JPH10128236A - Ultrasonic wave generating device - Google Patents

Ultrasonic wave generating device

Info

Publication number
JPH10128236A
JPH10128236A JP8288360A JP28836096A JPH10128236A JP H10128236 A JPH10128236 A JP H10128236A JP 8288360 A JP8288360 A JP 8288360A JP 28836096 A JP28836096 A JP 28836096A JP H10128236 A JPH10128236 A JP H10128236A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
pulse laser
thin plate
generated
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8288360A
Other languages
Japanese (ja)
Other versions
JP3477330B2 (en
Inventor
Takashi Doi
崇史 土井
Shinichi Murakawa
慎一 村川
Kunio Shibaike
国雄 芝池
Toshifumi Kudo
敏文 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28836096A priority Critical patent/JP3477330B2/en
Publication of JPH10128236A publication Critical patent/JPH10128236A/en
Application granted granted Critical
Publication of JP3477330B2 publication Critical patent/JP3477330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate an ultrasonic wave hardly damaging a surface of a body to be tested by abrasion and also strong in a vertical direction to the surface of the body to be tested. SOLUTION: This device comprises a pulse laser light source 1 being a generating source of the pulse laser light, a mirror 2 reflecting the pulse laser light 3 and a thin sheet 4a arranged in contact with the body 5 to be tested and propagating the generated ultrasonic wave to the body 5 to be tested, and the thin sheet 4a which is acoustically homogeneous with the body 5 to be tested, that is a matter made of the same material, and of which the thickness is kept less than the wavelength of the generated ultrasonic wave. The ultrasonic wave generated by the abrasion is propagated without being attenuated and passed at a contact surface with the body 5 to be tested. An energy strength of the pulse laser light 3 is regulated in an order at which the abrasion is generated at the surface of the thin plate 4a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被試験体に超音波
を伝播させて非破壊検査を行う際に用いられる超音波発
生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic generator used for performing nondestructive inspection by transmitting ultrasonic waves to a device under test.

【0002】[0002]

【従来の技術】プラント製品等の被試験体内部に超音波
を伝播させ、被試験体内部からの反射波をその表面で観
測することによって被試験体内部のきずを非破壊で検査
する超音波探傷方法が広く用いられている。
2. Description of the Related Art Ultrasonic waves for non-destructively inspecting flaws inside a test object by transmitting ultrasonic waves inside a test object such as a plant product and observing reflected waves from the inside of the test object on the surface thereof. Flaw detection methods are widely used.

【0003】上記したプラント製品の非破壊検査に適用
される従来の超音波発生装置を図4、図5を用いて説明
する。図4は、パルスレーザ光照射によるアブレーショ
ン効果を用いた超音波発生装置である。図4に示すよう
に、パルスレーザ光源1から、数10〜数nsec幅の
パルスレーザ光3を発生させる。このパルスレーザ光3
のエネルギーは、被試験体5の破壊しきい値よりも大き
い値を取るように設定されている。
A conventional ultrasonic generator applied to the above-described nondestructive inspection of a plant product will be described with reference to FIGS. FIG. 4 shows an ultrasonic generator using an ablation effect by pulsed laser beam irradiation. As shown in FIG. 4, a pulse laser beam 3 having a width of several tens to several nsec is generated from a pulse laser light source 1. This pulse laser beam 3
Is set to take a value larger than the breakdown threshold value of the test object 5.

【0004】このパルスレーザ光源1から発生したパル
スレーザ光3は、ミラー2で反射して被試験体5に到達
する。この被試験体5の表面では、上記したようにパル
スレーザ光3のエネルギーが被試験体5の破壊しきい値
より大きいため、数μm以下の表層が吹き飛ぶ。すなわ
ち被試験体5表面にアブレーションが発生するため、そ
の反作用として超音波、特に縦波が、この被試験体5の
表面に対して垂直方向に発生する。この超音波の反射波
の強度等の変化を観測することにより、被試験体の非破
壊検査を行う。
The pulse laser light 3 generated from the pulse laser light source 1 is reflected by the mirror 2 and reaches the device under test 5. As described above, since the energy of the pulse laser beam 3 is larger than the destruction threshold of the test object 5 on the surface of the test object 5, the surface layer of several μm or less is blown off. That is, since ablation occurs on the surface of the test object 5, an ultrasonic wave, particularly a longitudinal wave, is generated as a reaction in a direction perpendicular to the surface of the test object 5. A nondestructive inspection of the test object is performed by observing a change in the intensity or the like of the reflected wave of the ultrasonic wave.

