying these impregnated bodies, 0.01
Heat treatment is performed at 1,000 ° C. for 1 hour in a vacuum of Torr to form a pre-sintered body. On the pre-sintered body, about twice the weight of metallic silicon is placed, and in a pre-sintered state of 0.01 Torr, 1,
Heat treatment was performed at 600 ° C. for 1 hour to perform reaction sintering. The strength and fracture toughness after reaction sintering were evaluated in exactly the same manner as in Example 1. As a result, in the structure using the continuous carbon fiber, the bending strength was 890 MPa and the fracture toughness value was 18 MPa.
The value of √m is, in the case of the silicon carbide whisker mat structure, a bending strength of 830 MPa and a fracture toughness value of 23 MPa
The value of m was obtained.

【0036】以上の実施例4及び実施例5のデータか
ら、炭化珪素、炭素の連続繊維、及び炭化珪素ウイスカ
を用いることによって、4点曲げ強度は約800MPa
と長繊維を含まないものと同定度であるが、破壊靭性値
は約20MPa・√m程度と大きなものも得ることがで
きることが分かる。
From the above data of Examples 4 and 5, the four-point bending strength was approximately 800 MPa by using silicon carbide, carbon continuous fibers, and silicon carbide whiskers.
It can be seen that a fracture toughness value as high as about 20 MPa · √m can be obtained, although the degree of identification does not include long fibers.

【0037】[0037]

【実施例6】x軸、y軸、z軸から成る直交3次元織物
において、x軸とy軸とが繊維束500本の炭化珪素連
続繊維を、z軸は繊維束500本の炭素連続繊維を用い
て、繊維の充填率が41%の直交組織3次元織物を製造
した。この3次元織物に、実施例5と全く同様にして、
スラリーを含浸せしめ、実施例5と同様の条件下でそれ
を仮焼結し、更に実施例5と同様にして金属珪素をその
上に載せて熱処理し反応焼結させた。反応焼結後の強
度、破壊靭性値は、実施例1と全く同様にして評価し
た。その結果、曲げ強度930MPa、破壊靭性値23
MPa・√mの値が得られた。
Embodiment 6 In an orthogonal three-dimensional woven fabric composed of an x-axis, a y-axis, and a z-axis, the x-axis and the y-axis are silicon carbide continuous fibers with 500 fiber bundles, and the z-axis is 500 carbon bundles with carbon fiber bundles. Was used to manufacture a three-dimensional woven fabric having an orthogonal structure having a fiber filling rate of 41%. To this three-dimensional fabric, exactly as in Example 5,
The slurry was impregnated, pre-sintered under the same conditions as in Example 5, and further, as in Example 5, metallic silicon was placed thereon and heat-treated to perform reaction sintering. The strength and fracture toughness after reaction sintering were evaluated in exactly the same manner as in Example 1. As a result, the bending strength was 930 MPa and the fracture toughness value was 23.
A value of MPa · √m was obtained.

【0038】[0038]

【実施例7】繊維束500本の炭化珪素の連続繊維を用
いて、直交組織3次元織物によって図2に示すガスター
ビン用動翼を製造した。この繊維の充填率は45%であ
った。実施例1の試料番号3と全く同様の組成粉末を用
いてスラリーとし、この繊維構造体に充填した。すなわ
ち、平均粒径2μmのα型炭化珪素粉末と、平均粒径
0.01μmのカーボンブラックと、平均分子量が3,
400のポリカルボシラン粉末とを表1の試料番号3の
組成になるように秤量し、全体を100gとした。これ
に粘結剤としてフェノール樹脂を1g、キシレンを14
0cc加え、SiCボールを用いボールミル混合してス
ラリーを得た。このスラリーを加圧含浸によって繊維構
造体に含浸せしめた。この含浸体を0.01Torrの
真空中で1,000°Cで1時間熱処理し仮焼結体とし
た。この仮焼結体の上に、約2倍の重量の金属珪素を載
せ、0.01Torrの真空中、1,600°Cで1時
間熱処理し反応焼結させた。このようにして製造したセ
ラミックス動翼は、1,500°Cで定格回転数11,
000rpmの条件下でその健全性が確認された。
Embodiment 7 A gas turbine rotor blade shown in FIG. 2 was manufactured by a three-dimensional woven fabric of orthogonal structure using continuous fibers of silicon carbide having a fiber bundle of 500 pieces. The filling factor of the fiber was 45%. A slurry was prepared using exactly the same composition powder as that of Sample No. 3 of Example 1, and the slurry was filled in the fibrous structure. That is, α-type silicon carbide powder having an average particle size of 2 μm, carbon black having an average particle size of 0.01 μm, and an average molecular weight of 3,
400 polycarbosilane powders were weighed so as to have the composition of Sample No. 3 in Table 1, and the total was 100 g. 1 g of phenol resin and 14 g of xylene as a binder
0 cc was added, and a ball mill was mixed using SiC balls to obtain a slurry. This slurry was impregnated into the fibrous structure by pressure impregnation. The impregnated body was heat-treated at 1,000 ° C. for 1 hour in a vacuum of 0.01 Torr to obtain a temporarily sintered body. About twice the weight of metallic silicon was placed on the temporary sintered body, and heat-treated at 1600 ° C. for 1 hour in a vacuum of 0.01 Torr to perform reaction sintering. The ceramic blade thus manufactured has a rated rotation speed of 11,500 ° C at 11,500 ° C.
Its soundness was confirmed under the condition of 000 rpm.

【0039】[0039]

【実施例8】繊維束500本、熱伝導率600W/mK
の炭素連続繊維を用いて、繊維の充填率が63%の1次
元配向試料を実施例1の試料番号3の試料と全く同様の
方法によって製造した。熱流速20MW/m2の照射に
よっても健全であり、熱伝導率は300W/mKを超え
た。本実施例の炭化珪素セラミックスは、核融合炉用の
プラズマ対向部材に好適である。
Embodiment 8 500 fiber bundles, thermal conductivity 600 W / mK
, A one-dimensionally oriented sample having a fiber filling rate of 63% was produced in exactly the same manner as the sample of sample No. 3 in Example 1. Irradiation at a heat flow rate of 20 MW / m 2 was sound and thermal conductivity exceeded 300 W / mK. The silicon carbide ceramics of the present embodiment is suitable for a plasma facing member for a nuclear fusion reactor.

【0040】[0040]

【実施例9】試料番号3、試料番号8及び実施例5の炭
素連続繊維を用いた試料と全く同様の製造方法によっ
て、それぞれ80mm×60mm×3mmの平板を製造
した。なお、炭素連続繊維の熱伝導率は600W/mK
のものを用いた。これらの試料の熱膨張率及び熱伝導率
を表5に示す。熱膨張率は500°Cまでの熱膨張から
算出し、熱伝導率はレーザフラッシュ法により測定し
た。
Example 9 Plates of 80 mm × 60 mm × 3 mm were manufactured by exactly the same manufacturing method as the samples using the continuous carbon fibers of Sample No. 3, Sample No. 8 and Example 5. The thermal conductivity of the continuous carbon fiber is 600 W / mK.
Was used. Table 5 shows the thermal expansion coefficient and the thermal conductivity of these samples. The coefficient of thermal expansion was calculated from the thermal expansion up to 500 ° C., and the thermal conductivity was measured by a laser flash method.

【0041】[0041]

【表5】 [Table 5]

【0042】表5より、本実施例の平板は珪素と同等の
熱膨張率と、Mo又はWを凌ぐ熱伝導率とを有している
ことが明らかである。大電流パワーモジュール用の放熱
板として、従来のMoの代替材として用いたところ、全
く問題が生じず、好適であることが判明した。
From Table 5, it is clear that the flat plate of this example has a thermal expansion coefficient equal to that of silicon and a thermal conductivity exceeding Mo or W. When used as a heat sink for a large current power module as a substitute for the conventional Mo, no problem occurred at all, and it was found to be suitable.

【0043】[0043]

【発明の効果】本発明によれば、中間温度域における耐
熱性の劣化がなく、高温強度及び靭性に優れた炭化珪素
セラミックスを容易に得ることができ、ガスタービン用
の高温用部材、核融合炉用のプラズマ対向部材、及び半
導体用放熱基板等のエンジニアリングセラミックスの工
業化に大きな効果を有する。
According to the present invention, it is possible to easily obtain a silicon carbide ceramic having excellent high-temperature strength and toughness without deterioration of heat resistance in an intermediate temperature range. It has a great effect on the industrialization of engineering ceramics such as plasma facing members for furnaces and heat dissipation substrates for semiconductors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施の形態の炭化珪素セラミ
ックスの結晶組織図である。
FIG. 1 is a crystal structure diagram of a silicon carbide ceramic according to an embodiment of the present invention.

【図2】図2は本発明の一実施例のガスタービン用動翼
を示す斜視図である。
FIG. 2 is a perspective view showing a moving blade for a gas turbine according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 最も平均粒径の大きな炭化珪素結晶群 2 中間サイズの平均粒径の炭化珪素結晶群 3 最も小さな平均粒径の炭化珪素結晶群 1 silicon carbide crystal group having the largest average particle size 2 silicon carbide crystal group having an average size of medium size 3 silicon carbide crystal group having the smallest average particle size

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢井 裕一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 安富 義幸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 前田 邦裕 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Sawai 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Yoshiyuki Yasutomi 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Kunihiro Maeda 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 10nm乃至1,000nm程度の粒径
の炭化珪素の結晶群とそれよりも大きな粒径の炭化珪素
の結晶群とを有し、Si元素、C元素及びO元素により
焼結体を構成する元素の99.9重量%以上が占められ
おり、かつ前記焼結体が遊離した原子状Siを実質的に
含有していないことを特徴とする炭化珪素セラミック
ス。
1. A sintered body comprising a silicon carbide crystal group having a particle size of about 10 nm to 1,000 nm and a silicon carbide crystal group having a larger particle size, and comprising a Si element, a C element and an O element. Silicon carbide ceramics, wherein 99.9% by weight or more of the elements constituting the silicon carbide are occupied, and the sintered body does not substantially contain free atomic Si.
【請求項2】 10nm乃至1,000nm程度の粒径
の炭化珪素の結晶群とそれよりも大きな粒径の炭化珪素
の結晶群とを有し、Si元素、C元素、O元素及びTi
元素により焼結体を構成する元素の99.9重量%以上
が占められており、かつ前記焼結体が遊離した原子状S
iを実質的に含有していないことを特徴とする炭化珪素
セラミックス。
2. It has a silicon carbide crystal group having a particle size of about 10 nm to 1,000 nm and a silicon carbide crystal group having a larger particle size, and comprises Si element, C element, O element and Ti
99.9% by weight or more of the elements constituting the sintered body is occupied by the element, and the atomic S
A silicon carbide ceramics substantially free of i.
【請求項3】 前記焼結体が、60体積%以下の炭素連
続繊維、炭化珪素連続繊維又は炭化珪素ウイスカを含有
することを特徴とする請求項1又は2記載の炭化珪素セ
ラミックス。
3. The silicon carbide ceramic according to claim 1, wherein the sintered body contains 60% by volume or less of continuous carbon fiber, continuous silicon carbide fiber, or silicon carbide whisker.
【請求項4】 炭化珪素、炭素及び平均分子量が2,5
00以上のポリカルボシランを前記炭化珪素及び前記炭
素に対して5乃至20体積%の割合で混合して成形する
工程と、この成形した混合物を仮焼して仮焼結体とする
工程と、該仮焼結体に溶融珪素を加熱しながら溶浸させ
る工程とを備えたことを特徴とする炭化珪素セラミック
スの製造方法。
4. Silicon carbide, carbon and an average molecular weight of 2.5
A step of mixing and molding polycarbosilane of at least 00 with respect to the silicon carbide and the carbon at a ratio of 5 to 20% by volume, and a step of calcining the molded mixture to form a temporarily sintered body; A step of infiltrating the pre-sintered body with molten silicon while heating the silicon body.
【請求項5】 炭化珪素、炭素及び平均分子量が2,5
00以上のポリチタノカルボシランを前記炭化珪素及び
前記炭素に対して5乃至20体積%の割合で混合して成
形する工程と、この成形した混合物を仮焼して仮焼結体
とする工程と、該仮焼結体に溶融珪素を加熱しながら溶
浸させる工程とを備えたことを特徴とする炭化珪素セラ
ミックスの製造方法。
5. Silicon carbide, carbon and an average molecular weight of 2.5
A step of mixing and shaping a polytitanocarbosilane of at least 00 with respect to the silicon carbide and the carbon at a ratio of 5 to 20% by volume, and a step of calcining the molded mixture to form a temporary sintered body And a step of infiltrating the pre-sintered body with molten silicon while heating the silicon body.
【請求項6】 炭素連続繊維、炭化珪素連続繊維又は炭
化珪素ウイスカ中に前記混合物中を充填する工程を更に
備えたことを特徴とする請求項4又は5記載の炭化珪素
セラミックスの製造方法。
6. The method for producing a silicon carbide ceramic according to claim 4, further comprising a step of filling the mixture into a carbon continuous fiber, a silicon carbide continuous fiber, or a silicon carbide whisker.
JP08286495A 1996-10-29 1996-10-29 Silicon carbide ceramics and method for producing the same Expired - Fee Related JP3125246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08286495A JP3125246B2 (en) 1996-10-29 1996-10-29 Silicon carbide ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08286495A JP3125246B2 (en) 1996-10-29 1996-10-29 Silicon carbide ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10130056A true JPH10130056A (en) 1998-05-19
JP3125246B2 JP3125246B2 (en) 2001-01-15

Family

ID=17705148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08286495A Expired - Fee Related JP3125246B2 (en) 1996-10-29 1996-10-29 Silicon carbide ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3125246B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348288A (en) * 2000-06-05 2001-12-18 Toshiba Corp Particle-dispersed silicon material and method of producing the same
JP2018177635A (en) * 2017-04-19 2018-11-15 ロールス−ロイス ハイ テンペラチャー コンポジッツ,インコーポレーテッド Method to process ceramic matrix composite (cmc) with protective ceramic coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348288A (en) * 2000-06-05 2001-12-18 Toshiba Corp Particle-dispersed silicon material and method of producing the same
JP2018177635A (en) * 2017-04-19 2018-11-15 ロールス−ロイス ハイ テンペラチャー コンポジッツ,インコーポレーテッド Method to process ceramic matrix composite (cmc) with protective ceramic coating
US11001532B2 (en) 2017-04-19 2021-05-11 Rolls-Royce High Temperature Composites Inc. Method to process a ceramic matrix composite (CMC) with a protective ceramic coating
US11787159B2 (en) 2017-04-19 2023-10-17 Rolls-Royce High Temperature Composites Inc. Method to process a ceramic matrix composite (CMC) with a protective ceramic coating

Also Published As

Publication number Publication date
JP3125246B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
CA2443119C (en) A hot-pressing method of manufacturing a sic fiber-reinforced sic-matrix composite
JP2002356381A (en) METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
US5725828A (en) Ceramic matrix composites using modified hydrogen silsesquioxane resin
JP3491902B2 (en) Fiber composite material and method for producing the same
US20060269683A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP1284251B1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP1160222A2 (en) Manufacturing method of ceramic matrix composite
JP2926468B2 (en) Silicon carbide ceramics and method for producing the same
JP2535768B2 (en) High heat resistant composite material
Chew et al. Processing Aluminum Nitride‐Silicon Carbide Composites via Polymer Infiltration and Pyrolysis of Polymethylsilane, a Precursor to Stoichiometric Silicon Carbide
JP2765543B2 (en) Reaction sintered ceramics and method for producing the same
JP3125246B2 (en) Silicon carbide ceramics and method for producing the same
JP2879675B1 (en) Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics
JP2000247745A (en) Ceramics-base fiber composite material, its production and gas turbine part
JPH0157075B2 (en)
JPS5895648A (en) Manufacture of one-direction reinforced silicon carbide ceramic body
JP2001048653A (en) Titanium boride sintered body obtained by adding silicon nitride as sintering aid and its production
JPH0687657A (en) Silicon carbide based inorganic fiber reinforced ceramic composite material
GB2250516A (en) Fiber-containing composite
JP3574583B2 (en) Heat radiating material and method of manufacturing the same
JP2002275556A (en) Metal-ceramic composite material
JP3443634B2 (en) High temperature composite material and method for producing the same
Zhang et al. Post‐Hot‐Pressing and High‐Temperature Bending Strength of Reaction‐Bonded Silicon Nitride‐Molybdenum Disilicide and Silicon Nitride‐Tungsten Silicide Composites

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees