JP4386709B2 - Material nondestructive inspection method and apparatus by laser ultrasonic wave - Google Patents

Material nondestructive inspection method and apparatus by laser ultrasonic wave Download PDF

Info

Publication number
JP4386709B2
JP4386709B2 JP2003384573A JP2003384573A JP4386709B2 JP 4386709 B2 JP4386709 B2 JP 4386709B2 JP 2003384573 A JP2003384573 A JP 2003384573A JP 2003384573 A JP2003384573 A JP 2003384573A JP 4386709 B2 JP4386709 B2 JP 4386709B2
Authority
JP
Japan
Prior art keywords
light
laser
signal
signal light
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384573A
Other languages
Japanese (ja)
Other versions
JP2005147813A (en
Inventor
成明 内田
オレグ・コチャエフ
和久 橋本
重行 松原
重樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Non Destructive Inspection Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Non Destructive Inspection Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003384573A priority Critical patent/JP4386709B2/en
Publication of JP2005147813A publication Critical patent/JP2005147813A/en
Application granted granted Critical
Publication of JP4386709B2 publication Critical patent/JP4386709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は、コンクリート構造物のような表面状態が粗な材料の内部構造の状態を遠隔から迅速、正確、客観的に非破壊検査するレーザ超音波による材料非破壊検査方法及び装置に関する。   The present invention relates to a material nondestructive inspection method and apparatus using laser ultrasonic waves for quickly, accurately and objectively performing a nondestructive inspection of an internal structure of a material having a rough surface such as a concrete structure.

コンクリート構造物の検査方法の最も一般的な手法は、目視による表面のひび割れ状況の記録と、検査員のハンマリングによる打音検査で内部欠陥を調べる打音法である。この方法は、検査員の熟練を必要とし、信頼性、再現性が低く、大量の検査対象には対応できない。又、人間の感覚に依存するため、判定の絶対性や経時変化を記録したデータの客観性など長期間のモニタリングが重要なコンクリート構造物の検査法としては不十分である。   The most common method of inspecting a concrete structure is a sounding method in which internal defects are checked by visual recording of surface cracks and hammering by an inspector hammering. This method requires the skill of an inspector, has low reliability and reproducibility, and cannot handle a large number of inspection objects. In addition, since it depends on human senses, it is insufficient as a method for inspecting a concrete structure that requires long-term monitoring such as the absoluteness of judgment and the objectivity of data recorded with time.

上記検査方法はコンクリート構造物が半永久的な強度を維持するという前提で行われていた方法であり、最近のコンクリート壁剥落事故などにより明らかとなったコンクリート構造物への定期的な検査の必要性に対応できる方法ではない。コンクリート異変状態の客観的かつ迅速な検査方法の1つとしてレーザと光検出器を組合わせた表面ひび割れ検出装置が実用化されている。   The above inspection method was carried out on the premise that the concrete structure maintains a semi-permanent strength, and the necessity of periodic inspection of the concrete structure revealed by the recent concrete wall peeling accident etc. It is not a method that can cope with. A surface crack detection device combining a laser and a photodetector has been put to practical use as one of objective and rapid inspection methods for concrete anomalies.

また、日照や赤外線ランプの熱を利用したサーモグラフィの原理による内部欠陥検出技術も開発中であるが、外的熱環境により測定が不安定となる。従って、剥落などの事故危険性を予知するためには内部欠陥を直接検出する客観的で信頼性の高い検出システムが必要である。そこで、このような問題に対応するため、特許文献1では、弾性波探査法(衝撃弾性波法)、電磁波探査法、超音波探査法について検討した上で、さらにそれぞれの探査法を越える方法としてレーザ超音波によるコンクリート構造物の診断方法及び装置について提案している。   In addition, internal defect detection technology based on the principle of thermography using the heat of sunshine and infrared lamps is under development, but measurement becomes unstable due to the external thermal environment. Therefore, in order to predict the risk of accidents such as peeling, an objective and reliable detection system that directly detects internal defects is required. Therefore, in order to deal with such problems, Patent Document 1 examines an elastic wave exploration method (shock elastic wave method), an electromagnetic wave exploration method, and an ultrasonic exploration method, and further exceeds the respective exploration methods. We have proposed a diagnostic method and apparatus for concrete structures using laser ultrasonics.

この特許文献1による診断方法は、パルスレーザ光をコンクリート構造物の表面に照射して熱膨張による弾性波を発生させ、その表面を視準するレーザ干渉計で照射時の表面波と発生した弾性波とを経時的に検出し、表面波の検出から弾性波の検出までの波形変化から診断部位でのコンクリート構造物の内部欠陥又は埋設物の有無を診断するというものである。   The diagnostic method according to Patent Document 1 irradiates a surface of a concrete structure with a pulsed laser beam to generate an elastic wave due to thermal expansion, and the surface wave at the time of irradiation is generated with a laser interferometer that collimates the surface. Waves are detected over time, and the presence or absence of internal defects or buried objects in the concrete structure at the diagnosis site is diagnosed from the waveform change from the detection of the surface wave to the detection of the elastic wave.

この診断方法では、パルスレーザの照射で探査対象の表面又は表面近傍に急激な熱膨張を発生させ、熱弾性効果による熱膨張の歪を弾性波(超音波)として対象内に伝播し、その弾性波による影響を受けたレーザ反射光をレーザ干渉計で受信して診断が行われる。弾性波による影響を受けたレーザ反射光は、明記されていないが、表面波による振幅(強度)の変化及びその後伝播される弾性波による振幅の変化を経時的に干渉計内で検出して、表面波及び弾性波を表わす光信号の強度の変化により内部欠陥又は埋設物の存在を検出するものと考えられる。   In this diagnostic method, rapid thermal expansion is generated on or near the surface of the object to be probed by irradiation with a pulse laser, and the thermal expansion distortion due to the thermoelastic effect is propagated into the object as an elastic wave (ultrasound). Diagnosis is performed by receiving laser reflected light affected by the waves with a laser interferometer. The laser reflected light affected by the elastic wave is not specified, but the change in amplitude (intensity) due to the surface wave and the change in amplitude due to the elastic wave propagated thereafter are detected in the interferometer over time, It is considered that the presence of an internal defect or an embedded object is detected by a change in the intensity of an optical signal representing surface waves and elastic waves.

一方、非特許文献1に記載された非破壊検査で使用される熱弾性効果によるレーザ超音波発生法を適用して広い範囲で被検体の材料評価、即ち欠陥の存在の探知を行える位相速度走査法による非接触非破壊材料評価方法及び装置の発明が特許文献2により公知である。この評価方法では、プローブ光と干渉性エネルギビームを組として、被検体と相対的に操作することにより広い範囲で被検体の材料評価を行うことを目的としている。   On the other hand, a phase velocity scan capable of evaluating a material of an object, that is, detecting a defect in a wide range, by applying a laser ultrasonic wave generation method using a thermoelastic effect used in a non-destructive inspection described in Non-Patent Document 1. Patent Document 2 discloses an invention of a non-contact nondestructive material evaluation method and apparatus by the method. The purpose of this evaluation method is to evaluate the material of the subject over a wide range by operating the probe light and the coherent energy beam as a set and relatively operating the subject.

この材料評価方法は、2つのわずかに周波数の異なる干渉性エネルギビーム(レーザ光)を被検体上で交差状に走査しながら照射して干渉縞を生成し、干渉縞の作用で被検体表面に干渉縞間隔と同じ間隔を持つ歪み分布を形成することにより被検体内部を伝播する弾性波の音速と干渉縞の走査速度の比で決まる方向に弾性波を放射し、被検体の表面に照射されるプローブ光によって表面から出射されるバルク超音波を非接触で検出し、被検体、レーザ光、プローブ光のうちの一を走査して非接触検出点を移動させるようにしている。   In this material evaluation method, interference fringes are generated by irradiating two slightly different frequencies of coherent energy beams (laser beams) while scanning the subject in a crossing manner. The interference fringes act on the surface of the subject. By forming a strain distribution with the same interval as the interference fringe interval, an elastic wave is emitted in a direction determined by the ratio of the acoustic velocity of the elastic wave propagating inside the subject and the scanning speed of the interference fringe, and is irradiated on the surface of the subject. The bulk ultrasonic wave emitted from the surface by the probe light is detected in a non-contact manner, and one of the subject, laser light, and probe light is scanned to move the non-contact detection point.