【0005】図5は、パルスレーザ光照射による熱弾性
効果を用いた超音波発生装置を示す図である。上記図4
に示したパルスレーザ光源1と同様の光源を用いるが、
このパルスレーザ光3のエネルギーは、被試験体5の破
壊しきい値よりも小さく設定されている。
FIG. 5 is a view showing an ultrasonic generator using a thermoelastic effect by irradiating a pulse laser beam. FIG. 4 above
A light source similar to the pulse laser light source 1 shown in FIG.
The energy of the pulsed laser beam 3 is set to be smaller than the destruction threshold of the device under test 5.

【0006】上記図4で説明した場合と同様に、パルス
レーザ光源1から発生したパルスレーザ光3は、ミラー
2で反射して被試験体5に到達する。この場合、上記し
たようにパルスレーザ光3のエネルギーが被試験体5の
破壊しきい値より小さいため、パルスレーザ光3のエネ
ルギーは被試験体5の表面で吸収され熱となり、熱膨張
が発生し、この膨脹・収縮の過程が音源となり超音波が
発生する。この過程は熱弾性と呼ばれ、上記図4で示し
た装置に比較して被試験体5表面の損傷は無いが、超音
波の発生強度は低く、また多方向に同程度の強度で発生
する。
As in the case described with reference to FIG. 4, the pulse laser light 3 generated from the pulse laser light source 1 is reflected by the mirror 2 and reaches the DUT 5. In this case, since the energy of the pulsed laser beam 3 is smaller than the breakdown threshold of the device under test 5 as described above, the energy of the pulsed laser beam 3 is absorbed by the surface of the device under test 5 and becomes heat, and thermal expansion occurs. Then, the process of expansion and contraction becomes a sound source, and an ultrasonic wave is generated. This process is called thermoelasticity, and the surface of the device under test 5 is not damaged as compared with the apparatus shown in FIG. 4, but the intensity of generation of ultrasonic waves is low and it is generated with the same intensity in multiple directions. .

【0007】[0007]

【発明が解決しようとする課題】上記した従来の超音波
発生装置では、より確実な非破壊検査の実施のため強い
垂直方向に発生する超音波を得ようとすると、図4を用
いて説明したように被試験体5表面の損傷を誘起してい
た。また、この損傷を避けるためにパルスレーザ光3の
エネルギー強度を下げると、図5を用いて説明したよう
に垂直方向に発生する超音波成分が弱くなる上、多種の
超音波が発生するため、この超音波を観測する際の超音
雑音の発生する原因となっていた。
In the above-described conventional ultrasonic generator, in order to obtain an ultrasonic wave which is generated in a strong vertical direction for more reliable nondestructive inspection, it has been described with reference to FIG. Thus, damage to the surface of the test object 5 was induced. When the energy intensity of the pulse laser beam 3 is reduced to avoid this damage, the ultrasonic component generated in the vertical direction is weakened as described with reference to FIG. 5, and various types of ultrasonic waves are generated. This has caused the generation of supersonic noise when observing the ultrasonic waves.

【0008】本発明は上記課題を解決するためになされ
たもので、その目的とするところは、アブレーションに
よる被試験体表面の損傷を招くことなく、被試験体表面
に対して垂直方向に強い超音波を発生可能な超音波発生
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a super-absorbing device which is strong in a direction perpendicular to the surface of a test object without causing damage to the surface of the test object due to ablation. An object of the present invention is to provide an ultrasonic generator capable of generating a sound wave.

【0009】[0009]

【課題を解決するための手段】本発明の超音波発生装置
は、被試験体に伝播すべき超音波の波長以下の厚さを有
し、該被試験体の表面に接触配置された薄板と、この薄
板にパルス光又は強度変調光を照射する光照射手段とを
具備してなり、前記パルス光又は振幅変調光の照射によ
るアブレーション効果により前記薄板に超音波を発生
し、該超音波を前記被試験体に伝播させることを特徴と
する。
According to the present invention, there is provided an ultrasonic generator comprising a thin plate having a thickness equal to or less than the wavelength of an ultrasonic wave to be transmitted to a device under test, and having a thickness in contact with the surface of the device under test. Light irradiation means for irradiating the thin plate with pulsed light or intensity-modulated light, and generating ultrasonic waves on the thin plate by an ablation effect due to irradiation of the pulsed light or the amplitude-modulated light, It is characterized in that it is propagated to a test object.

【0010】上記薄板は、被試験体と同一又は近似した
音響的性質を有するものが望ましい。本発明の超音波発
生装置によれば、以下に示す作用・効果を有する。
It is desirable that the thin plate has the same or similar acoustic properties as the test object. According to the ultrasonic generator of the present invention, the following operations and effects are provided.

【0011】パルス光又は強度変調光が薄板に照射され
ると、この薄板の表面においてアブレーション効果によ
る超音波が発生する。この超音波は薄板の表面から被試
験体との接触面まで伝播し、この接触面を通過して被試
験体に伝えられる。
When pulse light or intensity-modulated light is applied to a thin plate, ultrasonic waves are generated on the surface of the thin plate by an ablation effect. The ultrasonic waves propagate from the surface of the thin plate to the contact surface with the test object, pass through the contact surface, and are transmitted to the test object.

【0012】このようにパルス光又は強度変調光を直接
被試験体に照射することなく薄板に照射し、この薄板表
面で超音波を発生させ、発生した超音波を被試験体に伝
えることで、被試験体の損傷を招くことがない。
By irradiating the thin plate without irradiating the pulse light or the intensity-modulated light directly to the test object in this way, generating an ultrasonic wave on the surface of the thin plate, and transmitting the generated ultrasonic wave to the test object, It does not cause damage to the DUT.

【0013】また、薄板の板厚を発生させる超音波の波
長以下とすることにより、薄板伝播中における超音波の
減衰を招くことなく、被試験体の垂直方向に強い超音波
を発生させることができる。
Further, by setting the thickness of the thin plate to be equal to or less than the wavelength of the ultrasonic waves to be generated, it is possible to generate strong ultrasonic waves in the vertical direction of the test object without causing attenuation of the ultrasonic waves during propagation of the thin plate. it can.

【0014】[0014]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施形態を説明する。 (第1実施形態)図1(a)は、本発明の第1実施形態
に係る超音波発生装置を示す斜視図、図1(b)は、同
図(a)における超音波発生装置のA−A´断面図であ
る。図1(a)に示すように本実施形態の超音波発生装
置は、パルスレーザ光3の発生源であるパルスレーザ光
源1(例えばQスイッチ付YAGレーザ)、このパルス
レーザ光3を反射させるミラー2、また被試験体5に接
触配置し、発生した超音波を被試験体5に伝播させる薄
板4aから構成される。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 (a) is a perspective view showing an ultrasonic generator according to a first embodiment of the present invention, and FIG. 1 (b) is an A of the ultrasonic generator in FIG. 1 (a). It is -A 'sectional drawing. As shown in FIG. 1A, an ultrasonic generator according to the present embodiment includes a pulse laser light source 1 (for example, a YAG laser with a Q switch), which is a source of a pulse laser light 3, and a mirror that reflects the pulse laser light 3. 2, a thin plate 4a which is arranged in contact with the test object 5 and propagates generated ultrasonic waves to the test object 5.

【0015】この薄板4aには、被試験体5と音響的に
同質または近似した、すなわち同質または近似した材料
でできたものを用いることで、薄板4aから被試験体5
に超音波が伝播する際に反射波が発生しないようにして
ある。またこの薄板4aの板厚は、発生する超音波の波
長以下とし、アブレーションにより生じた超音波が減衰
せずに伝播し、被試験体5との接触面(以下、探傷面と
称する)を通過していくようにしてある。また、上記パ
ルスレーザ光3のエネルギー強度は、薄板4aの表面を
吹き飛ばす程度、すなわちアブレーションが生じる程度
に調節されている。
The thin plate 4a is made of a material that is acoustically the same or similar to the DUT 5, that is, made of the same or similar material.
A reflected wave is not generated when an ultrasonic wave is propagated through the apparatus. The thickness of the thin plate 4a is set to be equal to or less than the wavelength of the generated ultrasonic wave, and the ultrasonic wave generated by the ablation propagates without being attenuated and passes through the contact surface with the test object 5 (hereinafter, referred to as a flaw detection surface). It is going to do. Further, the energy intensity of the pulse laser beam 3 is adjusted so as to blow off the surface of the thin plate 4a, that is, to cause abrasion.

【0016】上記実施形態の動作を以下説明する。パル
スレーザ光源1から発生したパルスレーザ光3は、ミラ
ー2により反射されて薄板4aの表面に照射される。図
1(b)に示すように、このレーザ光照射により薄板4
aの表面でアブレーションが発生し、薄板4aの数μm
以下の表層が吹き飛ぶため、その反作用として超音波、
特に縦波が、この薄板4aの表面に対して垂直方向に発
生する。この発生した超音波は薄板4aを伝播して探傷
面に到達し、被試験体5を伝播する。上記超音波は探傷
面と反対側の界面(以下、底面と称する)に到達し、反
射する。この反射した超音波を検出し、その反射波を測
定する。
The operation of the above embodiment will be described below. The pulse laser light 3 generated from the pulse laser light source 1 is reflected by the mirror 2 and irradiated on the surface of the thin plate 4a. As shown in FIG. 1B, the thin plate 4 is irradiated with the laser beam.
ablation occurs on the surface of a, a few μm
Because the following surface layer blows off, the reaction is ultrasonic,
In particular, longitudinal waves are generated in a direction perpendicular to the surface of the thin plate 4a. The generated ultrasonic waves propagate through the thin plate 4a, reach the flaw detection surface, and propagate through the test object 5. The ultrasonic waves reach an interface on the opposite side to the flaw detection surface (hereinafter, referred to as a bottom surface) and are reflected. The reflected ultrasonic wave is detected, and the reflected wave is measured.

【0017】ここで、被試験体5にきずが無い場合、上
記反射時間は一定であることからきずが無いことを確認
できる。一方、被試験体5にきずがある場合、被試験体
5中を伝わる超音波はきずにより反射されるため、きず
のない場合と比較して、探傷面から発したパルス光3が
同じく探傷面にもどるまでの光路が短くなり、一定であ
った反射波に変化が生じる。この反射波の変化を観測す
ることにより、被試験体5中にきずがあることが確認で
きる。
Here, when there is no flaw in the test object 5, since the reflection time is constant, it can be confirmed that there is no flaw. On the other hand, when the test piece 5 has a flaw, since the ultrasonic wave transmitted through the test piece 5 is reflected by the flaw, the pulse light 3 emitted from the flaw detection surface is also compared with the case without the flaw. The optical path before returning to the path is shortened, and the reflected wave that has been constant changes. By observing the change in the reflected wave, it can be confirmed that the test object 5 has a flaw.

【0018】上記したように被試験体5に直接パルスレ
ーザ光3を照射せずに薄板4aに照射し、この薄板4a
上で超音波を発生させるため、被試験体5を損傷するこ
となく、かつエネルギー強度の高いパルスレーザ光を用
いるため、被試験体5の表層と垂直方向の強い超音波を
伝播させることができる。
As described above, the test piece 5 is not directly irradiated with the pulse laser beam 3 but is irradiated onto the thin plate 4a.
Since the ultrasonic waves are generated above, a pulse laser beam having a high energy intensity is used without damaging the DUT 5, so that strong ultrasonic waves in a direction perpendicular to the surface layer of the DUT 5 can be propagated. .

【0019】(第2実施形態)図2(a)は、本発明の
第2実施形態に係る超音波発生装置を示す斜視図、図2
(b)は、図2(a)における超音波発生装置のA−A
´断面図である。図2(a)に示すように、本実施形態
の超音波発生装置は、パルスレーザ光を発生させるパル
スレーザ光源1、このパルスレーザ光3を被試験体5に
照射するためのミラー2については上記第1実施形態に
おけるものと同一である。また、発生した超音波を被試
験体5に伝播させる薄板として、図2(b)に示すよう
なくぼみを持たせたものを用いる。
(Second Embodiment) FIG. 2A is a perspective view showing an ultrasonic generator according to a second embodiment of the present invention.
(B) is an AA of the ultrasonic generator in FIG.
FIG. As shown in FIG. 2A, the ultrasonic generator according to the present embodiment includes a pulse laser light source 1 for generating pulse laser light, and a mirror 2 for irradiating the test object 5 with the pulse laser light 3. This is the same as that in the first embodiment. Further, as a thin plate for transmitting the generated ultrasonic wave to the DUT 5, a thin plate having a depression as shown in FIG. 2B is used.

【0020】この薄板4bは、被試験体5と音響的に同
質のものを用い、その板厚を発生する超音波の波長以下
とする点及びパルスレーザ光3のエネルギー強度を薄板
4bの表面を吹き飛ばす程度に設定する点においては、
上記第1実施形態に用いる場合と同様である。
The thin plate 4b is made of the same material as the test object 5 acoustically, and the thickness of the thin plate 4b is set to be equal to or less than the wavelength of the ultrasonic wave to be generated, and the energy intensity of the pulsed laser beam 3 is reduced. In terms of setting it to just blow away,
This is the same as the case used in the first embodiment.

【0021】上記実施形態の動作を以下説明する。な
お、本実施形態において、レーザ光発生から薄板4b表
面に超音波が発生するまでの動作は上記第1実施形態と
同様であるので省略する。
The operation of the above embodiment will be described below. In the present embodiment, the operation from the generation of the laser beam to the generation of the ultrasonic wave on the surface of the thin plate 4b is the same as that of the first embodiment, and thus the description is omitted.

【0022】図2(b)に示すように、薄板4bを伝播
する超音波は、探傷面に到達する。ここで、薄板4bに
はくぼみが設けてあり、そのくぼみの凸部分から被試験
体5に超音波が伝播する。すなわち、くぼみを設けるこ
とにより接触面が限定され、その接触した凸部分のみか
らしか超音波は伝播しない。このため、パルスレーザ光
3のビーム径以下の部分に選択的に超音波を発生させる
ことが可能である。また、このくぼみの形状を変形する
ことにより、音響光学的に求めうる超音波の強度指向性
等を制御することも可能となる。
As shown in FIG. 2B, the ultrasonic wave propagating through the thin plate 4b reaches the flaw detection surface. Here, a depression is provided in the thin plate 4b, and the ultrasonic wave propagates to the DUT 5 from the convex portion of the depression. That is, the contact surface is limited by providing the depression, and the ultrasonic wave propagates only from the contacted convex portion. For this reason, it is possible to selectively generate ultrasonic waves in a portion smaller than the beam diameter of the pulse laser beam 3. Further, by deforming the shape of the depression, it is possible to control the intensity directivity of the ultrasonic wave which can be obtained acousto-optically.

【0023】(第3実施形態)図3(a)は、本発明の
第3実施形態に係る超音波発生装置を示す斜視図、図3
(b)は、図3(a)における被試験体のA−A´断面
図である。図3(a)には示していないが、パルスレー
ザ光3を発生させるパルスレーザ光源1、ミラー2につ
いては上記第2実施形態におけるものと同一である。ま
た、発生した超音波を被試験体に伝播させる薄板とし
て、図3(b)に示すようなくぼみを持たせたもので、
かつこのくぼみがアレイ状に設けられている。
(Third Embodiment) FIG. 3A is a perspective view showing an ultrasonic generator according to a third embodiment of the present invention.
FIG. 3B is a sectional view taken along line AA ′ of the test object in FIG. Although not shown in FIG. 3A, the pulse laser light source 1 for generating the pulse laser light 3 and the mirror 2 are the same as those in the second embodiment. Further, as a thin plate for transmitting the generated ultrasonic wave to the DUT, a depression is provided as shown in FIG.
In addition, the depressions are provided in an array.

【0024】パルスレーザ光3は、薄板4cの表面に照
射され、この薄板4cに設けられた複数のくぼみの凸部
分から被試験体5に超音波が伝わる。すなわち、くぼみ
を複数設けることにより、限定された接触面が複数にな
るため、超音波の強度や指向性を容易に制御することが
可能となる。なお、上記実施形態ではパルスレーザ光を
用いたが、強度変調光を用いてもよい。
The pulse laser beam 3 is applied to the surface of the thin plate 4c, and the ultrasonic wave is transmitted to the DUT 5 from the convex portions of the plurality of depressions provided in the thin plate 4c. That is, by providing a plurality of depressions, a plurality of limited contact surfaces are provided, so that the intensity and directivity of ultrasonic waves can be easily controlled. In the above embodiment, pulse laser light is used, but intensity modulated light may be used.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、薄
板上で超音波を発生させるため、レーザ光により被試験
体を損傷することなく、また、薄板伝播中に超音波が減
衰することなく、被試験体に対して垂直方向に強い超音
波を発生させることができる。
As described above, according to the present invention, since ultrasonic waves are generated on a thin plate, the test object is not damaged by laser light, and the ultrasonic waves are attenuated during propagation of the thin plate. In addition, it is possible to generate strong ultrasonic waves in the vertical direction with respect to the test object.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る超音波発生装置を
示す図。
FIG. 1 is a diagram showing an ultrasonic generator according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る超音波発生装置を
示す図。
FIG. 2 is a diagram showing an ultrasonic generator according to a second embodiment of the present invention.

【図3】本発明の第3実施形態に係る超音波発生装置を
示す図。
FIG. 3 is a diagram showing an ultrasonic generator according to a third embodiment of the present invention.

【図4】従来のアブレーション効果を用いた超音波発生
装置を示す図。
FIG. 4 is a diagram showing a conventional ultrasonic generator using an ablation effect.

【図5】従来の熱弾性効果を用いた超音波発生装置を示
す図。
FIG. 5 is a diagram showing a conventional ultrasonic generator using a thermoelastic effect.

【符号の説明】 1 パルスレーザ光源 2 ミラー 3 パルスレーザ光 4a,4b,4c 薄板 5 被試験体[Description of Signs] 1 pulse laser light source 2 mirror 3 pulse laser light 4a, 4b, 4c thin plate 5 test object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 敏文 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshifumi Kudo 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被試験体に伝播すべき超音波の波長以下
の厚さを有し、該被試験体の表面に接触配置された薄板
と、この薄板にパルス光又は強度変調光を照射する光照
射手段とを具備してなり、 前記パルス光又は振幅変調光の照射によるアブレーショ
ン効果により前記薄板に超音波を発生し、該超音波を前
記被試験体に伝播させることを特徴とする超音波発生装
置。
1. A thin plate having a thickness equal to or less than the wavelength of an ultrasonic wave to be propagated to a test object, and irradiating pulse light or intensity-modulated light to the thin plate in contact with the surface of the test object. An ultrasonic wave generating means for generating an ultrasonic wave on the thin plate by an ablation effect by irradiation of the pulse light or the amplitude modulation light, and transmitting the ultrasonic wave to the test object. Generator.
JP28836096A 1996-10-30 1996-10-30 Ultrasonic generator Expired - Fee Related JP3477330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28836096A JP3477330B2 (en) 1996-10-30 1996-10-30 Ultrasonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28836096A JP3477330B2 (en) 1996-10-30 1996-10-30 Ultrasonic generator

Publications (2)

Publication Number Publication Date
JPH10128236A true JPH10128236A (en) 1998-05-19
JP3477330B2 JP3477330B2 (en) 2003-12-10

Family

ID=17729201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28836096A Expired - Fee Related JP3477330B2 (en) 1996-10-30 1996-10-30 Ultrasonic generator

Country Status (1)

Country Link
JP (1) JP3477330B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
EP2131191A1 (en) * 2007-03-30 2009-12-09 Mitsubishi Heavy Industries, Ltd. Ultrasonic inspection equipment
EP2175267A1 (en) * 2007-08-10 2010-04-14 Mitsubishi Heavy Industries, Ltd. Ultrasonic detection device, ultrasonic detection method, and atomic power plant nondestructive inspection method
JP2010091281A (en) * 2008-10-03 2010-04-22 Toyota Central R&D Labs Inc Ultrasonic measuring apparatus
JP2010518396A (en) * 2007-02-05 2010-05-27 ブラウン ユニバーシティ Improved high-resolution acoustic microscope
US20120111103A1 (en) * 2009-07-28 2012-05-10 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
US8567253B2 (en) 2005-06-03 2013-10-29 Brown University Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations
JP2017106912A (en) * 2015-12-09 2017-06-15 ザ・ボーイング・カンパニーThe Boeing Company Laser inspection system and method of use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8567253B2 (en) 2005-06-03 2013-10-29 Brown University Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
JP2010518396A (en) * 2007-02-05 2010-05-27 ブラウン ユニバーシティ Improved high-resolution acoustic microscope
US8302480B2 (en) 2007-02-05 2012-11-06 Brown University Enhanced ultra-high resolution acoustic microscope
EP2131191A1 (en) * 2007-03-30 2009-12-09 Mitsubishi Heavy Industries, Ltd. Ultrasonic inspection equipment
EP2131191A4 (en) * 2007-03-30 2014-12-17 Mitsubishi Heavy Ind Ltd Ultrasonic inspection equipment
EP2175267A1 (en) * 2007-08-10 2010-04-14 Mitsubishi Heavy Industries, Ltd. Ultrasonic detection device, ultrasonic detection method, and atomic power plant nondestructive inspection method
EP2175267A4 (en) * 2007-08-10 2015-04-01 Mitsubishi Heavy Ind Ltd Ultrasonic detection device, ultrasonic detection method, and atomic power plant nondestructive inspection method
JP2010091281A (en) * 2008-10-03 2010-04-22 Toyota Central R&D Labs Inc Ultrasonic measuring apparatus
US20120111103A1 (en) * 2009-07-28 2012-05-10 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
US8813552B2 (en) * 2009-07-28 2014-08-26 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
JP2017106912A (en) * 2015-12-09 2017-06-15 ザ・ボーイング・カンパニーThe Boeing Company Laser inspection system and method of use

Also Published As

Publication number Publication date
JP3477330B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US8210045B2 (en) Continuous laser generation of ultrasound
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
JP2664443B2 (en) Equipment for examining samples with ultrasound
Hayashi et al. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate
JP3477330B2 (en) Ultrasonic generator
Di Scalea et al. Remote laser generation of narrow-band surface waves through optical fibers
JP5391375B2 (en) Plate thickness measuring method and plate thickness measuring apparatus
Pierce et al. Temporal modulation of a laser source for the generation of ultrasonic waves
JP3704843B2 (en) Non-contact non-destructive material evaluation method and apparatus, elastic wave excitation method and elastic wave excitation apparatus
JPH0273151A (en) Ultrasonic probe
Kromine et al. Detection of subsurface defects using laser based technique
Ing et al. Self‐focusing Rayleigh wave using a time reversal mirror
Tittmann et al. Laser-based ultrasonics on Gr/epoxy composite
JPH10260163A (en) Laser ultrasonic wave inspecting device
JP3545611B2 (en) Laser ultrasonic inspection apparatus and laser ultrasonic inspection method
JP4027261B2 (en) Laser ultrasonic generator using multiple beam irradiation
CA2188705A1 (en) Method and apparatus for exciting bulk acoustic wave
JPH06186208A (en) Elastic-wave generating method
Noroy et al. Transient elastic wave generation by an array of thermoelastic sources
JP4271898B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP4059418B2 (en) Laser ultrasonic inspection method
Huang et al. Crack detection in fuselage panels by a narrow-band laser-based ultrasonic system
Pohl et al. Holographic visualization of laser-generated ultrasound for the detection and description of subsurface flaws
JPH10239284A (en) Peeling detection method and device
JP2000074886A (en) Ultrasonic wave exciting method by laser, and ultrasonic wave excitation detecting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

LAPS Cancellation because of no payment of annual fees