JPH1012943A - Piezoelectric transformer - Google Patents

Piezoelectric transformer

Info

Publication number
JPH1012943A
JPH1012943A JP16789596A JP16789596A JPH1012943A JP H1012943 A JPH1012943 A JP H1012943A JP 16789596 A JP16789596 A JP 16789596A JP 16789596 A JP16789596 A JP 16789596A JP H1012943 A JPH1012943 A JP H1012943A
Authority
JP
Japan
Prior art keywords
polarization
transformer
piezoelectric
amount
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16789596A
Other languages
Japanese (ja)
Inventor
Satoru Tagami
悟 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16789596A priority Critical patent/JPH1012943A/en
Publication of JPH1012943A publication Critical patent/JPH1012943A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric transformer in which the transformer performance can be modified without requiring any modification in the shape of a piezoelectric when diversified requirements are imposed on the step-up ratio or the efficiency of the piezoelectric transformer or regulation is required for the output performance of an inverter circuit when it is mounted on a system employing the transformer. SOLUTION: The ratio of polarization at the driving section and the power generating section of a piezoelectric to the saturated polarization is differentiated between the driving section and the power generating section. The step-up ratio and the efficiency of a transformer exhibit different characteristics as compared with those of a piezoelectric where both the driving section and the power generating section are subjected to saturated pogarization. Since the characteristics vary differently depending on the extent of polarization at the driving section and the power generating section, performance of the transformer can be modified using a piezoelectric of identical shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電トランスに関
し、特に、長板状の圧電体表面に交流電圧印加用電極と
出力電圧取出し用電極とを備える構造の圧電トランスに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric transformer, and more particularly, to a piezoelectric transformer having a structure in which an electrode for applying an AC voltage and an electrode for extracting an output voltage are provided on the surface of a long plate-shaped piezoelectric body.

【0002】[0002]

【従来の技術】この種の圧電トランスは、基本的に、長
板状圧電体表面に設けた一対の入力電極に外部から交流
電圧を入力し、圧電効果により圧電体を長手方向に機械
共振させ、その共振に基づいて逆圧電効果により発生す
る電圧を、入力電極とは別に設けた出力電極から取り出
すという動作原理に基づくものである。
2. Description of the Related Art In a piezoelectric transformer of this type, basically, an AC voltage is externally input to a pair of input electrodes provided on the surface of a long plate-shaped piezoelectric body, and the piezoelectric body mechanically resonates in the longitudinal direction by a piezoelectric effect. This is based on the operation principle that a voltage generated by the inverse piezoelectric effect based on the resonance is taken out from an output electrode provided separately from the input electrode.

【0003】図5に、従来の圧電トランスの一例の斜視
図を示す。図5を参照して、長板状の圧電体1が長手方
向に亘って、二等分されている。左側の領域は駆動部5
と呼ばれる。その上下に、ほぼ全域に拡がる入力電極
2,3が形成されている。右側の領域は発電部6と呼ば
れる。長手軸に垂直な端面に、その端面全域に拡がる出
力電極7が形成されている。これら駆動部5および発電
部6それぞれには分極が施されており、駆動部5は、図
中に上向きの矢印で示すように、圧電体1の厚さ軸に沿
って分極している。発電部6は、右向きの矢印で示すよ
うに、圧電体の長手軸に沿う方向に分極している。上記
の分極は通常、製造工程中で、圧電体表面に形成した電
極2,3,7を利用して、駆動部,発電部毎に別々に行
われる。
FIG. 5 is a perspective view showing an example of a conventional piezoelectric transformer. Referring to FIG. 5, a long plate-shaped piezoelectric body 1 is bisected in the longitudinal direction. The left area is the drive unit 5
Called. Above and below, input electrodes 2 and 3 are formed which extend over almost the entire area. The area on the right side is called the power generation unit 6. On an end face perpendicular to the longitudinal axis, an output electrode 7 is formed which extends over the entire end face. Each of the drive unit 5 and the power generation unit 6 is polarized, and the drive unit 5 is polarized along the thickness axis of the piezoelectric body 1 as indicated by an upward arrow in the drawing. The power generation unit 6 is polarized in a direction along the longitudinal axis of the piezoelectric body as indicated by a right-pointing arrow. The above-described polarization is usually performed separately for each of the driving unit and the power generation unit by using the electrodes 2, 3, and 7 formed on the surface of the piezoelectric body during the manufacturing process.

【0004】このトランスを用いて昇圧を行うには、駆
動部の二つの電極2,3の間すなわち入力端子4A,4
Bの間に、外部から交流電圧einを与える。このように
すると、圧電体1は駆動部5に生じる圧電横効果によ
り、長手方向に、入力交流電圧の周波数に応じた縦振動
を起す。そのとき、入力交流電圧einの周波数を、例え
ば圧電体の長手方向縦振動の基本モードの共振周波数
(交流電圧einの波長をλとし、圧電体の長さをLとし
たとき、L=λ/2)にすると、圧電体1全体に長手方
向の共振が生じる。発電部6には、その共振に基づく逆
圧電効果により、端面電極7と入力電極2又は入力電極
3との間に大きな電圧が生じるので、この電圧を昇圧電
圧として、外部に取り出す。すなわち、端面電極7と入
力電極3とを共通に出力端子8Aに接続し、入力電極2
を出力端子8Bに接続して、両端子8A,8Bの間か
ら、出力電圧eout を取り出す。
In order to perform voltage boosting using this transformer, the input terminals 4A and 4A are connected between two electrodes 2 and 3 of the driving section.
During B, an external AC voltage e in is applied. With this configuration, the piezoelectric body 1 generates longitudinal vibration in the longitudinal direction according to the frequency of the input AC voltage due to the piezoelectric transverse effect generated in the driving unit 5. At this time, the frequency of the input AC voltage e in is set to, for example, the resonance frequency of the fundamental mode of the longitudinal vibration of the piezoelectric body (when the wavelength of the AC voltage e in is λ and the length of the piezoelectric body is L, L = λ / 2), longitudinal resonance occurs in the entire piezoelectric body 1. Since a large voltage is generated between the end face electrode 7 and the input electrode 2 or the input electrode 3 by the inverse piezoelectric effect based on the resonance in the power generation unit 6, this voltage is taken out as a boosted voltage. That is, the end face electrode 7 and the input electrode 3 are commonly connected to the output terminal 8A, and the input electrode 2
Is connected to the output terminal 8B, and an output voltage e out is taken out between both terminals 8A and 8B.

【0005】次に図6に、この種の圧電トランスの他の
例の斜視図を示す。この図に示すトランスは、3次の共
振モード(入力交流電圧einの波長をλ、圧電体1の長
さをLとして、L=3・(λ/2))で動作するトラン
スである。図6を参照して、長板状の圧電体1が、長手
軸に沿って駆動部5L,発電部6,駆動部5Rの、同じ
長さの三つの領域に大きく区分されている。駆動部5L
の上・下両面には、電極2L,3Lがそれぞれ領域5L
のほぼ全域に拡がって設けられている。もう一方の駆動
部5Rの上・下両面にも、同様に、電極2R,3Rが設
けられている。駆動部5L,5Rは製造工程中で、図中
に縦の矢印で示すように、圧電体1の厚さ軸に沿った分
極が施されている。
FIG. 6 is a perspective view of another example of this type of piezoelectric transformer. The transformer shown in this figure is a transformer that operates in a third-order resonance mode (L = 3 · (λ / 2), where λ is the wavelength of the input AC voltage e in and L is the length of the piezoelectric body 1). Referring to FIG. 6, long plate-shaped piezoelectric body 1 is largely divided along the longitudinal axis into three regions of the same length, that is, drive unit 5L, power generation unit 6, and drive unit 5R. Drive unit 5L
On both upper and lower surfaces, electrodes 2L and 3L are provided in regions 5L, respectively.
It is provided almost all over the area. Similarly, electrodes 2R and 3R are provided on the upper and lower surfaces of the other driving unit 5R. During the manufacturing process, the driving units 5L and 5R are polarized along the thickness axis of the piezoelectric body 1 as shown by vertical arrows in the figure.

【0006】一方、発電部6には、この領域の長手軸の
中央の上下に、圧電体1の幅方向に延びる細い電極7が
設けられている。この発電部6は、図中に長手軸に沿う
矢印で示すように、電極7を挟んで駆動部5L側の部分
と駆動部5R側の部分とが、長手軸に沿って互いに逆向
きに分極されている。
On the other hand, the power generating section 6 is provided with thin electrodes 7 extending in the width direction of the piezoelectric body 1 above and below the center of the longitudinal axis of this area. As shown by an arrow along the longitudinal axis in the figure, the power generating unit 6 has a portion on the drive unit 5L side and a portion on the drive unit 5R side with the electrode 7 interposed therebetween, which are polarized in opposite directions along the longitudinal axis. Have been.

【0007】この圧電トランスにおいて昇圧動作は、以
下のようにして行われる。先ず、二つの駆動部それぞれ
の上面の電極2L,2Rを、同電位になるように結線す
る。同様に下側の電極3L,3Rを結線する。そして、
上・下の電極の間つまり、入力端子4A,4Bの間に、
交流電圧einを入力する。この交流入力電圧の周波数を
3次モードの共振周波数に選ぶと、圧電体1は長手軸に
沿って縦振動の機械共振を起す。この長手軸の共振振動
により発電部6に、長手軸の振動変位に対応した振動応
力が発生する。そして、この振動応力と長手軸の分極に
基づく逆圧電効果とにより電荷が発生し、発電部の電極
7と駆動部の電極2L,2Rとの間つまり、出力端子8
Aと出力端子8Bとの間に昇圧出力電圧eout が得られ
る。
In this piezoelectric transformer, the boosting operation is performed as follows. First, the electrodes 2L and 2R on the upper surfaces of the two drive units are connected so as to have the same potential. Similarly, the lower electrodes 3L and 3R are connected. And
Between the upper and lower electrodes, that is, between the input terminals 4A and 4B,
Input the AC voltage e in . When the frequency of the AC input voltage is selected as the resonance frequency of the third mode, the piezoelectric body 1 causes mechanical resonance of longitudinal vibration along the longitudinal axis. Due to the resonance vibration of the longitudinal axis, a vibration stress corresponding to the vibration displacement of the longitudinal axis is generated in the power generation unit 6. Then, an electric charge is generated by the vibration stress and an inverse piezoelectric effect based on the polarization of the longitudinal axis, and an electric charge is generated between the electrode 7 of the power generation unit and the electrodes 2L and 2R of the drive unit, that is, the output terminal 8
A boosted output voltage e out is obtained between A and the output terminal 8B.

【0008】以上、この種のトランスについて二つの例
を用いて述べたが、この種の圧電トランスは、長板上
の圧電体が長手方向に亘って、圧電体に長手軸に沿う機
械共振を起させるための駆動部と、その機械共振によっ
て電圧を生じさせるための発電部の二種類の領域に区分
されており、それらの駆動部および発電部は、圧電体
の厚さ方向と長さ方向という互いに異なる方向に分極を
施されているという構造上の特徴を備えている。
As described above, this type of transformer has been described using two examples. In this type of piezoelectric transformer, the piezoelectric body on the long plate has a mechanical resonance along the longitudinal axis along the longitudinal axis. Drive and a power generator for generating a voltage by mechanical resonance of the piezoelectric element. The drive and the power generator are arranged in the thickness direction and the length direction of the piezoelectric body. Structural characteristics that polarization is applied in different directions.

【0009】ここで、上記の分極は、製造工程中で、電
極形成済みの圧電体を例えば150℃程度以上の高温に
保ち、駆動部,発電部に抗電界以上の例えば2kV/m
m程度の直流高電界を与えることによって施される。そ
の場合、駆動部は圧電体1の厚さ方向に、発電部は長手
方向にというように分極の方向が異るので、各分極はそ
れぞれ別個に行われる。又、分極のときに必要な電界印
加は、次のようにして行われる。すなわち、先ず、図5
に示す基本モードのトランスで駆動部5を分極させると
きは、駆動部上下の二つの電極2,3の間に電圧を印加
して厚さ方向の電界を加える。又、発電部の分極の際
は、駆動部の二つの電極を同電位になるように短絡し、
電極2,3と発電部の端面電極7との間に電圧を印加し
て、圧電体に長手軸に沿う電界を加える。次に、図6に
示す3次モードのトランスで駆動部5L,5Rの分極を
行う場合は、各駆動部5L,5Rの上面の電極2L,2
Rどうしを、同電位になるように短絡する。又、各駆動
部の下面の電極3L,3Rどうしも、同電位になるよう
に短絡する。そして、上側電極2L,2Rと下側電極3
L,3Rとの間に直流電圧を加え、圧電体1に厚さ軸に
沿う電界を与える。一方、発電部6の分極に当っては、
駆動部の上下四つの電極2L,3L,2R,3Rを全
て、同電位になるように結線する。そして、発電部の電
極7と駆動部の電極2L,3L,2R,3Rとの間に直
流電圧を加え、その電圧印加によって圧電体1に、電極
7を挟んで長手軸に沿う互いに逆向きの電界を与える。
Here, during the manufacturing process, the polarization is maintained at a high temperature of, for example, about 150 ° C. or more in the manufacturing process, and the driving unit and the power generation unit are subjected to a coercive electric field of, for example, 2 kV / m or more.
This is performed by applying a DC high electric field of about m. In this case, the directions of polarization are different in the driving section in the thickness direction of the piezoelectric body 1 and in the power generation section in the longitudinal direction, so that each polarization is performed separately. The application of an electric field required for polarization is performed as follows. That is, first, FIG.
When the driving unit 5 is polarized by the transformer in the basic mode shown in FIG. 1, a voltage is applied between the two electrodes 2 and 3 above and below the driving unit to apply an electric field in the thickness direction. When the power generation unit is polarized, the two electrodes of the drive unit are short-circuited so that they have the same potential.
A voltage is applied between the electrodes 2 and 3 and the end face electrode 7 of the power generation unit to apply an electric field along the longitudinal axis to the piezoelectric body. Next, when the polarization of the driving units 5L and 5R is performed by the tertiary mode transformer shown in FIG. 6, the electrodes 2L and 2R on the upper surfaces of the driving units 5L and 5R are used.
Rs are short-circuited to have the same potential. Also, the electrodes 3L and 3R on the lower surface of each drive unit are short-circuited so as to have the same potential. Then, the upper electrodes 2L, 2R and the lower electrodes 3
A DC voltage is applied between L and 3R to apply an electric field to the piezoelectric body 1 along the thickness axis. On the other hand, regarding the polarization of the power generation unit 6,
The upper and lower four electrodes 2L, 3L, 2R, 3R of the drive unit are all connected so as to have the same potential. Then, a DC voltage is applied between the electrode 7 of the power generation unit and the electrodes 2L, 3L, 2R, 3R of the drive unit, and the voltage is applied to the piezoelectric body 1 in opposite directions along the longitudinal axis with the electrode 7 interposed therebetween. Apply an electric field.

【0010】ところで、圧電トランスの性能は、圧電体
の駆動部の厚さ方向の分極,発電部の長手方向の分極が
いずれも十分飽和しているものとして、次のように言え
る。すなわち、トランス性能として最も重要な昇圧比は
出力端開放時、以下に記す式で示される(要ら,圧電
セラミックトランスの一考察,日本音響学会誌,第32
巻,1976年,第8号,第470頁〜第479頁)。
By the way, the performance of the piezoelectric transformer can be said as follows assuming that the polarization in the thickness direction of the driving portion of the piezoelectric body and the polarization in the longitudinal direction of the power generation portion are both sufficiently saturated. That is, the most important step-up ratio as the transformer performance is shown by the following equation when the output terminal is open (in short, a consideration of a piezoelectric ceramic transformer, Journal of the Acoustical Society of Japan, No. 32
Vol. 1976, No. 8, pp. 470-479).

【0011】 [0011]

【0012】式によれば、圧電トランスの材料として
は、電気機械結合係数k31,k33が大きく、機械的品質
係数Qm も大きいものが望ましい。又、材料が決れば、
昇圧比γは圧電体の幾何学的寸法のみで決る。更に、式
から、昇圧比を最大にするには、圧電体の分極は十分
飽和していることを求められる。すなわち、周知のよう
に、圧電セラミック体の分極量Pと電気機械結合係数k
とは互いに関連し、Pが増大するに従ってkも増大す
る。そして、Pが飽和状態に近付くにつれkも或る一定
値に収束する。このことから、分極量を飽和させること
でその材料が持つ係数k31,k33を最大限に利用するこ
とができ、その結果、昇圧比も大きくできるのである。
According to the equation, it is desirable that the material of the piezoelectric transformer has a large electromechanical coupling coefficient k 31 , k 33 and a large mechanical quality coefficient Q m . Also, once the material is decided,
The step-up ratio γ is determined only by the geometric dimensions of the piezoelectric body. Further, from the equation, it is required that the polarization of the piezoelectric body is sufficiently saturated in order to maximize the boost ratio. That is, as is well known, the polarization amount P of the piezoelectric ceramic body and the electromechanical coupling coefficient k
Are related to each other, and k increases as P increases. Then, as P approaches a saturation state, k also converges to a certain constant value. From this, by saturating the amount of polarization, the coefficients k 31 and k 33 of the material can be used to the maximum, and as a result, the boost ratio can be increased.

【0013】ところが、例えば特開平6ー252467
号公報に開示されているように、分極量Pを飽和させト
ランスの効率を高めることで、次のような問題が生じ
る。すなわち、圧電トランスの動作原理を考えると、効
率が改善されるということは、同じ入力電圧に対しより
振幅の大きな機械共振が励起され、これに比例してより
大きな振動応力が圧電体に作用し、より大きな電荷を生
じさせ、より大きな出力電圧が得られることである。こ
のことは、従来より小さな入力電圧でも、圧電体が機械
的に破断してしまうことを意味する。このような小入力
電圧による圧電体の破断という問題に対し、上記公報で
は、駆動部も発電部も差別なく、分極をその飽和状態に
対し30〜90%に抑え大きな振動応力の発生を抑制す
ることで、圧電体の機械的耐久性を保証している。尚、
この耐久性改善対策において、分極量の下限は、次のよ
うにして決られている。すなわち分極量が小さくなる
と、昇圧比が小さくなると共にトランスの効率も低下
し、駆動中のトランスでの発熱が大きくなる。この発熱
も又トランスの信頼性を低下させるので、発熱の許容限
界から分極量の下限を30%にするのである。
However, for example, Japanese Patent Application Laid-Open No. 6-252467
As disclosed in the above publication, the following problem arises by increasing the efficiency of the transformer by saturating the amount of polarization P. In other words, considering the operating principle of a piezoelectric transformer, improving efficiency means that mechanical resonance with a larger amplitude is excited for the same input voltage, and a larger vibration stress acts on the piezoelectric body in proportion to this. , A larger charge is generated, and a larger output voltage is obtained. This means that the piezoelectric body is mechanically broken even with a smaller input voltage than the conventional one. In order to solve the problem of breakage of the piezoelectric body due to such a small input voltage, in the above-mentioned publication, the driving section and the power generation section are not discriminated and the polarization is suppressed to 30 to 90% of the saturation state, thereby suppressing the generation of large vibration stress. This guarantees the mechanical durability of the piezoelectric body. still,
In this durability improvement measure, the lower limit of the amount of polarization is determined as follows. That is, when the amount of polarization is reduced, the step-up ratio is reduced and the efficiency of the transformer is reduced, and the heat generated by the transformer during driving is increased. Since this heat also lowers the reliability of the transformer, the lower limit of the amount of polarization is set to 30% from the allowable limit of heat generation.

【0014】これまで述べたことから、圧電体の機械的
強度の信頼性まで考慮したとき、分極量には最適範囲が
あり、分極量を変化させると電気機械結合係数が変化
し、これに伴いトランスの昇圧比も、式に従って変化
することが分る。
From the above description, when considering the reliability of the mechanical strength of the piezoelectric body, there is an optimum range of the polarization amount, and when the polarization amount is changed, the electromechanical coupling coefficient changes. It can be seen that the step-up ratio of the transformer also changes according to the equation.

【0015】次に、圧電トランスの出力特性に関して、
負荷依存性が知られている。例えば前掲の文献によれ
ば、圧電トランスの昇圧比はそのトランスに接続される
負荷の電気的インピーダンスの増大と共に大きくなる。
特に、負荷インピーダンスがトランスの出力インピーダ
ンスと整合する大きさよりも大きくなると、昇圧比は急
激に大きくなる。つまり、(無負荷の)圧電体単独のと
きの性能は同じであっても、(負荷を接続したときの)
トランスとしての性能は、接続した負荷のインピーダン
スにより大きく異ってくるのである。
Next, regarding the output characteristics of the piezoelectric transformer,
Load dependence is known. For example, according to the above-mentioned literature, the step-up ratio of a piezoelectric transformer increases as the electrical impedance of a load connected to the transformer increases.
In particular, when the load impedance becomes larger than the size matching the output impedance of the transformer, the boost ratio rapidly increases. In other words, even if the performance of the piezoelectric body alone (with no load) is the same, (when the load is connected)
The performance as a transformer greatly depends on the impedance of the connected load.

【0016】[0016]

【発明が解決しようとする課題】像術したこの種の圧電
トランスには、以下に述べる点に、改善すべき余地があ
る。すなわち、 (1)液晶ディスプレイ用バックライトのためのインバ
ータを例に取ると、使用される冷陰極管のサイズ(管
径,長さ)は当然、ディスプレイの画面サイズ毎に異
る。このことは、冷陰極管の安定点灯のために必要なイ
ンバータ出力電圧,電力などが、それぞれ画面サイズ毎
に異ることを意味する。換言すれば、トランスが同じで
あれば、入力電圧が異ることになる。ところがインバー
タの入力電圧は、電池駆動による制限や使用ICの制限
などにより、一定であることが多い。このことは、トラ
ンスの出力特性を画面サイズに合せて様々に変えて、各
種の要求出力性能に対応せざるを得ないということに他
ならない。
This type of imaged piezoelectric transformer has room for improvement in the following points. That is, (1) Taking an inverter for a backlight for a liquid crystal display as an example, the size (tube diameter and length) of a cold cathode tube used naturally differs for each display screen size. This means that the inverter output voltage, electric power, and the like required for stable lighting of the cold-cathode tubes differ for each screen size. In other words, if the transformer is the same, the input voltage will be different. However, the input voltage of the inverter is often constant due to a limitation due to battery drive or a limitation on the IC used. This means that the output characteristics of the transformer must be variously changed in accordance with the screen size to meet various required output performances.

【0017】ここで、バックライトインバータに限らず
一般に電源装置では、回路の設計毎にカスタム対応する
傾向が強い。しかるに昇圧用や降圧用のトランスは、そ
のような電源装置において中心な役割を担っていること
から、昇圧比や効率など、出力特性の設計変更が容易で
あることが望まれる。
In general, not only the backlight inverter but also a power supply generally has a strong tendency to be customized for each circuit design. However, since the step-up and step-down transformers play a central role in such a power supply device, it is desired that the output characteristics such as the step-up ratio and the efficiency can be easily changed in design.

【0018】これに対し、圧電トランスでその性能を変
更する一つの手段として、前述の式に基づいて圧電体
の形状を変更する方法がある。ところが圧電体の形状を
変更すると、以下の問題が生じてくる。先ず、圧電トラ
ンスの駆動時を考えると、その回路は共振回路であるの
で、圧電体の寸法変更に伴う静電容量の変化により、上
記の共振回路の回路定数を設計し直さなければならな
い。つまり、トランスそのものの設計変更に加えて、駆
動回路も設計変更しなければならない。専用ICを使用
している場合はそのICを変更する必要が生じるので、
ICなどの開発工数やリードタイムの点で、対応が非常
に困難になる。次に、インバータ基板への部品実装を考
えると、上述の駆動回路の変更もあるので、プリント配
線基板を新たに設計し直さなければならない。又、パッ
ケージに組み込んだ構造のトランスでは、そのパッケー
ジの設計変更も必要になる。このように、カスタム対応
の電源装置で圧電体の形状を変更することには、多大の
困難が伴う。
On the other hand, as one means for changing the performance of the piezoelectric transformer, there is a method of changing the shape of the piezoelectric body based on the above equation. However, changing the shape of the piezoelectric body causes the following problems. First, when the piezoelectric transformer is driven, since the circuit is a resonance circuit, the circuit constant of the resonance circuit must be redesigned due to a change in capacitance due to a change in dimensions of the piezoelectric body. That is, in addition to the design change of the transformer itself, the design of the drive circuit must also be changed. If you are using a dedicated IC, you will need to change that IC.
In terms of the man-hours for developing ICs and the lead time, it is extremely difficult to deal with them. Next, when the components are mounted on the inverter board, the above-described drive circuit is also changed, so the printed wiring board must be newly designed. In the case of a transformer having a structure incorporated in a package, it is necessary to change the design of the package. As described above, it is extremely difficult to change the shape of the piezoelectric body using a power supply device that supports customization.

【0019】(2)インバータと負荷との間の配線を考
えると、負荷が高インピーダンスのものであれば、イン
バータ・負荷間の浮遊容量の影響が大きい。これは以下
の理由による。既に述べたように、圧電トランスの出力
特性は、負荷依存性が極めて大きい。ところで、浮遊容
量は高インピーダンス負荷に並列に加わるものであるの
で、圧電トランスの負荷はその並列の浮遊容量によって
実効的に大幅に低インピーダンス化される。従ってトラ
ンスの出力電圧は低下し、その効率も低下してしまう。
このような、浮遊容量によるトランス性能の低下は、バ
ックライトなど実際にインバータが用いられるシステム
への搭載の際に生じる問題で、事前に予想することは困
難である。そこで、場合、場合に応じて、個々に現物調
整的に対応しなくてはならないことになるのであるが、
既に述べたように、圧電トランスの性能は圧電体の寸法
により決るので、そこでの大幅調整は難しく、場合によ
ってはインバータ回路の設計変更ということも起り得
る。これは、上記(1)におけると同様に、開発リード
タイムの大幅な延長を意味する。
(2) Considering the wiring between the inverter and the load, if the load has a high impedance, the effect of the stray capacitance between the inverter and the load is large. This is for the following reason. As described above, the load characteristics of the output characteristics of the piezoelectric transformer are extremely large. By the way, since the stray capacitance is applied in parallel to the high impedance load, the load of the piezoelectric transformer is effectively significantly reduced in impedance by the parallel stray capacitance. Therefore, the output voltage of the transformer decreases and its efficiency also decreases.
Such a decrease in transformer performance due to stray capacitance is a problem that occurs when the inverter is actually mounted on a system such as a backlight, and is difficult to predict in advance. Therefore, in some cases, it will be necessary to respond individually in a case-by-case manner,
As described above, since the performance of the piezoelectric transformer is determined by the size of the piezoelectric body, it is difficult to make a large adjustment there, and in some cases, the design of the inverter circuit may be changed. This means a significant extension of the development lead time, as in (1) above.

【0020】これまで述べたように、圧電トランスにお
ける圧電体の形状変更は、インバータの開発リードタイ
ムを長期化させ、コスト高を招来する。一方、圧電体を
変更せずに対応しようとする場合には、この圧電トラン
スの系列化を進めざるを得ないなど、製品の性能、商業
性における自由度が損われる。或いは、個々の現物調整
に多大の工数が必要となる。従って、圧電体の形状変更
なしにトランス性能を変更し、又は調整する方法が強く
望まれる。
As described above, the change in the shape of the piezoelectric body in the piezoelectric transformer prolongs the development lead time of the inverter and increases the cost. On the other hand, if it is attempted to change the piezoelectric transformer without changing it, the series of the piezoelectric transformer must be advanced, and the degree of freedom in product performance and commerciality is impaired. Alternatively, a large number of man-hours are required for individual physical adjustment. Therefore, a method for changing or adjusting the transformer performance without changing the shape of the piezoelectric body is strongly desired.

【0021】[0021]

【課題を解決するための手段】本発明の圧電トランス
は、長板状の圧電性セラミック体とその表面に形成した
電極とを含んでなり、前記圧電性セラミック体は長手方
向に亘って、厚さ軸に沿って分極を施された駆動部と長
手軸に沿って分極を施された発電部とに区分される構造
の圧電トランスにおいて、前記駆動部及び前記発電部そ
れぞれにおける、分極量の飽和状態の分極量に対する割
合を、前記駆動部と前記発電部とで互いに異らせたこと
を特徴とする。
A piezoelectric transformer according to the present invention comprises a long plate-shaped piezoelectric ceramic body and electrodes formed on the surface thereof, and the piezoelectric ceramic body has a thickness in a longitudinal direction. In a piezoelectric transformer having a structure divided into a drive unit polarized along the axis and a power generation unit polarized along the longitudinal axis, the saturation of the amount of polarization in each of the drive unit and the power generation unit The ratio of the state to the amount of polarization is different between the driving unit and the power generation unit.

【0022】本発明によれば、周知の式からは予想さ
れない圧電トランスの性能を、実現できる。例えば、駆
動部の分極だけを飽和状態とし、発電部の分極を飽和に
至る以前の状態とした圧電トランスでは、これを駆動し
たときの昇圧比は分極量の増大と共に大きくなり、飽和
分極量に対し50%付近で一旦極大となり、更に分極量
が大きくなると減少する。その極大のときの昇圧比は、
駆動部の分極も発電部の分極も共に飽和させた圧電トラ
ンスにおける昇圧比に対し、約40%大きくなってい
る。
According to the present invention, it is possible to realize a performance of a piezoelectric transformer that is not expected from a known equation. For example, in a piezoelectric transformer in which only the polarization of the drive unit is in a saturated state and the polarization of the power generation unit is in a state before reaching saturation, the step-up ratio when driving the piezoelectric transformer increases with an increase in the amount of polarization, and the amount of saturation polarization increases. On the other hand, it becomes a local maximum once at around 50%, and decreases when the amount of polarization further increases. The boost ratio at that maximum is
Both the polarization of the drive unit and the polarization of the power generation unit are about 40% larger than the step-up ratio in the piezoelectric transformer in which the polarization is saturated.

【0023】一方、発電部を飽和分極とし、駆動部の分
極量を変化させると、昇圧比は分極量の減少と共に小さ
くなるが効率は改善される方向にある。
On the other hand, when the power generation unit is set to the saturation polarization and the amount of polarization of the driving unit is changed, the step-up ratio becomes smaller as the amount of polarization decreases, but the efficiency tends to be improved.

【0024】従って、発電部と駆動部の分極量をそれぞ
れ個別にコントロールすれば、同じ寸法の圧電体を用い
ながら、目的に沿った性能の圧電トランスを得ることが
できる。
Therefore, if the amount of polarization of the power generation unit and the amount of polarization of the drive unit are individually controlled, it is possible to obtain a piezoelectric transformer having the desired performance while using piezoelectric bodies of the same dimensions.

【0025】[0025]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して説明する。以下に述べる三つの実施
例では、圧電性セラミック材料からなる長板状圧電体を
用い、図6にその斜視図を示す圧電トランスを作製し
た。そして、駆動部あるいは発電部の分極量とトランス
の昇圧比,効率との関係を調査した。すなわち図6を参
照して、以下に述べる実施例の圧電トランスは、前述し
た従来の圧電トランスと同じの、3次モードの長手方向
機械共振を利用した圧電トランスである。尚、駆動部の
電極2L,3L,2R,3Rと外部入力端子4A,4B
との接続点9L,10L,9R,10R及び、発電部の
電極7と外部出力端子8A,8Bとの接続点11,12
は全て、3次モードの共振の節に位置している。以下
に、本発明の実施の形態について各実施例に基づき、具
体的に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings. In the three examples described below, a long plate-shaped piezoelectric body made of a piezoelectric ceramic material was used, and a piezoelectric transformer whose perspective view was shown in FIG. 6 was manufactured. Then, the relationship between the amount of polarization of the drive unit or the power generation unit and the step-up ratio and efficiency of the transformer was investigated. That is, with reference to FIG. 6, the piezoelectric transformer of the embodiment described below is the same as the above-described conventional piezoelectric transformer, and utilizes a third-order longitudinal mechanical resonance. The electrodes 2L, 3L, 2R, 3R of the drive unit and the external input terminals 4A, 4B
9L, 10L, 9R, 10R and connection points 11, 12 between the electrode 7 of the power generation unit and the external output terminals 8A, 8B.
Are all located at the nodes of the third-order mode resonance. Hereinafter, embodiments of the present invention will be specifically described based on examples.

【0026】(実施例1)始めに、本実施例の製造工程
について、説明する。本実施例のトランスの作製に当
り、先ず、電気機械結合係数が大きく、機械的品質係数
の大きな圧電性セラミック材料(商品名:NEPEC
8。(株)トーキン)を準備した。そして、その焼結体
を、長さ36.8mm,幅5.3mm,厚さ1.3mm
の長板状に切削加工して圧電体1を得た。次に、その圧
電体1の表面の所定の部分(電極2L,3L,2R,3
R,7を設けるべき部分)に、銀ペーストを用いた通常
の厚膜スクリーン印刷法で電極パターンを形成し、60
0℃で焼き付けた。最後に、圧電体1に分極処理を施し
圧電的活性を与えることで、トランスとしての動作を可
能にした。その場合、圧電体1中に厚さ方向の分極と長
手方向の分極の二種類の分極が存在するため、各方向毎
に分極させ、合計二度の分極処理を行った。各分極処理
の際の電極の結線方法は、既に述べた従来の圧電トラン
スにおけると同じである。ここで本実施例では、駆動部
の分極は飽和分極で一定とし、一方、発電部の分極量は
飽和状態に対し100,80,60,40,30%と小
さくし、それぞれの水準に対し10個ずつのトランスを
作製した。飽和分極は、各方向とも、170℃に加熱し
た絶縁油中で1.5kV/mmの直流電界を印加し、1
5分間保持することで得られた。一方、分極を飽和以前
の状態に留めることは、印加する直流電圧の大きさを調
整することにより、行った。
(Embodiment 1) First, the manufacturing process of this embodiment will be described. In manufacturing the transformer of this embodiment, first, a piezoelectric ceramic material having a large electromechanical coupling coefficient and a large mechanical quality coefficient (trade name: NEPEC)
8. (Tokin Co., Ltd.) was prepared. Then, the sintered body is 36.8 mm long, 5.3 mm wide, and 1.3 mm thick.
The piezoelectric body 1 was obtained by cutting into a long plate shape. Next, predetermined portions of the surface of the piezoelectric body 1 (electrodes 2L, 3L, 2R, 3R)
R, 7), an electrode pattern is formed by a normal thick film screen printing method using a silver paste,
Bake at 0 ° C. Lastly, the piezoelectric body 1 was subjected to a polarization treatment to give piezoelectric activity, thereby enabling operation as a transformer. In this case, since two kinds of polarizations, that is, polarization in the thickness direction and polarization in the longitudinal direction, exist in the piezoelectric body 1, polarization was performed in each direction, and a total of twice polarization processing was performed. The method of connecting the electrodes during each polarization process is the same as in the above-described conventional piezoelectric transformer. Here, in the present embodiment, the polarization of the driving unit is set to be a saturated polarization, and the amount of polarization of the power generation unit is set to be 100, 80, 60, 40, and 30% smaller than the saturated state, and 10% for each level. Transformers were manufactured individually. In each direction, a DC electric field of 1.5 kV / mm was applied in insulating oil heated to 170 ° C.
Obtained by holding for 5 minutes. On the other hand, the polarization was kept in a state before saturation by adjusting the magnitude of the applied DC voltage.

【0027】次に、このようにして作製した圧電トラン
スについて、出力端子8A,8B間に疑似負荷として純
抵抗600kΩを接続し、一方、シンセサイザからの正
弦波を一旦増幅器を介して増幅した後入力端子4A,4
B間に印加することで、トランスとして動作させた。こ
のときの共振周波数はトランスの水準により異るが、駆
動部・発電部共に飽和分極のもので、136kHzであ
った。共振周波数は、発電部の分極が小さくなるほど上
昇する傾向にあり、30%分極のもので約149kHz
であった。
Next, a pure resistance of 600 kΩ was connected as a pseudo load between the output terminals 8A and 8B of the piezoelectric transformer manufactured as described above, while a sine wave from the synthesizer was once amplified through an amplifier and then input. Terminal 4A, 4
By applying a voltage between B and B, the device was operated as a transformer. The resonance frequency at this time varies depending on the level of the transformer, but both the drive section and the power generation section have saturation polarization and are 136 kHz. The resonance frequency tends to increase as the polarization of the power generation unit decreases, and is approximately 149 kHz for a 30% polarization.
Met.

【0028】本実施例における発電部の分極程度とトラ
ンスとしての昇圧比,効率の関係を図1に示す。図1を
参照して、昇圧比は、駆動部の分極程度が大きくなるの
に伴ない大きくなり、飽和状態に対し60%付近で一旦
極大値を取るが、更に分極程度が大きくなると逆に減少
する。この極大のときの昇圧比は、発電部の分極が10
0%の水準(駆動部も飽和部側も共に飽和分極のトラン
ス)における昇圧比に対し、約40%大きい。一方、効
率は、発動部の分極程度が小さくなるにつれ低下する傾
向で、30%分極のものの効率は、20%程度にまで小
さくなる。
FIG. 1 shows the relationship between the degree of polarization of the power generation unit, the boost ratio as a transformer, and the efficiency in this embodiment. Referring to FIG. 1, the step-up ratio increases as the degree of polarization of the driving section increases, and reaches a local maximum value near 60% with respect to the saturated state, but decreases when the degree of polarization further increases. I do. The step-up ratio at this maximum is such that the polarization of the power generation section is 10
It is about 40% larger than the step-up ratio at the level of 0% (both the driving section and the saturation section side have a saturation polarization transformer). On the other hand, the efficiency tends to decrease as the degree of polarization of the actuation portion decreases, and the efficiency of a 30% polarization decreases to about 20%.

【0029】このように、駆動部の分極は飽和分極とし
発電部だけその分極の程度を下げることで、同一寸法の
圧電体を用いながら、トランスとしての昇圧比は異るト
ランスを得ることができる。
As described above, by setting the polarization of the driving section to the saturation polarization and lowering the degree of the polarization only in the power generation section, it is possible to obtain transformers having different step-up ratios as transformers while using piezoelectric bodies of the same dimensions. .

【0030】この種の圧電トランスの昇圧比γは理論的
には、等価回路解析を用いて、下記の式で表される。
The step-up ratio γ of this type of piezoelectric transformer is theoretically expressed by the following equation using equivalent circuit analysis.

【0031】 [0031]

【0032】しかしながら、この種の圧電トランスの分
野では従来、駆動部・発電部ともに飽和分極であること
に基づいて議論がなされ、又、分極程度を小さくする場
合でも、例えば前出の特開平6ー252467号公報の
ように、駆動部の分極,発電部の分極を共に差別なく変
化させるのが一般的である。すなわち、図1に示す本実
施例の結果は、式などを通して予め予測される事柄で
はなく、駆動部,発電部の分極を別個に制御してこそ始
めて知り得たことである。
However, in the field of this type of piezoelectric transformer, discussions have been made based on the fact that both the drive section and the power generation section have saturation polarization. Generally, both the polarization of the drive unit and the polarization of the power generation unit are changed without discrimination, as in JP-A-252467. That is, the result of the present embodiment shown in FIG. 1 is not a matter predicted in advance through an equation or the like, but is obtained only by controlling the polarization of the driving unit and the power generation unit separately.

【0033】(実施例2)実施例1におけると同様にし
て、圧電体寸法が実施例1と同一の圧電トランスを作製
した。但し、圧電体の分極は実施例1とは異り、発電部
を飽和分極とし、駆動部の分極は飽和に対し100,7
0,45%とした。本実施例における駆動部の分極程度
のコントロールも、分極処理の際の印加電圧によった。
トランスの製作数は、各水準毎に10個である。
Example 2 In the same manner as in Example 1, a piezoelectric transformer having the same piezoelectric dimensions as in Example 1 was manufactured. However, the polarization of the piezoelectric body is different from that of the first embodiment.
0.45%. The control of the degree of polarization of the drive unit in the present embodiment also depends on the applied voltage during the polarization processing.
The number of transformers manufactured is 10 for each level.

【0034】上記のトランスを、実施例1と同様の駆動
条件で駆動し、駆動部の分極程度とトランスとしての昇
圧比,効率との関係を調査した。尚、この場合、共振周
波数はそれぞれの水準よっては変らず、136kHzで
あった。上記の調査結果を、図2に示す。図2を参照し
て、駆動部の分極を小さくすると、昇圧比はそれに伴っ
て単調に小さくなり、駆動部が45%分極のとき、10
0%分極の水準(駆動部も発電部も共に飽和分極のトラ
ンス)より約55%小さくなっている。一方、トランス
の効率は、駆動部の分極程度によらず、一定である。
The above-described transformer was driven under the same driving conditions as in Example 1, and the relationship between the degree of polarization of the driving section and the boosting ratio and efficiency of the transformer was investigated. In this case, the resonance frequency was 136 kHz without being changed depending on each level. The results of the above investigation are shown in FIG. Referring to FIG. 2, when the polarization of the driving unit is reduced, the step-up ratio monotonically decreases accordingly, and when the driving unit is 45% polarized, the boost ratio becomes 10%.
It is about 55% smaller than the level of 0% polarization (both the drive section and the power generation section are transformers with saturation polarization). On the other hand, the efficiency of the transformer is constant regardless of the degree of polarization of the driving unit.

【0035】このように、発電部を飽和分極にする一方
で駆動部の分極を飽和分極より下げることで、特開平6
ー252467号公報の、駆動部も発電部も共に分極を
小さくしたトランスで生じた、昇圧比も効率も低下する
という結果とは異る独特の結果が得られた。
As described above, the polarization of the drive unit is made lower than the saturation polarization while the power generation unit is made to have the saturation polarization.
A unique result was obtained which was different from the results of JP-A-252467, in which both the drive unit and the power generation unit were reduced in polarization, resulting in a decrease in boost ratio and efficiency.

【0036】これ迄の実施例1,実施例2における結果
に基づいて、以下のことが言える。すなわち、先ず、効
率を80%以上に保つものとして、発電部の分極は、飽
和状態に対して85%以上とすれば良い。更に、昇圧比
を飽和分極におけるときの1/2以上の大きさを保つも
のとして、駆動部の分極は、飽和状態に対して50%以
上とすれば良い。上記のうち効率を80%以上に保つの
は、次の理由による。効率の低下は発熱を増大させ信頼
性を低下させる要因である。そのため、効率は高い方が
望ましいが、工業的見地に立つとき、現在の主流である
低背高の電磁トランス並の効率が目安となる。又、駆動
部の分極はこれをあまり小さくすると、圧電体への電気
入力エネルギーから機械出力エネルギーへの変換効率に
ロスを生む原因となり、電磁トランス並の効率が得られ
なくなるからである。
The following can be said based on the results obtained in the first and second embodiments. That is, first, assuming that the efficiency is maintained at 80% or more, the polarization of the power generation unit may be set to 85% or more with respect to the saturated state. Furthermore, assuming that the step-up ratio is maintained at a value equal to or more than 1/2 of that in the case of the saturation polarization, the polarization of the driving unit may be set to 50% or more with respect to the saturation state. The reason why the efficiency is kept at 80% or more is as follows. A decrease in efficiency is a factor that increases heat generation and lowers reliability. Therefore, it is desirable that the efficiency be high. However, from an industrial point of view, the efficiency is comparable to that of a low-height electromagnetic transformer which is currently the mainstream. On the other hand, if the polarization of the driving portion is made too small, it causes a loss in the conversion efficiency of the electric input energy to the mechanical output energy to the piezoelectric body, and the efficiency equivalent to the electromagnetic transformer cannot be obtained.

【0037】(実施例3)圧電体の寸法が、長さ42m
m,幅10mm,厚さ1mmと、実施例1,2における
圧電体とは異るトランスを作製した。その後、9.4イ
ンチカラー液晶ディスプレイ用の冷陰極管一灯式のバッ
クライトを負荷とし、シンセサイザからの正弦波を一旦
増幅して圧電体に印加してトランスを駆動した。そし
て、駆動部または発電部の分極程度とトランスの昇圧
比,効率との関係を調査した。本実施例では、圧電体の
分極状態として、下記の二種類を準備した。 駆動部の分極を飽和分極で一定とし、発電部の分極量
を飽和分極に対して100,92,81%と小さくした
トランス。 発電部の分極を飽和分極で一定とし、駆動部の分極量
を飽和分極に対して100,92,85%と小さくした
トランス。
(Embodiment 3) The size of the piezoelectric body is 42 m in length.
m, a width of 10 mm, and a thickness of 1 mm, which were different from the piezoelectric bodies in Examples 1 and 2. Thereafter, a single cold-cathode tube backlight for a 9.4-inch color liquid crystal display was used as a load, and a sine wave from the synthesizer was once amplified and applied to the piezoelectric body to drive the transformer. Then, the relationship between the degree of polarization of the drive unit or the power generation unit and the step-up ratio and efficiency of the transformer was investigated. In this example, the following two types of polarization states of the piezoelectric body were prepared. A transformer in which the polarization of the drive unit is fixed at the saturation polarization and the amount of polarization of the power generation unit is reduced to 100, 92, 81% of the saturation polarization. A transformer in which the polarization of the power generation unit is fixed at the saturation polarization and the amount of polarization of the driving unit is reduced to 100, 92, and 85% of the saturation polarization.

【0038】上記のトランスにおける調査結果を、図
3に示す。又、のトランスにおける調査結果を、図4
に示す。それぞれの結果は、バックライトの輝度とし
て、ノートブック型パーソナルコンピュータが要求する
1800cd/m2 が得られ、そのとき圧電トランスの
出力電流が6.5mAで一定となるように駆動条件を調
整した場合における結果である。
FIG. 3 shows the results of the investigation performed on the above transformer. Fig. 4
Shown in The results are as follows. The luminance of the backlight is 1800 cd / m 2 required by a notebook personal computer, and the driving conditions are adjusted so that the output current of the piezoelectric transformer is constant at 6.5 mA. It is a result in.

【0039】図3を参照すると、昇圧比は、発電部の分
極量を飽和分極から順次小さくして行くと若干大きくな
り、発電部が81%分極の場合で、19.5倍から2
1.1倍に約10%上昇する。一方、トランス効率は発
電部の分極量の低下に伴って急激に低下し、81%分極
の場合で66%に下る。次に、図4を参照すると、駆動
部の分極量を飽和に対して小さくして行くと、昇圧比は
低下するものの効率は改善される。
Referring to FIG. 3, the step-up ratio slightly increases when the amount of polarization of the power generation unit is gradually reduced from the saturation polarization. When the power generation unit is 81% polarized, the boost ratio increases from 19.5 to 2 times.
It increases about 10% by 1.1 times. On the other hand, the transformer efficiency sharply decreases as the amount of polarization of the power generation unit decreases, and drops to 66% in the case of 81% polarization. Next, referring to FIG. 4, when the amount of polarization of the driving unit is reduced with respect to saturation, the efficiency is improved although the boost ratio is reduced.

【0040】以上の図3,図4の結果から、発電部の分
極量を飽和分極よりも小さくすると共に駆動部の分極も
小さくすれば、トランス効率を損わない範囲で昇圧比を
調整できることが分る。すなわち、前述の、システムへ
のインバータ搭載時に生じる浮遊容量の影響による圧電
トランスの性能低下に対し、駆動部および発電部の分極
程度を個別に調整し、トランスの性能を調整すること
で、インバータ性能の微調整が可能となる。
From the results of FIGS. 3 and 4, it can be seen that if the amount of polarization of the power generation unit is made smaller than the saturation polarization and the polarization of the drive unit is also made small, the step-up ratio can be adjusted within the range where the transformer efficiency is not impaired. I understand. In other words, in response to the aforementioned performance degradation of the piezoelectric transformer due to the effect of stray capacitance that occurs when the inverter is installed in the system, the degree of polarization of the drive unit and the power generation unit is individually adjusted, and the performance of the transformer is adjusted. Can be finely adjusted.

【0041】[0041]

【発明の効果】以上説明したように、本発明では、長板
状の圧電性セラミック体とその表面に形成した電極とを
含んでなり、セラミック体は長手方向に亘って、厚さ軸
に沿って分極を施された駆動部と長手軸に沿って分極を
施された発電部とに区分される構造の圧電トランスに対
し、駆動部及び記発電部それぞれにおける、分極量の飽
和状態の分極量に対する割合を、駆動部と発電部とで互
いに異らせている。
As described above, the present invention includes a long plate-shaped piezoelectric ceramic body and electrodes formed on the surface thereof, and the ceramic body extends along the thickness axis along the longitudinal direction. For a piezoelectric transformer having a structure that is divided into a driving part polarized in the vertical direction and a power generation part polarized along the longitudinal axis, the polarization amount in the saturated state of the polarization amount in each of the driving part and the power generation part. Are different between the drive unit and the power generation unit.

【0042】これにより本発明によれば、駆動部の分極
量を飽和分極量とし、発電部の分極量を飽和分極量より
小さくすることで、昇圧比を大きくできる。
Thus, according to the present invention, the boosting ratio can be increased by setting the amount of polarization of the drive unit to the amount of saturation polarization and making the amount of polarization of the power generation unit smaller than the amount of saturation polarization.

【0043】又、駆動部の分極量を飽和分極量より小さ
くし、前記発電部の分極量を飽和分極量とすることで、
トランス効率を一定に保ったまま昇圧比を小さくでき
る。
Also, by making the amount of polarization of the driving unit smaller than the amount of saturation polarization and setting the amount of polarization of the power generation unit to the amount of saturation polarization,
The boost ratio can be reduced while keeping the transformer efficiency constant.

【0044】更に、駆動部の分極量も発電部の分極量も
共に変化させることで、トランス高率を高く保ったまま
昇圧比を高くするという、圧電トランス性能の微調整が
可能となる。
Further, by changing both the amount of polarization of the drive unit and the amount of polarization of the power generation unit, it is possible to finely adjust the piezoelectric transformer performance, that is, to increase the step-up ratio while keeping the transformer high ratio.

【0045】本発明は、従来必要とされた圧電トランス
の系列化や、性能微調整のための圧電体の形状変更を不
要とし、トランス自体の開発リードタイムの短縮,製品
コストの低減を可能にする。又、圧電体の形状変更に伴
う駆動回路の設計変更あるいは、パッケージやプリント
配線基板などこのトランスを用いるシステム内の他の部
材の変更を不要とし、この点でもシステムの開発リード
タイム短縮、コスト低減に寄与する。
The present invention eliminates the need for a series of piezoelectric transformers and the change of the shape of the piezoelectric body for fine adjustment of performance, which has been conventionally required, thereby shortening the development lead time of the transformer itself and reducing the product cost. I do. Also, there is no need to change the design of the drive circuit due to the change in the shape of the piezoelectric body, or to change other components in the system that uses this transformer, such as packages and printed wiring boards. This also reduces the system development lead time and costs. To contribute.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における圧電トランスの昇圧
比,効率と発電部の分極程度との関係を示す図である。
FIG. 1 is a diagram illustrating a relationship between a boost ratio and efficiency of a piezoelectric transformer and a degree of polarization of a power generation unit according to a first embodiment of the present invention.

【図2】本発明の実施例2における圧電トランスの昇圧
比,効率と駆動部の分極程度との関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a boost ratio and efficiency of a piezoelectric transformer and a degree of polarization of a driving unit according to a second embodiment of the present invention.

【図3】本発明の実施例3における圧電トランスの昇圧
比,効率と発電部の分極程度との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a boost ratio and efficiency of a piezoelectric transformer and a degree of polarization of a power generation unit according to a third embodiment of the present invention.

【図4】本発明の実施例3における圧電トランスの昇圧
比,効率と駆動部の分極程度との関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between a boost ratio and efficiency of a piezoelectric transformer and a degree of polarization of a driving unit according to a third embodiment of the present invention.

【図5】従来の圧電トランスの一例の斜視図である。FIG. 5 is a perspective view of an example of a conventional piezoelectric transformer.

【図6】従来の圧電トランスの他の例の斜視図である。FIG. 6 is a perspective view of another example of a conventional piezoelectric transformer.

【符号の説明】[Explanation of symbols]

1 圧電体 2,2L,2R 入力用電極 3,3L,3R 入力用電極 4A,4B 入力端子 5,5L,5R 駆動部 6 発電部 7 出力用電極 8A,8B 出力電極 9L,9R,10L,10R,11,12 接続点 DESCRIPTION OF SYMBOLS 1 Piezoelectric body 2, 2L, 2R Input electrode 3, 3L, 3R Input electrode 4A, 4B Input terminal 5, 5L, 5R Drive part 6 Power generation part 7 Output electrode 8A, 8B Output electrode 9L, 9R, 10L, 10R , 11,12 Connection points

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長板状の圧電性セラミック体とその表面
に形成した電極とを含んでなり、前記圧電性セラミック
体は長手方向に亘って、厚さ軸に沿って分極を施された
駆動部と長手軸に沿って分極を施された発電部とに区分
される構造の圧電トランスにおいて、 前記駆動部及び前記発電部それぞれにおける、分極量の
飽和状態の分極量に対する割合を、前記駆動部と前記発
電部とで互いに異らせたことを特徴とする圧電トラン
ス。
1. A piezoelectric ceramic body comprising a long plate-shaped piezoelectric ceramic body and electrodes formed on the surface thereof, wherein the piezoelectric ceramic body is polarized along a thickness axis in a longitudinal direction. A piezoelectric transformer having a structure that is divided into a part and a power generation part polarized along a longitudinal axis, wherein the ratio of the amount of polarization to the amount of polarization in a saturated state in each of the drive part and the power generation part is determined by the drive part. And a power generating unit, wherein the piezoelectric transformer is different from the power generating unit.
【請求項2】 請求項1記載の圧電トランスにおいて、 前記駆動部の分極量を飽和分極量とし、前記発電部の分
極量を飽和分極量より小さくしたことを特徴とする圧電
トランス。
2. The piezoelectric transformer according to claim 1, wherein the amount of polarization of the driving unit is a saturation polarization amount, and the amount of polarization of the power generation unit is smaller than the saturation polarization amount.
【請求項3】 請求項1記載の圧電トランスにおいて、 前記駆動部の分極量を飽和分極量より小さくし、前記発
電部の分極量を飽和分極量としたことを特徴とする圧電
トランス。
3. The piezoelectric transformer according to claim 1, wherein the amount of polarization of the drive unit is smaller than the amount of saturation polarization, and the amount of polarization of the power generation unit is the amount of saturation polarization.
【請求項4】 請求項1記載の圧電トランスにおいて、 前記駆動部の分極量を飽和状態の分極量の50%以上と
し、前記発電部の分極量を飽和状態の分極量の85%以
上としたことを特徴とする圧電トランス。
4. The piezoelectric transformer according to claim 1, wherein the amount of polarization of the driving unit is 50% or more of the amount of polarization in a saturated state, and the amount of polarization of the power generating unit is 85% or more of the amount of polarization in a saturated state. A piezoelectric transformer, characterized in that:
JP16789596A 1996-06-27 1996-06-27 Piezoelectric transformer Pending JPH1012943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16789596A JPH1012943A (en) 1996-06-27 1996-06-27 Piezoelectric transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16789596A JPH1012943A (en) 1996-06-27 1996-06-27 Piezoelectric transformer

Publications (1)

Publication Number Publication Date
JPH1012943A true JPH1012943A (en) 1998-01-16

Family

ID=15858060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16789596A Pending JPH1012943A (en) 1996-06-27 1996-06-27 Piezoelectric transformer

Country Status (1)

Country Link
JP (1) JPH1012943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733839B2 (en) * 2001-02-08 2011-07-27 太平洋セメント株式会社 Piezoelectric element polarization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733839B2 (en) * 2001-02-08 2011-07-27 太平洋セメント株式会社 Piezoelectric element polarization method

Similar Documents

Publication Publication Date Title
US5751092A (en) Piezoelectric transformer and power converting apparatus employing the same
EP0720246B1 (en) Piezoelectric transformer
US5929554A (en) Piezoelectric transformer
TW420884B (en) Piezo ceramic transformer and circuit using the same
US7030538B2 (en) Piezoelectric transformer, piezoelectric transformer unit, inverter circuit, light emission control device, and liquid crystal display device
JPH1012943A (en) Piezoelectric transformer
US7202592B2 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
KR100224139B1 (en) Piezoelectric transformer
US20040232806A1 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
JP3425716B2 (en) Discharge lamp device
JP2000307166A (en) Piezoelectric transformer and drive stabilizing device thereof
JPH0936452A (en) Piezoelectric transformer
KR20010015770A (en) Piezoelectric transformer element and method of mounting it in a housing
JPH0974235A (en) Piezo-electric transformer
JP3239047B2 (en) Piezoelectric transformer and inverter and liquid crystal display incorporating the same
JP2850216B2 (en) Piezoelectric transformer
JPH07221359A (en) Piezoelectric transformer
JPH09107135A (en) Piezoelectric transformer
CA2298734A1 (en) Piezoelectric transformer
JPH0888073A (en) High voltage generating device and corona discharging device equipped with high voltage generating device
JP3008255B2 (en) Piezoelectric transformer
JP2000049399A (en) Piezoelectric transformer
JPH0992899A (en) Piezoelectric transformer
JPH09107134A (en) Piezoelectric transformer
JP2000196159A (en) Piezoelectric transformer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000627