上述した特許文献2による材料評価方法では、2つのわずかに周波数の異なる干渉性エネルギビームであるパルスレーザを入射角θの所定方向に照射してバルク超音波を被検体に伝播させ、内部の欠陥によって反射回折されたバルク超音波が被検体表面上に出ると、これを工学的ナイフエッジ法等によるバルク超音波検出手段で光信号として検出し、内部の欠陥の存在及び材料を評価するデータ等が検出される。   In the above-described material evaluation method according to Patent Document 2, two ultrasonic pulses having slightly different frequencies are irradiated in a predetermined direction with an incident angle θ, and bulk ultrasonic waves are propagated to a subject, thereby causing internal defects. When the bulk ultrasonic wave reflected and diffracted by the light comes out on the surface of the object, it is detected as an optical signal by the bulk ultrasonic wave detection means such as the engineering knife edge method, and the data for evaluating the presence of the internal defect and the material, etc. Is detected.

しかし、上記特許文献2の材料評価方法では、材料内部にバルク超音波を発生させるパルスレーザ光を入射角θの所定方向に入射させるようにしているが、これは材料表面が鏡面状態であることを前提としており、コンクリート構造物のような表面が粗な多数の凹凸のある面を有する材料の内部欠陥を検出する方法に適用することはできない。   However, in the material evaluation method of Patent Document 2 described above, a pulse laser beam that generates bulk ultrasonic waves is made incident in a predetermined direction with an incident angle θ, but this is because the material surface is in a mirror state. And cannot be applied to a method for detecting an internal defect of a material having a large number of uneven surfaces with a rough surface such as a concrete structure.

一方、特許文献1の診断方法はコンクリート構造物の内部欠陥又は埋設物の有無を診断することをねらったものである。複数の被診断部位のそれぞれの方向に向けて出射されたパルスレーザ光の反射光が、レーザ干渉計に受信されるようレーザ装置とレーザ干渉計とを照射向き制御装置により設定し、パルスレーザ光の反射光が最初に表面波の影響を受け、その後遅れて弾性波の影響を受けてレーザ干渉計に受信されたそれぞれの信号光を経時的に検出すると記載されている。   On the other hand, the diagnostic method of Patent Document 1 aims at diagnosing the presence of internal defects or embedded objects in concrete structures. The laser device and the laser interferometer are set by the irradiation direction control device so that the reflected light of the pulse laser beam emitted toward each direction of the plurality of diagnosis parts is received by the laser interferometer. The reflected light is first affected by the surface wave, and after that, the signal light received by the laser interferometer is detected over time due to the influence of the elastic wave later.

しかし、被診断材料内に発生する表面波、弾性波による影響が反射光に明瞭な影響を与える程の高エネルギのパルス光を照射すると、試験体表面の温度上昇と、音響及びプラズマ発光を伴うプラズマの発生、及び大気絶縁破壊によるプラズマ発生などの現象が起こる。従って、このパルス光の反射光に対しては表面波、弾性波による影響だけでなく、音響とプラズマ発光の影響が及び、レーザ干渉計に対してノイズとなり、正確で信頼性の高いデータが得られない。   However, irradiation with high-energy pulsed light that has a clear effect on the reflected light due to surface waves and elastic waves generated in the diagnostic material causes a rise in the temperature of the specimen surface, and acoustic and plasma emission. Phenomena such as plasma generation and plasma generation due to atmospheric breakdown occur. Therefore, the reflected light of this pulsed light is affected not only by surface waves and elastic waves, but also by the effects of sound and plasma emission, and it becomes noise to the laser interferometer, and accurate and reliable data can be obtained. I can't.

反対にパルス光のエネルギレベルを下げて音響、プラズマ発光等が生じないパルス光を照射すると、その反射光は被診断材料の表面が粗な材料では散乱光となり、レーザ干渉計に入射される反射光は微弱となってやはり高い精度で、正確で信頼性のある信号光としては不適当である。また、超音波発生と検出を一つのパルスレーザで行うことになっているが、パルスレーザのパルス幅はナノ秒程度であり、一つのパルスで被試験体内部で反射した弾性波が再び表面に戻ってきたところ(典型的には数十マイクロ秒)を捉えることは不可能であり、この評価方法は物理的に成立しない。   On the other hand, when pulsed light that does not produce sound, plasma emission, etc. is irradiated by lowering the energy level of the pulsed light, the reflected light becomes scattered light when the surface of the material to be diagnosed is rough, and is reflected by the laser interferometer. Since the light is weak, it is unsuitable as an accurate and reliable signal light with high accuracy. In addition, the generation and detection of ultrasonic waves are performed with a single pulse laser, but the pulse width of the pulse laser is about nanoseconds, and the elastic wave reflected inside the device under test with a single pulse is again on the surface. It is impossible to capture where it came back (typically tens of microseconds), and this evaluation method is not physically valid.

以上のような不都合が生じる原因は、1つのレーザパルス光を弾性波の発生と、その影響を受けた信号光の両方の機能を同時に得んとすることにある。即ち、弾性波を発生させるために要求されるレーザ光に対する条件と信号光が有すべきレーザ光の条件とが大きく相違するにも拘らず、1つのレーザパルス光で全て処理しようとすることに起因するのである。従って、特許文献1の診断方法による診断結果は、当然極めて精度が低く、信頼性のないものであり、理論上はともかく、実際のデータは殆ど使用することができず、被測定材料の内部欠陥や埋設物を正確に診断することはできない。
特開2002−296244号公報 特開平9−33490号公報 D.A.Hutchins:Physical Acoustics,eds.W.P.Mason and R.N.Thurston(Academic,San Diego,1998)Vol.XVIII,P21
The cause of the inconvenience as described above is that one laser pulse light simultaneously obtains the functions of both elastic wave generation and signal light affected by the elastic wave. That is, all the processing with one laser pulse light is to be performed even though the conditions for the laser light required to generate the elastic wave and the conditions of the laser light that the signal light should have are greatly different. It comes from. Accordingly, the diagnosis result by the diagnosis method of Patent Document 1 is naturally very inaccurate and unreliable, and in theory, practical data can hardly be used, and internal defects of the material to be measured can be used. And the buried object cannot be diagnosed accurately.
JP 2002-296244 A JP 9-33490 A DAHutchins: Physical Acoustics, eds. WPMason and RNThurston (Academic, San Diego, 1998) Vol. XVIII, P21

この発明は、上述した従来の問題点に留意して、レーザ超音波を利用して材料の非破壊検査をする際にレーザ超音波を最も効率よく生じさせ、かつレーザ超音波の影響を受けた信号光も最も効率よく得られるよう性質の異なる2つのレーザ光を用いて、材料表面が鏡面である場合は勿論、コンクリート構造物のような粗表面であっても極めて高精度で、正確かつ信頼性のある検査を可能とするレーザ超音波による材料非破壊検査方法及び装置を提供することを課題とする。   In consideration of the conventional problems described above, the present invention generates laser ultrasonic waves most efficiently and is influenced by laser ultrasonic waves when performing nondestructive inspection of materials using laser ultrasonic waves. Using two laser beams with different properties so that signal light can be obtained most efficiently, the surface of the material is not only a mirror surface but also a rough surface such as a concrete structure with extremely high accuracy, accuracy and reliability. It is an object of the present invention to provide a material nondestructive inspection method and apparatus using laser ultrasonic waves that enables a reliable inspection.

この発明は、上記の課題を解決する手段として、被測定材料表面の所定領域に音響、プラズマ発光及び大気プラズマを伴わない最強レベルのパルスレーザ光を照射し、表面の熱応力に基づく弾性波を被測定材料内に生じさせると共に、上記パルスレーザ光の集光スポット径よりも小さい集光スポット径の連続出力のレーザ光をプローブ光として伝送して上記パルスレーザ光と同軸上で上記所定領域内に照射し、上記プローブ光の照射領域は、上記パルスレーザ光よりも上記プローブ光の集光スポット径が小さいことによって上記パルスレーザ光の照射に伴う表面波の影響が小さい領域となって、照射した上記プローブ光を、材料表面から反射される際にその表面状態に応じて空間的に変化した波面となり、かつ弾性波により周波数変調された信号光として反射させ、この信号光を位相共役鏡を用いたレーザ干渉計に入射して信号光の周波数成分の変化を検出し、これにより材料の内部欠陥を検出するようにしたレーザ超音波による材料非破壊検査方法としたのである。 As a means for solving the above-mentioned problems, the present invention irradiates a predetermined region on the surface of a material to be measured with the strongest level of pulsed laser light without acoustic, plasma emission, and atmospheric plasma, and generates an elastic wave based on the surface thermal stress. A laser beam having a converging spot diameter smaller than the condensing spot diameter of the pulse laser beam is generated as a probe light and is generated in the material to be measured and is coaxial with the pulse laser beam and within the predetermined region. The irradiation area of the probe light becomes an area where the influence of the surface wave accompanying the irradiation of the pulse laser light is small due to the smaller spot diameter of the probe light than the pulse laser light. the was the probe beam, spatially become changed wavefronts in accordance with the surface state when reflected from the material surface, and is frequency modulated by the acoustic wave Is reflected as issue light, by the laser ultrasonic waves to the signal light detecting a change in the frequency component of the signal light incident on the laser interferometer using a phase conjugate mirror, thereby detecting the internal defect of the material This is a material nondestructive inspection method.

又、上記材料非破壊検査方法を実施する検査装置として、被測定材料表面の所定領域にパルスレーザ光を音響、プラズマ発光及び大気プラズマを伴わない最強レベルで照射し、表面の熱応力に基づく弾性波を被測定材料内に生じさせる弾性波励起手段と、連続出力のレーザ光を2つに分岐して一方をプローブ光とし、他方を参照光として異なる方向へ伝送するようにする偏光ビームスプリッタと、上記パルスレーザ光の集光スポット径よりも小さい径のプローブ光伝送してパルスレーザ光と同軸上で上記所定領域内に照射し、上記プローブ光の照射領域は、上記パルスレーザ光よりも上記プローブ光の集光スポット径が小さいことによって上記パルスレーザ光の照射に伴う表面波の影響が小さい領域となって、照射した上記プローブ光を、材料表面から反射される際にその表面状態に応じて波面が変化し、かつ弾性波により周波数変調された信号光として転送する信号光伝送手段と、上記パルスレーザ光を反射させ、上記プローブ光を透過させる偏光特性と有し、かつ回転機構を備えた共通ミラーと、上記プローブ光と所定領域内で材料表面に対し所定のスポット径で照射できるようにする望遠鏡手段と、上記信号光と基準となる連続出力レーザからの参照光とを互いに交差して位相共役鏡に入射させ干渉光を生起するレーザ干渉計と、この干渉計から出力される干渉光を光検出器により検出し、信号光の周波数成分の変化により材料の内部欠陥を検出するように構成したレーザ超音波による材料非破壊検査装置とすることができる。

In addition, as an inspection apparatus for performing the above material nondestructive inspection method, a predetermined region of the surface of the material to be measured is irradiated with pulsed laser light at the strongest level without acoustic, plasma emission and atmospheric plasma, and elasticity based on the thermal stress of the surface An elastic wave excitation means for generating a wave in a material to be measured, and a polarization beam splitter for branching a continuous-output laser beam into two beams and transmitting one as a probe beam and the other as a reference beam in different directions The probe light having a diameter smaller than the condensing spot diameter of the pulsed laser light is transmitted to irradiate the predetermined region coaxially with the pulsed laser light, and the irradiated region of the probe light is larger than the pulsed laser light. become a region influence of surface waves due to the irradiation of the pulse laser light is small by focusing spot diameter of the probe light is small, the probe light irradiation, A signal light transmitting unit for transferring the frequency modulated signal light wavefront is changed, and the acoustic wave in accordance with the surface state when reflected from the charge surface, to reflect the pulsed laser beam, the probe beam A common mirror having a polarization characteristic to be transmitted and provided with a rotation mechanism; telescope means for allowing the probe light and a material surface to be irradiated with a predetermined spot diameter within a predetermined region; and the signal light and the reference And a laser interferometer that crosses each other and enters the phase conjugate mirror to generate interference light, and the interference light output from the interferometer is detected by a photodetector to detect the signal light. A material nondestructive inspection apparatus using a laser ultrasonic wave configured to detect an internal defect of a material by changing a frequency component can be provided.

上述した材料非破壊検査方法は、上記検査装置において材料内部の欠陥の有無を表わす高精度で正確な信号を得ることができる方法である。この方法ではパルスレーザ光は主として材料内部に弾性波を生じさせるのに用いられ、適正レーザ条件下で照射される。適正レーザ条件とは、弾性波以外のノイズ源となる他の現象を発生させない静かなインパクトを付与するレーザ強度であって、音響、プラズマ発光及び大気プラズマを伴わない最強レベルのレーザ光である。   The above-described material nondestructive inspection method is a method capable of obtaining a highly accurate and accurate signal indicating the presence / absence of a defect inside the material in the inspection apparatus. In this method, pulsed laser light is mainly used to generate elastic waves inside the material, and is irradiated under appropriate laser conditions. The appropriate laser condition is a laser intensity that gives a quiet impact that does not cause other phenomena that are noise sources other than elastic waves, and is the strongest level laser light that does not accompany acoustics, plasma emission, and atmospheric plasma.

一方、材料表面の所定領域内には連続発振のレーザ光がプローブ光として所定のスポット径で照射され、整波面であったプローブ光は材料表面で反射される際に材料表面の凹凸による表面粗度に応じて散乱され、波面が歪んだ散乱光として反射されると共に、上記弾性波による周波数変調を受けた信号光として転送される。弾性波は、材料内部に欠陥が無ければ材料厚さの裏側から表側へ反射され、欠陥が有ればその欠陥に応じた位置から反射される。   On the other hand, a continuous wave laser beam is irradiated as a probe beam with a predetermined spot diameter within a predetermined region of the material surface. The light is scattered according to the degree of reflection, reflected as scattered light with a distorted wavefront, and transferred as signal light subjected to frequency modulation by the elastic wave. If there is no defect inside the material, the elastic wave is reflected from the back side to the front side of the material thickness, and if there is a defect, it is reflected from a position corresponding to the defect.

このため、信号光は欠陥の有無によって異なる状態の弾性波の影響を受け、それぞれの状態に応じた周波数変調を受けた信号光で、かつ波面の歪んだ信号光として転送される。この信号光は位相共役鏡(フォトリフラクティブ結晶)を用いたレーザ干渉計に入射され、そこで所定角度で交差して入射される参照光と干渉し、この干渉による回折格子が形成され、回折された参照光は信号光と同一波面形状でかつ同一位相変調を受けた強い干渉光として出力される。従って、この干渉光を光検出器で検出することにより材料内部の欠陥の有無が検出される。   For this reason, the signal light is influenced by elastic waves in different states depending on the presence or absence of defects, and is transferred as signal light that has been subjected to frequency modulation according to each state and has a distorted wavefront. This signal light is incident on a laser interferometer using a phase conjugate mirror (photorefractive crystal), where it interferes with the reference light incident at a predetermined angle, and a diffraction grating is formed and diffracted by this interference. The reference light is output as strong interference light having the same wavefront shape as the signal light and subjected to the same phase modulation. Therefore, the presence or absence of a defect in the material is detected by detecting this interference light with a photodetector.

この発明の材料非破壊検査方法及び装置は、異なる性質のパルスレーザ光と連続発振のレーザ光を材料表面に照射し、パルスレーザ光により最も有効に弾性波を生じさせ、この弾性波を反映する位相変調を含む信号光を連続発振のレーザ光から得て高いコントラストの干渉信号により材料内部を非接触で検査するようにしたから、材料内部の欠陥の有無を極めて高精度で、正確、迅速に信頼性のあるデータにより検査することができるという顕著な効果が得られる。   The material nondestructive inspection method and apparatus according to the present invention irradiates a material surface with pulsed laser light and continuous wave laser light having different properties, and generates the elastic wave most effectively by the pulsed laser light, and reflects this elastic wave. Since signal light including phase modulation is obtained from continuous-wave laser light and the inside of the material is inspected in a non-contact manner using a high-contrast interference signal, the presence or absence of defects inside the material is detected with extremely high accuracy, accuracy, and speed. The remarkable effect that it can test | inspect with reliable data is acquired.

以下、この発明の実施の形態について図面を参照して説明する。図1はこの発明の材料非破壊検査方法を実施する装置の全体概略構成図である。図示のように、この検査装置は、パルスレーザ光を発生するパルスレーザ20と、連続発振のレーザ光を発生する信号用レーザ1とを備えている。信号用レーザ1は、波長532mmのレーザ光を連続発振するNd:YAGレーザ(二倍高調波)が用いられている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic configuration diagram of an apparatus for carrying out the material nondestructive inspection method of the present invention. As shown in the figure, the inspection apparatus includes a pulse laser 20 that generates pulsed laser light and a signal laser 1 that generates continuous-wave laser light. As the signal laser 1, an Nd: YAG laser (double harmonic) that continuously oscillates laser light having a wavelength of 532 mm is used.

又、パルスレーザ20は、図示の例では、パワーE=0.5J、パルス周期F=10ppsのパルスレーザ光を出力するNd:YAGレーザ(基本波)が用いられ、ミラーM0 及び可動ミラー7を経て被測定物Wの材料表面へパルスレーザ光を照射する。このパルスレーザ光は、被測定物Wの材料表面に集光照射する際に、時間的に短パルスで、空間的に狭スポット径に集中し、瞬間的な応力により弾性波を発生する適正レーザ条件を満足するように照射される。 The pulse laser 20, in the illustrated example, Nd outputs power E = 0.5 J, a pulse laser beam having a pulse period F = 10 pps: YAG laser (fundamental wave) is used, mirrors M 0 and the movable mirror 7 Then, the material surface of the object W to be measured is irradiated with pulsed laser light. This pulsed laser beam is a suitable laser that generates short-time pulses, spatially concentrated in a narrow spot diameter, and generates elastic waves by instantaneous stress when focused on the material surface of the object W to be measured. Irradiation is performed to satisfy the conditions.

この適正レーザ条件とは、計測の際にノイズ源となる他の現象(音響及びプラズマ発光等)は発生させることなく計測に必要な弾性波だけを選択的に発生させるのに適合するレーザ照射条件であり、静かなインパクトを与える必要があるからである。上記適正レーザ条件として、図示の例では、被測定物Wの表面に集光するレーザ光の強度が100MW/cm2 となるようにパルス幅、パルスエネルギ、集光スポットサイズを調整する。 This appropriate laser condition is a laser irradiation condition suitable for selectively generating only the elastic wave necessary for measurement without generating other phenomena (acoustic and plasma emission, etc.) that become noise sources during measurement. This is because it is necessary to give a quiet impact. As the appropriate laser conditions, in the illustrated example, the pulse width, the pulse energy, and the focused spot size are adjusted so that the intensity of the laser beam focused on the surface of the workpiece W is 100 MW / cm 2 .

ただし、集光スポット径がレーザ出射口と被測定面の距離によって変化しないように充分長い焦点距離のF値(F値100以上)を有する光学系(ミラーM0 、可動ミラー7を含む)が用いられる。又、上記集光光学系による照射面のスポット径はインパクトパルスレーザのパワーでも損傷が入らないように、かつ後述するように被測定面からの信号光を十分な光量でレーザ干渉計へ転送できるよう十分大きな口径(図示の例では直径D=5cm)に設定されている。 However, an optical system (including the mirror M 0 and the movable mirror 7) having a sufficiently long focal length F value (F value of 100 or more) so that the focused spot diameter does not change depending on the distance between the laser emission port and the measurement target surface. Used. In addition, the spot diameter of the irradiation surface by the condensing optical system can be transferred to the laser interferometer with a sufficient amount of signal light from the surface to be measured so that damage is not caused even by the power of the impact pulse laser and as will be described later. A sufficiently large aperture (diameter D = 5 cm in the illustrated example) is set.

一方、信号用レーザ1からのレーザ光は、信号光の元光源となるプローブ光と後述するレーザ干渉計で基準となる参照光とを生起するのに用いられる。信号用レーザ1からのレーザ光は、濃度可変フィルタ2を経てλ/2波長板3により紙面に対して45度偏光を傾け、偏光ビームスプリッタ4でその一部が反射されて2つのレーザ光に分岐され、反射された光はプローブ光として、透過した光は参照光として送られる。   On the other hand, the laser light from the signal laser 1 is used to generate probe light that is an original light source of signal light and reference light that is a reference in a laser interferometer described later. The laser light from the signal laser 1 passes through the variable density filter 2 and is tilted by 45 degrees with respect to the paper surface by the λ / 2 wavelength plate 3, and a part of the light is reflected by the polarization beam splitter 4 to be converted into two laser lights. The branched and reflected light is sent as probe light, and the transmitted light is sent as reference light.

濃度可変フィルタ2は、後述する信号光のパワーを変化させるため、回転方向に透過率が変化するように濃淡を付けたものであり、例えばガラス基板上にクロム又はアルミニウムなどをその金属蒸着膜の厚みに勾配を付けて付着させ、フィルタの透過位置を図示しない回転機構により回転させることによって透過率が変化するようにしたものである。この濃度可変フィルタ2は、後述するレーザ干渉計における信号光/参照光の強度比を適正に保つために設けられ、信号光の強度はレーザ干渉計の後方の信号光レベルを監視する信号光モニタ16により常に監視される。   In order to change the power of the signal light, which will be described later, the density variable filter 2 is lightly shaded so that the transmittance changes in the rotation direction. For example, chromium or aluminum is applied to the glass vapor deposition film on the glass substrate. The thickness is attached with a gradient, and the transmittance is changed by rotating the transmission position of the filter by a rotation mechanism (not shown). This variable density filter 2 is provided in order to keep the intensity ratio of signal light / reference light in a laser interferometer, which will be described later, appropriately, and the intensity of the signal light is a signal light monitor that monitors the signal light level behind the laser interferometer. 16 is always monitored.

偏光ビームスプリッタ4で反射されたレーザ光はプローブ光としてミラーM1 、M2 を経てλ/4波長板5により偏光を直線偏光から円偏光に変換され、拡大レンズ6a、対物レンズ6bにより形成される望遠鏡で被測定物Wの表面に適切なスポット径(d=2〜3mm)で集光するよう調整され、可動ミラー7を前述したパルスレーザ光と同軸上で透過して材料表面に照射される。なお、ミラーM1 から可動ミラー7までの光学系はイメージ転送光学系を形成している。 The laser beam reflected by the polarization beam splitter 4 passes through mirrors M 1 and M 2 as probe light and is converted from linearly polarized light to circularly polarized light by a λ / 4 wavelength plate 5 and formed by a magnifying lens 6a and an objective lens 6b. The telescope is adjusted so as to collect light with an appropriate spot diameter (d = 2 to 3 mm) on the surface of the object W to be measured, and is transmitted through the movable mirror 7 coaxially with the above-described pulse laser beam and irradiated onto the material surface. The The optical system from the mirror M 1 to the movable mirror 7 forms an image transfer optical system.

可動ミラー7は、パルスレーザ20からのパルス光は反射し、偏光ビームスプリッタ4からのプローブ光は透過する一種の偏光ミラーであり、図示しない回転機構により照射方向を種々可変に構成されている。なお、この回転機構は、図示の状態では、180°までの大きな角度変化まで測定できるように、天体望遠鏡を回転させる機構と同様な機構が組込まれているが、この発明の趣旨に直接関係ないので詳細は省略している。   The movable mirror 7 is a kind of polarizing mirror that reflects the pulsed light from the pulsed laser 20 and transmits the probe light from the polarizing beam splitter 4, and is configured to vary the irradiation direction in various ways by a rotating mechanism (not shown). In the state shown in the figure, this rotating mechanism is incorporated with a mechanism similar to the mechanism that rotates the astronomical telescope so that it can measure up to a large angle change up to 180 °, but is not directly related to the gist of the present invention. Therefore, details are omitted.

照射されたプローブ光は、材料表面の散乱面で散乱光として反射され、かつパルスレーザ光の照射で散乱面に生じている弾性波による振動の影響で位相変調を受けた信号光として反射される。その作用の詳細については後で説明する。反射された信号光は可動ミラー7を透過し、対物レンズ6bにより捕集されてイメージ転送光学系を逆方向に進み、再度λ/4波長板5を通過して元の直線偏光に戻される。   The irradiated probe light is reflected as scattered light on the scattering surface of the material surface, and is reflected as signal light that has undergone phase modulation due to the influence of vibration caused by elastic waves generated on the scattering surface by irradiation of pulsed laser light. . Details of the operation will be described later. The reflected signal light passes through the movable mirror 7, is collected by the objective lens 6b, travels through the image transfer optical system in the reverse direction, passes through the λ / 4 wavelength plate 5 again, and is returned to the original linearly polarized light.

ただし、偏光方向はλ/4波長板5を2度透過するため入射光に対して90度偏光が回転する。このため、ミラーM1 から送られる信号は偏光ビームスプリッタ4で反射されることなく通過し、λ/2波長板8でさらに偏光方向を傾け、集光レンズL1 、ミラーM4 を経てレーザ干渉計のフォトリフラクティブ結晶9(位相共役鏡)へ入射される。 However, since the polarization direction is transmitted through the λ / 4 wavelength plate 5 twice, the 90-degree polarized light rotates with respect to the incident light. For this reason, the signal sent from the mirror M 1 passes through without being reflected by the polarization beam splitter 4, further tilts the polarization direction by the λ / 2 wavelength plate 8, and passes through the condenser lens L 1 and the mirror M 4 to cause laser interference. The light is incident on the photorefractive crystal 9 (phase conjugate mirror).

一方、偏光ビームスプリッタ4へλ/2波長板3を経て送られるレーザ光のうちスプリッタ4を透過したレーザ光は、位相の整った整波面を有するレーザ光として生起され送られて来るから、ミラーM3 、集光レンズL2 を経て上記信号光に対し参照光としてフォトリフラクティブ結晶9へ所定の交差角度で入射される。 On the other hand, the laser beam transmitted through the splitter 4 out of the laser beam sent to the polarization beam splitter 4 through the λ / 2 wavelength plate 3 is generated and sent as a laser beam having a phasing surface with a well-defined phase. M 3 and the condensing lens L 2 are incident on the photorefractive crystal 9 at a predetermined crossing angle as reference light with respect to the signal light.

フォトリフラクティブ結晶9は、例えばチタン酸バリウムBaTiO3 結晶を用いることができ、参照光と信号光の2光波を入射混合したとき、2光波の干渉縞が結晶内に作られてその干渉縞に応じた(屈折)回折格子が書き込まれ、その際2つの光波は回折格子によって回折されると共に互いに結合する。このため、一方の光波(参照光)の波面が他方の光波(信号光)の波面と同じ(位相共役波)となり、このことは一方の光波で他方の光波を増幅(エネルギの移動)させるのと同様な作用を有することとなる。上記フォトリフラクティブ結晶9は、参照光と信号光の波面の不整合(位相変調)を上記回折格子によるダイナミックホログラムの原理により解消するものである。 As the photorefractive crystal 9, for example, a barium titanate BaTiO 3 crystal can be used. When two light waves of reference light and signal light are incident and mixed, an interference fringe of two light waves is formed in the crystal, and according to the interference fringe. A (refractive) diffraction grating is written, in which the two light waves are diffracted by the diffraction grating and combined with each other. For this reason, the wavefront of one light wave (reference light) is the same (phase conjugate wave) as the wavefront of the other light wave (signal light), which amplifies (moves energy) the other light wave with one light wave. It will have the same action. The photorefractive crystal 9 eliminates the mismatch (phase modulation) between the wavefronts of the reference light and signal light by the principle of the dynamic hologram using the diffraction grating.

フォトリフラクティブ結晶9内では信号光から参照光への波面形状のコピーが起こり、回折により信号光と同じ方向へ回折された参照光は信号光と強く干渉し合い、その結果信号光と同じ周波数変調が行われた強い干渉光がフォトリフラクティブ結晶9から出力され、その干渉光は集光レンズL3 、λ/4波長板10、λ/2波長板11を経てビームスプリッタ12で2つの偏波に分離される。 In the photorefractive crystal 9, a copy of the wavefront shape from the signal light to the reference light occurs, and the reference light diffracted in the same direction as the signal light by diffraction strongly interferes with the signal light, and as a result, the same frequency modulation as the signal light Is output from the photorefractive crystal 9, and the interference light passes through the condenser lens L 3 , the λ / 4 wavelength plate 10, and the λ / 2 wavelength plate 11 into two polarized waves by the beam splitter 12. To be separated.

分離されたそれぞれの干渉光は、光検出器(ピンフォトダイオード)13aと13bで受信され、電気信号に変換されてオシロスコープ14へ入力され、記録される。なお、参照光と同じ方向へ出力される信号光は、偏光子15を経て信号光モニタ16で信号光の強度レベルが検出され、この信号を濃度可変フィルタ2の回転機構にフィードバックさせて信号光の光量調整を行うようになっている。   The separated interference lights are received by photodetectors (pin photodiodes) 13a and 13b, converted into electrical signals, input to the oscilloscope 14, and recorded. The signal light output in the same direction as the reference light passes through the polarizer 15 and the signal light monitor 16 detects the intensity level of the signal light. The signal light is fed back to the rotating mechanism of the density variable filter 2 to provide the signal light. The amount of light is adjusted.

上記のように構成した実施形態の材料非破壊検査装置により材料の内部欠陥の有無や深さを次のようにして検出する。この検査装置では、前述したように、パルスレーザ20と信号用レーザ1の2つのレーザから所定のタイミングでパルスレーザ光と連続出力(CW)のレーザ光がそれぞれ被測定物Wの表面に可動ミラー7を介して同軸上で照射される。パルスレーザ光は、被測定物の表面にインパクトパルスとして照射することにより局部的な温度上昇を生じさせ、その瞬間的な応力により弾性波を生じさせるために照射される。   The presence / absence and depth of the internal defect of the material are detected as follows by the material nondestructive inspection apparatus of the embodiment configured as described above. In this inspection apparatus, as described above, the pulse laser beam and the continuous output (CW) laser beam from the two lasers of the pulse laser 20 and the signal laser 1 are respectively movable mirrors on the surface of the object W to be measured. 7 is irradiated on the same axis. The pulsed laser beam is irradiated to generate a local temperature rise by irradiating the surface of the object to be measured as an impact pulse, and to generate an elastic wave by the instantaneous stress.

パルスレーザ光の照射は、前述したように、適正レーザ条件に適合するように行われる。一般に強力なレーザ光を材料表面に集光照射すると、材料表面に温度上昇、音響とプラズマ発光を伴うプラズマの発生、及び大気絶縁破壊による大気プラズマ発生などの現象が起こる。音響とプラズマ発光はレーザ干渉計に攪乱を与え、計測を困難にする。例えば音響波は信号用レーザ光又は信号光の光路と重なると大気の屈折率を変化させ、光波面の形状に影響を与える。これはレーザ干渉計に対してノイズとなる。   As described above, the irradiation with the pulsed laser light is performed so as to meet the appropriate laser conditions. In general, when a powerful laser beam is focused on a material surface, phenomena such as temperature rise on the material surface, generation of plasma accompanied by sound and plasma emission, and generation of atmospheric plasma due to atmospheric breakdown occur. Sound and plasma emission disturb the laser interferometer, making it difficult to measure. For example, when the acoustic wave overlaps with the signal laser beam or the optical path of the signal beam, the refractive index of the atmosphere is changed and the shape of the light wavefront is affected. This is a noise for the laser interferometer.

又、プラズマ発光は信号光を検出する光学系、フォトリフラクティブ結晶などを通して光検出器に影響を与える。特にインパクト用のレーザパルス光は強度が高いため、光検出器を飽和させる程強力なレーザ光となる可能性がある。従って、これらノイズ源を可能な限り発生させないようにインパクトパルスレーザは照射する必要がある。勿論、同時に信号光検出系のノイズ除去対策も必要であるが、これについては後で説明する。   Plasma light emission also affects the photodetector through an optical system for detecting signal light, a photorefractive crystal, and the like. In particular, since the impact laser pulse light has high intensity, there is a possibility that the laser light becomes strong enough to saturate the photodetector. Therefore, it is necessary to irradiate the impact pulse laser so that these noise sources are not generated as much as possible. Of course, it is also necessary to take measures against noise removal of the signal light detection system, which will be described later.

上記適正レーザ条件は、主に被測定物Wの表面に集光されるレーザ光の強度で決まり、この表面に集光されるレーザ光の強度はパルスエネルギと、パルス幅、集光スポット径によって決まるが、パルスエネルギとパルス幅は使用されるレーザ発生ユニットによって固定されるから、結局表面上のレーザ光強度は集光スポット径によって決まる。従って、前述したように材料表面上のレーザ光強度を1MW/cm2 程度(ノイズ低減を重視する場合)、又は100MW/cm2 程度(弾性波強度を重視する場合)となるように集光スポット径を4〜5cm又は数mm(1〜2mm)としたのである。 The appropriate laser conditions are mainly determined by the intensity of the laser beam focused on the surface of the workpiece W. The intensity of the laser beam focused on the surface depends on the pulse energy, the pulse width, and the focused spot diameter. However, since the pulse energy and the pulse width are fixed by the laser generation unit used, the laser light intensity on the surface is ultimately determined by the focused spot diameter. Therefore, as described above, the focused spot is such that the laser beam intensity on the material surface is about 1 MW / cm 2 (when noise reduction is important) or 100 MW / cm 2 (when elastic wave intensity is important). The diameter was 4-5 cm or several mm (1-2 mm).

上記適正レーザ条件に適合するようにパルスレーザ光を被測定物の表面に照射したとしても、さらに表面波の影響も排除する必要がある。パルスレーザ光の照射で材料表面の温度が急激に上昇する際に、レーザ光強度が十分高いと表面温度がプラズマ生成閾値を超えてアブレーション(物質の噴出)が生じる。これら温度膨張又はアブレーションによる運動量の発生で表面に応力が発生し、材料内部に伝播する弾性波(P波)が発生する。   Even if the surface of the object to be measured is irradiated with the pulse laser beam so as to meet the above-mentioned appropriate laser conditions, it is necessary to further eliminate the influence of the surface wave. When the temperature of the material surface suddenly rises due to irradiation with pulsed laser light, if the intensity of the laser light is sufficiently high, the surface temperature exceeds the plasma generation threshold value, and ablation (material ejection) occurs. Stress is generated on the surface due to the generation of momentum due to temperature expansion or ablation, and an elastic wave (P wave) propagating inside the material is generated.

一方、上記表面応力は水面に小石を投げたときに現れるような表面波(R波)も発生する。一般にR波はP波の60%程度の伝播速度を持つので、送信器と受信器の設置距離によってはP波の材料内部での反射タイミングとR波が表面を伝わるタイミングが一致し、R波がP波にかぶさって雑音となることがある。   On the other hand, the surface stress also generates surface waves (R waves) that appear when pebbles are thrown on the water surface. In general, the R wave has a propagation velocity of about 60% of the P wave, so that the reflection timing inside the P wave material and the timing at which the R wave propagates on the surface match depending on the installation distance between the transmitter and the receiver. May be covered with P wave and become noise.

そこで、このような不都合を回避するため、インパクトパルスレーザ光と信号用レーザ光を同軸に入射させ、インパクトパルスレーザ光により発生した表面波が周辺に散逸した後(数20マイクロ秒)の平穏な表面状態で材料内部から反射される弾性波だけを捉えるようにすればよい。これを実現するために弾性波励起レーザと信号用レーザを同軸に配し、R波が過ぎ去った後の弾性波を検出することによりノイズの少ない計測を可能としている。   Therefore, in order to avoid such inconvenience, the impact pulse laser beam and the signal laser beam are incident on the same axis, and the surface wave generated by the impact pulse laser beam is dissipated to the periphery (several 20 microseconds). It is only necessary to capture only the elastic wave reflected from the inside of the material in the surface state. In order to realize this, an elastic wave excitation laser and a signal laser are arranged coaxially, and measurement with less noise is made possible by detecting the elastic wave after the R wave has passed.

信号用レーザ1からの連続出力のレーザ光は、前述したように、偏光ビームスプリッタ4でプローブ光と参照光に分離される。プローブ光は望遠鏡の対物レンズ6bで所定のスポット径(図示の例ではd=2〜3mm)に集光され、可動ミラー7を透過して被測定物Wの表面に照射される。被測定物Wは、図示の例ではコンクリートであり、その表面は多数の凹凸のある散乱面である(図2の(a)図参照)。   The continuous output laser light from the signal laser 1 is separated into the probe light and the reference light by the polarization beam splitter 4 as described above. The probe light is condensed to a predetermined spot diameter (d = 2 to 3 mm in the illustrated example) by the objective lens 6b of the telescope, passes through the movable mirror 7, and is irradiated on the surface of the object W to be measured. The object to be measured W is concrete in the illustrated example, and the surface thereof is a scattering surface having a large number of irregularities (see FIG. 2A).

従って、図2の(b)図に示すように、表面で反射される反射光は散乱光として反射され、その際上述したインパクトパルスレーザ光により材料内で伝播される弾性波による影響で位相変調された信号光としてイメージ転送光学系を経由して反対方向に進み、偏光ビームスプリッタ4を経てフォトリフラクティブ結晶9へ入射されるが、同時に偏光ビームスプリッタ4を透過した参照光も上記信号光と所定の角度で交差するように入射される。   Therefore, as shown in FIG. 2B, the reflected light reflected from the surface is reflected as scattered light, and phase modulation is caused by the influence of the elastic wave propagating in the material by the above-described impact pulse laser light. The signal light travels in the opposite direction via the image transfer optical system and enters the photorefractive crystal 9 via the polarization beam splitter 4. At the same time, the reference light transmitted through the polarization beam splitter 4 is also transmitted with the signal light. Are incident so as to intersect at an angle of.

このため、フォトリフラクティブ結晶9内では、前述したように、ダイナミックホログラムの原理による回折格子によって前述した周波数変調を受けた信号光と参照光が相互に干渉し、強い干渉光信号(参照光の1次光)が出力されることとなる(図3、図4参照)。この場合、ダイナミックホログラムとは材料表面で弾性波による影響により時間的に変動する波面変動に対応してダイナミックに回折格子も変動して記録されることから上記のような原理名を付している。   For this reason, in the photorefractive crystal 9, as described above, the signal light and the reference light that have been subjected to the frequency modulation described above by the diffraction grating based on the principle of the dynamic hologram interfere with each other, and a strong interference light signal (1 of the reference light). Next light) is output (see FIGS. 3 and 4). In this case, a dynamic hologram is given the principle name as described above because the diffraction grating is also dynamically recorded corresponding to the wavefront variation that changes temporally due to the influence of the elastic wave on the material surface. .

なお、フォトリフラクティブ結晶9でのホログラム発生効率は信号光と参照光の強度比に強く依存する。一方、材料表面に照射されるプローブ光の反射率は、材料がコンクリートのような凹凸のある粗表面を有する場合、表面状態により大きく変化するため、信号光の強度も変動する。従って、プローブ光をスキャンして照射する場合、さまざまに変動する信号光の強度レベルに対応してフォトリフラクティブ結晶9内での信号光と参照光の強度比を適正に保つ必要がある。   Note that the hologram generation efficiency in the photorefractive crystal 9 strongly depends on the intensity ratio between the signal light and the reference light. On the other hand, when the material has a rough surface with irregularities such as concrete, the reflectivity of the probe light irradiated on the material surface varies greatly depending on the surface state, so the intensity of the signal light also varies. Therefore, when scanning and irradiating the probe light, it is necessary to appropriately maintain the intensity ratio of the signal light and the reference light in the photorefractive crystal 9 corresponding to the intensity level of the signal light that varies in various ways.

このため、プローブ光の強度をそれぞれの変動状態に応じた最適の状態に変化させることができるように、濃度可変フィルタ2は、信号光モニタ16からの検出信号に基づくフィードバック制御により濃度位置が調整される。これにより、信号光の強度が測定位置が次々と移動した場所毎の散乱面で変動しても適正な信号光と参照光の強度比が保持され、散乱面からの信号でも高いコントラストで干渉信号を得ることができることとなる。   For this reason, the density position of the density variable filter 2 is adjusted by feedback control based on the detection signal from the signal light monitor 16 so that the intensity of the probe light can be changed to an optimum state corresponding to each fluctuation state. Is done. As a result, even if the intensity of the signal light fluctuates on the scattering surface at each location where the measurement position has moved one after another, an appropriate intensity ratio between the signal light and the reference light is maintained, and even a signal from the scattering surface has a high contrast interference signal. Can be obtained.

上記干渉光は、図1の2つの波長板10、11を用いて2つの偏波としてビームスプリッタ12で分離し、それぞれの偏波の干渉光を2つの光検出器13a、13bで受光し、検出するが、その際両者の位相差を利用して信号光に存在するノイズ源の強度変調(波面歪)と、信号成分である位相変調を分離し、S/N比を向上させる。又、それぞれの信号をオシロスコープ14の記録計に入力する際に、高速(マイクロ波)と低速(ミリ波)の2種類の信号処理部に記録し、高速記録では弾性波の時間履歴、低速記録では弾性波の周波数解析を行い、周波数解析で内部欠陥の有無、時間解析で内部欠陥の深さを検出する。   The interference light is separated into two polarized waves by the beam splitter 12 using the two wave plates 10 and 11 of FIG. 1, and the interference light of each polarization is received by the two photodetectors 13a and 13b. In this case, the intensity difference (wavefront distortion) of the noise source existing in the signal light and the phase modulation as the signal component are separated from each other by using the phase difference between the two to improve the S / N ratio. Also, when each signal is input to the recorder of the oscilloscope 14, it is recorded in two types of signal processing units, high speed (microwave) and low speed (millimeter wave). Then, frequency analysis of elastic waves is performed, and the presence or absence of internal defects is detected by frequency analysis, and the depth of internal defects is detected by time analysis.

なお、上記材料非破壊検査装置は、実際には例えば移動台車Vh上に設置され、図5に示すように、例えばトンネル内のコンクリート層の内部状態を検出するのに用いることができる。移動台車Vh上には信号用レーザ1と、パルスレーザ20からのレーザ光を共通ミラーである可動ミラー7を介してトンネル内のコンクリート表層に照射し、コンクリート表層のP11〜P1n、P21〜P2n、……の多数の計測点に移動しながら照射し、各計測点での材料の内部状態を短時間に迅速に検出することができる。 The material nondestructive inspection apparatus is actually installed on, for example, the movable carriage Vh, and can be used to detect the internal state of the concrete layer in the tunnel, for example, as shown in FIG. On the movable carriage Vh, the laser beam from the signal laser 1 and the pulse laser 20 is irradiated to the concrete surface layer in the tunnel through the movable mirror 7 which is a common mirror, and P 11 to P 1n and P 21 of the concrete surface layer are irradiated. Irradiation while moving to a large number of measurement points P 2n ,..., And the internal state of the material at each measurement point can be detected quickly in a short time.

この発明の材料非破壊検査方法及び装置は、表面が鏡面の材料は勿論、表面がコンクリート構造物のような粗面であっても高いコントラストの干渉信号を得ることができるから、トンネルや道路橋、高層ビル等のコンクリート構造物、あるいは一般材料等あらゆる種類の材料の内部欠陥の検出に適用できる。   The material nondestructive inspection method and apparatus of the present invention can obtain interference signals with high contrast even when the surface is a rough surface such as a concrete structure as well as a mirror surface material. It can be applied to the detection of internal defects in all kinds of materials such as concrete structures such as high-rise buildings or general materials.

実施形態の材料非破壊検査装置の全体概略構成図Overall schematic configuration diagram of material nondestructive inspection apparatus of embodiment 材料表面での弾性波と信号光との関係を説明する図Diagram explaining the relationship between elastic waves and signal light on the material surface レーザ干渉計による波面補償機能の説明図Illustration of wavefront compensation function by laser interferometer 位相共役鏡における波面補償機能の説明図Illustration of wavefront compensation function in phase conjugate mirror トンネル内での多点位置の非破壊検査状況の説明図Illustration of nondestructive inspection status of multi-point position in tunnel

符号の説明Explanation of symbols

1 信号用レーザ
2 濃度可変フィルタ
3 λ/2波長板
4 偏光ビームスプリッタ
5 λ/4波長板
6 望遠鏡ユニット
6a 拡大レンズ
6b 対物レンズ
7 可動ミラー
8 λ/2波長板
9 フォトリフラクティブ結晶
10 λ/4波長板
11 λ/2波長板
13a、13b 光検出器
14 オシロスコープ
15 偏光子
16 信号光モニタ
20 パルスレーザ
0 〜M5 ミラー
W 被測定物
DESCRIPTION OF SYMBOLS 1 Signal laser 2 Variable density filter 3 λ / 2 wavelength plate 4 Polarizing beam splitter 5 λ / 4 wavelength plate 6 Telescope unit 6a Magnifying lens 6b Objective lens 7 Movable mirror 8 λ / 2 wavelength plate 9 Photorefractive crystal 10 λ / 4 Wavelength plate 11 λ / 2 wavelength plates 13a, 13b Photodetector 14 Oscilloscope 15 Polarizer 16 Signal light monitor 20 Pulse laser M 0 to M 5 mirror W Device under test

Claims (4)

被測定材料表面の所定領域に音響、プラズマ発光及び大気プラズマを伴わない最強レベルのパルスレーザ光を照射し、表面の熱応力に基づく弾性波を被測定材料内に生じさせると共に、上記パルスレーザ光の集光スポット径よりも小さい集光スポット径の連続出力のレーザ光をプローブ光として伝送して上記パルスレーザ光と同軸上で上記所定領域内に照射し、上記プローブ光の照射領域は、上記パルスレーザ光よりも上記プローブ光の集光スポット径が小さいことによって上記パルスレーザ光の照射に伴う表面波の影響が小さい領域となって、照射した上記プローブ光を、材料表面から反射される際にその表面状態に応じて空間的に変化した波面となり、かつ弾性波により周波数変調された信号光として反射させ、この信号光を位相共役鏡を用いたレーザ干渉計に入射して信号光の周波数成分の変化を検出し、これにより材料の内部欠陥を検出するようにしたレーザ超音波による材料非破壊検査方法。 Acoustic a predetermined region of the measured material surface, the plasma emission and irradiated with a pulse laser beam having the strongest level without atmospheric plasma, the elastic wave based on the thermal stress of the surface with resulting in material being measured, the pulse laser beam of transmitting the laser beam of the continuous output of small focused spot diameter than the focusing spot diameter as the probe light is irradiated to the predetermined area on the same axis and the pulsed laser beam irradiation area of the probe light, the When the focused spot diameter of the probe light is smaller than that of the pulse laser light, the influence of the surface wave accompanying the irradiation of the pulse laser light is small, and the irradiated probe light is reflected from the material surface. spatially become changed wavefronts depending on the surface condition, and is reflected as a signal light frequency modulated by the acoustic wave, the phase conjugate mirror the signal light Laser interferometer incident on detecting a change in the frequency component of the signal light, thereby the material non-destructive inspection method according to a laser ultrasonic waves to detect the internal defects of the materials used. 上記レーザ干渉計から出射した参照光の強度を検出する信号光モニタからの信号に基づいて、濃度可変フィルタを作動させ、上記信号光と参照光の強度比を所定範囲内に保持するようにしたことを特徴とする請求項1に記載のレーザ超音波による材料非破壊検査方法。 Based on the signal from the signal light monitor that detects the intensity of the reference light emitted from the laser interferometer, the density variable filter is operated to maintain the intensity ratio of the signal light and the reference light within a predetermined range . The material nondestructive inspection method using laser ultrasonic waves according to claim 1. 被測定材料表面の所定領域にパルスレーザ光を音響、プラズマ発光及び大気プラズマを伴わない最強レベルで照射し、表面の熱応力に基づく弾性波を被測定材料内に生じさせる弾性波励起手段と、連続出力のレーザ光を2つに分岐して一方をプローブ光とし、他方を参照光として異なる方向へ伝送するようにする偏光ビームスプリッタと、上記パルスレーザ光の集光スポット径よりも小さい径のプローブ光伝送してパルスレーザ光と同軸上で上記所定領域内に照射し、上記プローブ光の照射領域は、上記パルスレーザ光よりも上記プローブ光の集光スポット径が小さいことによって上記パルスレーザ光の照射に伴う表面波の影響が小さい領域となって、照射した上記プローブ光を、材料表面から反射される際にその表面状態に応じて波面が変化し、かつ弾性波により周波数変調された信号光として転送する信号光伝送手段と、上記パルスレーザ光を反射させ、上記プローブ光を透過させる偏光特性を有し、かつ回転機構を備えた共通ミラーと、上記プローブ光と所定領域内で材料表面に対し所定のスポット径で照射できるようにする望遠鏡手段と、上記信号光と基準となる連続出力レーザからの参照光とを互いに交差して位相共役鏡に入射させ干渉光を生起するレーザ干渉計と、この干渉計から出力される干渉光を光検出器により検出し、信号光の周波数成分の変化により材料の内部欠陥を検出するように構成したレーザ超音波による材料非破壊検査装置。 An acoustic wave excitation means for irradiating a predetermined region of the surface of the material to be measured with the pulse laser beam at the strongest level without acoustic, plasma emission and atmospheric plasma, and generating an elastic wave in the material to be measured based on the thermal stress of the surface; A polarization beam splitter that splits continuous output laser light into two beams, one of which is used as probe light and the other as reference light, which is transmitted in different directions; and a diameter smaller than the focused spot diameter of the pulsed laser light Transmitting the probe light and irradiating the predetermined area coaxially with the pulse laser light, and the irradiation area of the probe light has a smaller condensing spot diameter of the probe light than the pulse laser light. becomes region is less affected surface waves caused by the irradiation of light, the probe light irradiation, the wavefront in accordance with the surface state when reflected from the material surface However, and a signal optical transmission means for transferring a signal light frequency modulated by acoustic waves, to reflect the pulsed laser beam has a polarization property of transmitting the probe light, and a common mirror with a rotation mechanism A telescope means for irradiating the surface of the material with a predetermined spot diameter within a predetermined area and a phase conjugate mirror by crossing the signal light and a reference light from a continuous output laser as a reference. Laser interferometer that causes interference light to be incident on the laser, and a laser configured to detect the internal defect of the material by detecting the interference light output from the interferometer with a photodetector and changing the frequency component of the signal light Ultrasonic material nondestructive inspection equipment. 前記信号光伝送手段の系に濃度可変フィルタを設け、上記レーザ干渉計からの信号光の強度を検出する信号光モニタからの信号に基づいて、信号光と参照光の強度比を所定範囲内に保持するように構成したことを特徴とする請求項3に記載のレーザ超音波による材料非破壊検査装置。   A density variable filter is provided in the signal light transmission means system, and the intensity ratio of the signal light and the reference light is within a predetermined range based on a signal from a signal light monitor that detects the intensity of the signal light from the laser interferometer. The material nondestructive inspection apparatus using laser ultrasonic waves according to claim 3, wherein the apparatus is configured to hold.
JP2003384573A 2003-11-14 2003-11-14 Material nondestructive inspection method and apparatus by laser ultrasonic wave Expired - Fee Related JP4386709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384573A JP4386709B2 (en) 2003-11-14 2003-11-14 Material nondestructive inspection method and apparatus by laser ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384573A JP4386709B2 (en) 2003-11-14 2003-11-14 Material nondestructive inspection method and apparatus by laser ultrasonic wave

Publications (2)

Publication Number Publication Date
JP2005147813A JP2005147813A (en) 2005-06-09
JP4386709B2 true JP4386709B2 (en) 2009-12-16

Family

ID=34692917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384573A Expired - Fee Related JP4386709B2 (en) 2003-11-14 2003-11-14 Material nondestructive inspection method and apparatus by laser ultrasonic wave

Country Status (1)

Country Link
JP (1) JP4386709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674933B2 (en) 2018-03-27 2023-06-13 National Institutes For Quantum And Radiological Science And Technology Measuring device, measuring system, moving body, and measuring method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095289B2 (en) * 2007-07-24 2012-12-12 公益財団法人レーザー技術総合研究所 Interference fringe stabilization device and non-destructive inspection device using the same
JP2009031180A (en) * 2007-07-30 2009-02-12 Central Res Inst Of Electric Power Ind Method and device for measuring internal temperature
JP5007979B2 (en) 2008-05-22 2012-08-22 独立行政法人産業技術総合研究所 Defect inspection method and defect inspection apparatus
KR101007506B1 (en) 2008-12-03 2011-01-12 한국원자력연구원 Remote inspection apparatus for hot materials by using the multiple measurement of laser ultrasound
KR101053415B1 (en) 2009-03-23 2011-08-01 니뽄스틸코포레이션 Laser Ultrasonic Measuring Device and Measuring Method
EP2341180A1 (en) 2009-12-29 2011-07-06 Electrolux Home Products Corporation N.V. A heat pump system for a tumble dryer
JP5856753B2 (en) * 2011-04-27 2016-02-10 公益財団法人レーザー技術総合研究所 Crack depth measuring device and measuring method
CN105839681A (en) * 2016-05-13 2016-08-10 绍兴文理学院 Method for monitoring axial force of foundation pit steel support by means of laser distance measuring sensor
CN106320400B (en) * 2016-11-03 2019-09-27 中建三局集团有限公司 A kind of compaction pile sampler
CN107782786B (en) * 2017-09-27 2024-05-28 重庆交通大学 Steel structure corrosion detection device and method based on pulse microwave heating vibration measurement
EP3805735A4 (en) * 2018-06-11 2021-07-21 Shimadzu Corporation Defect detection method and device
CN109100047A (en) * 2018-09-14 2018-12-28 浙江大学 Method and device based on laser-induced grating measurement gas temperature and thermal diffusivity
JP6644342B1 (en) * 2019-06-24 2020-02-12 イノベーションIp・コンサルティング株式会社 Vibration evaluation device and vibration evaluation system
CN110672718B (en) * 2019-07-08 2022-05-24 南昌航空大学 Electromagnetic ultrasonic point focusing/diverging surface wave method and device for steel rail tread detection
CN110501424A (en) * 2019-08-19 2019-11-26 国家电网有限公司 A kind of Full-optical strain clamp non-destructive testing device of laser-ultrasound
CN113124793B (en) * 2019-12-31 2022-10-25 哈尔滨工业大学 Large-scale high-speed rotation equipment laminating area measuring device based on laser supersound
WO2022180779A1 (en) * 2021-02-26 2022-09-01 三菱電機株式会社 Light receiving module and optical transceiver
EP4369084A1 (en) * 2021-07-28 2024-05-15 Tokyo University Of Science Foundation Flexoelectric liquid crystal composition, liquid crystal element, laser inspection system, and method for analyzing test subject
CN114018825B (en) * 2021-09-26 2022-12-02 宝宇(武汉)激光技术有限公司 High-precision photorefractive crystal interference nondestructive flaw detection equipment and method
CN114324177B (en) * 2021-10-21 2024-06-25 浙江大学温州研究院 Laser ultrasonic nondestructive testing device and method
CN114414658B (en) * 2022-01-11 2024-04-09 南京大学 Laser ultrasonic detection method for depth of microcracks on metal surface
CN116202968B (en) * 2023-03-13 2024-05-03 哈尔滨工业大学(威海) Laser ultrasonic defect detection system and laser ultrasonic phase coherent imaging detection method for additive titanium alloy
CN118148197A (en) * 2024-05-13 2024-06-07 四川省水利科学研究院 Bridge foundation pile detection device and method based on ultrasonic technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674933B2 (en) 2018-03-27 2023-06-13 National Institutes For Quantum And Radiological Science And Technology Measuring device, measuring system, moving body, and measuring method
US11913910B2 (en) 2018-03-27 2024-02-27 National Institutes For Quantum And Radiological Science And Technology Measuring device, measuring system, moving body, and measuring method

Also Published As

Publication number Publication date
JP2005147813A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
US3978713A (en) Laser generation of ultrasonic waves for nondestructive testing
US5608166A (en) Generation and detection of ultrasound with long pulse lasers
Scruby Some applications of laser ultrasound
US7684047B2 (en) Apparatus and method for two wave mixing (TWM) based ultrasonic laser testing
JP4789394B2 (en) System and method for detecting porosity of composite materials using ultrasound
US7262861B1 (en) Ultrasound single-element non-contacting inspection system
JPH0444951B2 (en)
US5814730A (en) Material characteristic testing method and apparatus using interferometry to detect ultrasonic signals in a web
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
Krishnaswamy Theory and applications of laser-ultrasonic techniques
JP2009115830A (en) Laser-ultrasonic wave inspection device
Spytek et al. Non-contact detection of ultrasound with light–Review of recent progress
Hosoya et al. Measurements of S0 mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave
Ng et al. A novel laser-based duffing oscillator system to identify weak ultrasonic guided wave signals related to rail defects
JP2010175340A (en) Plate thickness measuring method and plate thickness measuring apparatus
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
Gulino et al. Non-contact ultrasonic inspection by gas-coupled laser acoustic detection (GCLAD)
JP3704843B2 (en) Non-contact non-destructive material evaluation method and apparatus, elastic wave excitation method and elastic wave excitation apparatus
US5796004A (en) Method and apparatus for exciting bulk acoustic wave
Monchalin Non contact generation and detection of ultrasound with lasers
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
CN114018825B (en) High-precision photorefractive crystal interference nondestructive flaw detection equipment and method
Imano Detection of Unbonded Defect under Surface of Material Using Phase Information of Rayleigh and A0 Mode Lamb Waves.
JPH09257755A (en) Laser ultrasonic inspection apparatus and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Ref document number: 4386709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees