JPH10128122A - Exhaust gas purifying catalyst and purification of exhaust gas - Google Patents

Exhaust gas purifying catalyst and purification of exhaust gas

Info

Publication number
JPH10128122A
JPH10128122A JP8284050A JP28405096A JPH10128122A JP H10128122 A JPH10128122 A JP H10128122A JP 8284050 A JP8284050 A JP 8284050A JP 28405096 A JP28405096 A JP 28405096A JP H10128122 A JPH10128122 A JP H10128122A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxygen
catalyst
oxide
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284050A
Other languages
Japanese (ja)
Other versions
JP3534286B2 (en
Inventor
Toshitaka Tanabe
稔貴 田辺
Hirobumi Shinjo
博文 新庄
Yoshio Hatanaka
美穂 畑中
Toshihiro Takada
登志広 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP28405096A priority Critical patent/JP3534286B2/en
Publication of JPH10128122A publication Critical patent/JPH10128122A/en
Application granted granted Critical
Publication of JP3534286B2 publication Critical patent/JP3534286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently purify NOx in exhaust gas of an oxygen excessive atmosphere from a low temp. region. SOLUTION: An exhaust gas purifying catalyst contains a carrier containing porous oxide, zeolite and oxide having oxygen occluding and discharging capacity and a noble metal supported on the carrier. Oxide having oxygen occluding and discharging capacity occludes oxygen excessively contained in exhaust gas in a low temp. region and discharges oxygen at the rising time of temp. Since discharged oxygen has high activity, oxygen is reacted with hydrocarbon adsorbed on zeolite to activate hydrocarbon and the activated hydrocarbon is high in reactivity to reduce and purify NOx in a low temp. region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンなどの内燃機関から排出される排ガスを浄化する排ガ
ス浄化用触媒及び排ガス浄化方法に関し、さらに詳しく
は、酸素過剰の排ガス、すなわち排ガス中に含まれる一
酸化炭素(CO)、水素(H2 )及び炭化水素(HC)
等の還元性成分を完全に酸化するのに必要な酸素量より
過剰の酸素を含む排ガス中の、窒素酸化物(NOx )を
低温域から効率よく還元浄化できる排ガス浄化用触媒及
び排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method for purifying exhaust gas discharged from an internal combustion engine such as a diesel engine, and more particularly to an exhaust gas containing excess oxygen, that is, contained in exhaust gas. Carbon monoxide (CO), hydrogen (H 2 ) and hydrocarbons (HC)
Exhaust gas purifying catalyst and exhaust gas purifying method capable of efficiently reducing and purifying nitrogen oxides (NO x ) in an exhaust gas containing oxygen in excess of the amount of oxygen necessary to completely oxidize reducing components such as oxygen About.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを同時に行
って排ガスを浄化する三元触媒が用いられている。この
ような三元触媒としては、例えばコーディエライトなど
からなる耐熱性基材にγ−アルミナからなる多孔質担体
層を形成し、その多孔質担体層に白金(Pt)、ロジウ
ム(Rh)などの触媒貴金属を担持させたものが広く知
られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas of automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known.

【0003】また排ガス中の炭化水素を吸着材によって
吸着させ、より効率的に炭化水素を浄化する研究が進め
られている。例えば特開平6−154538号公報に
は、排ガス流における三元触媒の前方に炭化水素吸着体
を配置し、排ガス中の炭化水素を低温時に炭化水素吸着
体に吸着させ、昇温時に吸着された炭化水素を放出させ
て三元触媒により吸着させた炭化水素を浄化する方法が
開示されている。この方法によれば、コールドスタート
時の炭化水素を三元触媒で効率よく浄化することが可能
となる。
[0003] Also, researches have been made to adsorb hydrocarbons in exhaust gas with an adsorbent to purify hydrocarbons more efficiently. For example, in JP-A-6-154538, a hydrocarbon adsorbent is disposed in front of a three-way catalyst in an exhaust gas flow, and the hydrocarbons in the exhaust gas are adsorbed by the hydrocarbon adsorbent at a low temperature and are adsorbed at a temperature increase. A method for purifying hydrocarbons released by hydrocarbons and adsorbed by a three-way catalyst is disclosed. According to this method, hydrocarbons at the time of cold start can be efficiently purified by the three-way catalyst.

【0004】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として空燃比
(A/F)が拡大された酸素過剰雰囲気において希薄燃
焼させる、いわゆるリーンバーンが採用されている。こ
のリーンバーンにおいては、燃費が向上するために燃料
の使用が低減され、その燃焼排ガスであるCO2 の発生
を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment, and the air-fuel ratio (A / F) has been expanded as a solution to this problem. What is called lean burn, in which lean combustion is performed in a reduced oxygen-excess atmosphere, is employed. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0005】しかしながら従来の三元触媒は、空燃比が
理論空燃比(ストイキ)近傍において排ガス中のCO,
HC,NOx を同時に酸化・還元し、浄化するものであ
って、この三元触媒では、リーンバーンやディーゼルエ
ンジンの排ガスのような酸素過剰雰囲気下におけるNO
x の還元除去が困難である。このような不具合を解決す
るものとして、例えば特開平5−168860号公報に
は、酸素過剰雰囲気において排ガス中のNOx を吸蔵
し、ストイキあるいは還元雰囲気において吸蔵されたN
Ox を還元浄化する技術が開示されている。
However, in the conventional three-way catalyst, when the air-fuel ratio is near the stoichiometric air-fuel ratio (stoichiometric), CO,
HC, NO x and simultaneously oxidizing and reducing been made to purify, in this three-way catalyst, NO in an excess oxygen atmosphere such as exhaust gas of lean-burn and diesel engines
It is difficult to remove x by reduction. To solve such a problem, for example, Japanese Patent Application Laid-Open No. 5-168860 discloses that NOx in exhaust gas is stored in an oxygen-excess atmosphere and N2 stored in a stoichiometric or reducing atmosphere.
A technique for reducing and purifying Ox has been disclosed.

【0006】[0006]

【発明が解決しようとする課題】ところが、例えばディ
ーゼルエンジンなどの内燃機関から排出される排ガスに
は、酸素が過剰に含まれている。したがってこのような
酸素過剰雰囲気の排ガスにおいては、雰囲気をストイキ
あるいは還元雰囲気に制御することが困難であるため、
特開平5−168860号公報に開示されたような技術
を利用することができない。
However, exhaust gas discharged from an internal combustion engine such as a diesel engine contains an excessive amount of oxygen. Therefore, in such an exhaust gas in an oxygen-excess atmosphere, it is difficult to control the atmosphere to a stoichiometric or reducing atmosphere,
The technique disclosed in Japanese Patent Application Laid-Open No. 5-168860 cannot be used.

【0007】このため、酸素過剰雰囲気下において効率
よくNOx を浄化しうる触媒及び浄化システムの開発が
望まれていた。本発明はこのような事情に鑑みてなされ
たものであり、酸素過剰雰囲気の排ガス中のNOx を低
温域から効率よく浄化することを目的とする。
For this reason, there has been a demand for the development of a catalyst and a purification system capable of efficiently purifying NO x in an oxygen-excess atmosphere. The present invention has been made in view of such circumstances, and an object thereof is to purify efficiently NO x in the exhaust gas of an oxygen-rich atmosphere from a low temperature range.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する請求
項1に記載の排ガス浄化用触媒の特徴は、酸素を過剰に
含む排ガス中に炭化水素を供給して排ガス中に含まれる
NOx を還元浄化するのに用いられる排ガス浄化用触媒
であって、多孔質酸化物、ゼオライト及び酸素吸蔵放出
能を有する酸化物を含む担体と、担体に担持された貴金
属と、を含んでなることにある。
Features of the exhaust gas purifying catalyst according to claim 1 to solve the above problems SUMMARY OF THE INVENTION are the NO x which oxygen is supplied to the hydrocarbon in the exhaust gas containing excessive and contained in the exhaust gas An exhaust gas purifying catalyst used for reduction purification, which comprises a porous oxide, a carrier containing zeolite and an oxide having an oxygen storage / release capability, and a noble metal supported on the carrier. .

【0009】また請求項2に記載の排ガス浄化方法の特
徴は、多孔質酸化物、ゼオライト及び酸素吸蔵放出能を
有する酸化物を含む担体と、担体に担持された貴金属
と、を含んでなる排ガス浄化用触媒を用いて、酸素を過
剰に含む排ガス中に炭化水素を供給し、ゼオライトは排
ガス中の炭化水素が酸化されない温度領域において排ガ
ス中の炭化水素を吸着保持し、排ガスの昇温時には吸着
した炭化水素を還元剤として排ガス中のNOx を浄化す
ることにある。
The exhaust gas purifying method according to claim 2 is characterized in that the exhaust gas comprises a carrier containing a porous oxide, zeolite and an oxide having an oxygen storage / release capability, and a noble metal carried on the carrier. Using a purification catalyst, hydrocarbons are supplied to exhaust gas containing excess oxygen, and zeolite adsorbs and holds hydrocarbons in exhaust gas in a temperature range where hydrocarbons in exhaust gas are not oxidized. It is to purify the NO x in the exhaust gas and hydrocarbon as a reducing agent.

【0010】[0010]

【発明の実施の形態】本発明の排ガス浄化用触媒及び排
ガス浄化方法では、排ガス中の炭化水素の少なくとも一
部がゼオライトに吸着保持される。これにより触媒上で
の炭化水素とNOx との反応性が向上し、高いNOx
化能が得られる。また炭化水素の触媒上での滞留時間が
長くなるため、炭化水素とNOx との反応性が向上する
という作用も奏される。さらに、炭化水素が酸化されな
い低温域においても炭化水素が吸着されるため、炭化水
素が排出されるのが抑制され、かつ吸着された炭化水素
をNOx の浄化に活用できるため炭化水素の有効利用を
図ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, at least a part of hydrocarbons in the exhaust gas is adsorbed and held on zeolite. This improves the reactivity with the hydrocarbons and NO x on the catalyst, resulting higher the NO x purification performance. Further, since the residence time of the hydrocarbon on the catalyst is prolonged, the effect of improving the reactivity between the hydrocarbon and NO x is also exerted. Furthermore, since the hydrocarbon hydrocarbons are adsorbed even at a low temperature range that is not oxidized, it is suppressed for hydrocarbons is discharged, and the hydrocarbon for the adsorbed hydrocarbons can be utilized for purification of the NO x effectively utilized Can be achieved.

【0011】一方、酸素吸蔵放出能を有する酸化物は、
低温域で排ガス中に過剰に含まれる酸素を吸蔵する。そ
して昇温時に酸化物から酸素が放出される。放出された
酸素は活性が高いため、ゼオライトに吸着された炭化水
素と反応して炭化水素を活性化する。この活性化された
炭化水素は反応性が高く、低温域においてもNOx と反
応してNOx を還元浄化すると考えられ、これにより低
温域におけるNOx 浄化能が向上する。
On the other hand, oxides having the ability to occlude and release oxygen are:
Oxygen that is excessively contained in exhaust gas is stored at low temperatures. Then, oxygen is released from the oxide when the temperature is raised. Since the released oxygen has high activity, it reacts with the hydrocarbon adsorbed on the zeolite to activate the hydrocarbon. The activated hydrocarbons have high reactivity, is considered to react with NO x to reduce and purify NO x even in low temperature range, thereby improving the the NO x purification performance in low temperature range.

【0012】多孔質酸化物としては、アルミナ、シリ
カ、チタニア、ジルコニア、シリカ−アルミナ、チタニ
ア−ジルコニア、ゼオライトなどから選ばれる少なくと
も一種を用いることができる。アルミナにはα−アルミ
ナ、γ−アルミナなどを用いることができる。ゼオライ
トとしては炭化水素を吸着するものであれば特に制限は
ないが、モルデナイト、ZSM−5、USY、フェリエ
ライト、ゼオライトベータなどが炭化水素の吸着量が多
く、これらの少なくとも一種を用いることが望ましい
が、特にこれらに限定されるものではない。
As the porous oxide, at least one selected from alumina, silica, titania, zirconia, silica-alumina, titania-zirconia, zeolite and the like can be used. As the alumina, α-alumina, γ-alumina, or the like can be used. The zeolite is not particularly limited as long as it adsorbs hydrocarbons, but mordenite, ZSM-5, USY, ferrierite, zeolite beta, and the like have a large amount of adsorption of hydrocarbons, and it is desirable to use at least one of these. However, the present invention is not particularly limited to these.

【0013】ゼオライトは、多孔質酸化物100重量部
に対して10〜1000重量部の割合で混合することが
好ましい。ゼオライトの混合割合が10重量部より少な
いと炭化水素の吸着能が得られずNOx の浄化率が低下
し、1000重量部より多く混合すると効果が飽和し炭
化水素のさらなる浄化率の向上が得られない。酸素吸蔵
放出能を有する酸化物としては、CeO2 、PrO4
どの希土類金属酸化物、NiO、Fe2 3 、CuO、
Mn2 5 などの遷移金属酸化物などを用いることがで
きる。
The zeolite is preferably mixed at a ratio of 10 to 1000 parts by weight with respect to 100 parts by weight of the porous oxide. The mixing ratio of the zeolite is reduced less and purification rate of hydrocarbon adsorption capability can not be obtained NO x than 10 parts by weight, mixed more than 1000 parts by weight is effective when saturated to give further improvement of the purification rate of hydrocarbon I can't. Examples of the oxide having the oxygen storage / release capability include rare earth metal oxides such as CeO 2 and PrO 4 , NiO, Fe 2 O 3 , CuO,
A transition metal oxide such as Mn 2 O 5 can be used.

【0014】この酸素吸蔵放出能を有する酸化物は、多
孔質酸化物100重量部に対して10〜400重量部の
割合で混合することが好ましい。酸素吸蔵放出能を有す
る酸化物の混合割合が10重量部より少ないと、炭化水
素の活性化が困難となり低温域におけるNOx 浄化能の
向上が望めない。また400重量部より多く混合すると
触媒活性が低下する。
It is preferable that the oxide having the oxygen storage / release capability is mixed at a ratio of 10 to 400 parts by weight with respect to 100 parts by weight of the porous oxide. If the mixing ratio of the oxide having an oxygen storage / release capability is less than 10 parts by weight, it becomes difficult to activate hydrocarbons, and it is not possible to expect an improvement in NOx purification performance in a low temperature range. Further, when the amount is more than 400 parts by weight, the catalytic activity decreases.

【0015】貴金属としては、白金(Pt)、パラジウ
ム(Pd)、ロジウム(Rh)、イリジウム(Ir)の
少なくとも一種を用いることができる。この貴金属は、
多孔質酸化物、ゼオライト及び酸素吸蔵放出能を有する
酸化物のいずれに担持されていてもよいが、多孔質酸化
物に担持することが望ましい。これにより触媒活性のさ
らなる向上及び耐久性のさらなる向上が得られる。
As the noble metal, at least one of platinum (Pt), palladium (Pd), rhodium (Rh) and iridium (Ir) can be used. This precious metal
It may be supported on any of a porous oxide, zeolite and an oxide having oxygen storage / release capability, but is preferably supported on a porous oxide. As a result, a further improvement in catalytic activity and a further improvement in durability can be obtained.

【0016】貴金属の担持量は、触媒1リットルに対し
て0.01〜30gの範囲が望ましい。0.01g未満
ではNOx をほとんど浄化できず、30gより多く担持
してもNOx 浄化活性が飽和するため、それ以上の担持
はコストの増大を招くだけである。排ガスに添加される
炭化水素としては、その種類は特に制限されない。具体
的な炭化水素化合物としては、軽油や灯油が代表的に例
示される。
The amount of the noble metal carried is desirably in the range of 0.01 to 30 g per liter of the catalyst. If the amount is less than 0.01 g, NO x can hardly be purified. Even if the amount is more than 30 g, the NO x purification activity is saturated. The type of hydrocarbon added to the exhaust gas is not particularly limited. Typical examples of the hydrocarbon compound include light oil and kerosene.

【0017】炭化水素の添加量は、ディーゼルエンジン
の場合、排ガス中に10〜10000ppmCの範囲が
好ましい。10ppmCより少ないとNOx の浄化が困
難となり、10000ppmC以上添加してもNOx
化能が飽和するとともに炭化水素が排出されるようにな
る。なお、炭化水素は排ガス中に直接添加してもよい
し、シリンダ筒内に排気行程において添加することもで
きる。
In the case of a diesel engine, the amount of addition of the hydrocarbon is preferably in the range of 10 to 10000 ppmC in the exhaust gas. Purifying less than 10ppmC of the NO x becomes difficult, NO x purifying capability be added or 10000ppmC comes to hydrocarbons is discharged with saturated. The hydrocarbon may be directly added to the exhaust gas or may be added to the inside of the cylinder cylinder during the exhaust stroke.

【0018】本発明の排ガス浄化用触媒の形状は、ハニ
カム形状、ペレット形状など特に制限されない。またそ
の製造方法も、従来と同様の製造方法を用いることがで
きる。例えばハニカム形状の触媒の場合には、コーディ
エライトやメタルなどから形成されたハニカム形状の耐
熱性担体基材に、多孔質酸化物、ゼオライト及び酸素吸
蔵放出能を有する酸化物の混合物からなるコート層を形
成し、それに含浸担持法、吸着担持法などにより貴金属
を担持することで製造することができる。また、多孔質
酸化物、ゼオライト及び酸素吸蔵放出能を有する酸化物
の少なくとも一種の粉末に貴金属を担持させ、それに残
りの酸化物粉末を混合したものを担体基材にコートして
製造してもよい。
The shape of the exhaust gas purifying catalyst of the present invention is not particularly limited, such as a honeycomb shape and a pellet shape. Also, as the manufacturing method, the same manufacturing method as that of the related art can be used. For example, in the case of a honeycomb catalyst, a honeycomb-shaped heat-resistant carrier substrate formed of cordierite or metal is coated with a mixture of a porous oxide, a zeolite, and an oxide having an oxygen storage / release capability. It can be produced by forming a layer and supporting a noble metal thereon by an impregnation-supporting method, an adsorption-supporting method, or the like. Further, a porous oxide, a zeolite and at least one powder of an oxide having an oxygen storage / release capability is supported with a noble metal, and the remaining oxide powder is mixed with the carrier substrate to produce a mixture. Good.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)シリカ粉末に所定濃度のジニトロジアンミ
ン白金硝酸水溶液を所定量含浸させ、110℃で12時
間乾燥後、大気中にて500℃で3時間焼成してPtを
担持した。Ptの担持量は、シリカ担体100gに対し
て1gである。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) A predetermined amount of dinitrodiammineplatinum nitric acid aqueous solution was impregnated with a predetermined amount of silica powder, dried at 110 ° C for 12 hours, and calcined in air at 500 ° C for 3 hours to carry Pt. The supported amount of Pt is 1 g per 100 g of the silica carrier.

【0020】得られたPt/SiO2 触媒粉末2gに対
し、モルデナイト粉末を2gとCeO2 粉末を2g混合
し、1〜2mmのペレット形状に成形して実施例1の触
媒を調製した。 (比較例1)モルデナイトを含まないこと以外は実施例
1と同様にして触媒を調製し、同様にペレット形状に成
形して比較例1の触媒を調製した。
To 2 g of the obtained Pt / SiO 2 catalyst powder, 2 g of mordenite powder and 2 g of CeO 2 powder were mixed, and the mixture was molded into a pellet shape of 1 to 2 mm to prepare a catalyst of Example 1. (Comparative Example 1) A catalyst was prepared in the same manner as in Example 1 except that mordenite was not contained, and was similarly formed into a pellet to prepare a catalyst of Comparative Example 1.

【0021】(実施例2)実施例1と同様のPt/Si
2 触媒粉末2gに対し、ZSM−5粉末を2gとCe
2 粉末を2g混合し、1〜2mmのペレット形状に成
形して実施例2の触媒を調製した。 (比較例2)CeO2 粉末を含まないこと以外は実施例
2と同様にして、比較例2の触媒を調製した。
(Embodiment 2) Pt / Si similar to Embodiment 1
For 2 g of O 2 catalyst powder, 2 g of ZSM-5 powder and Ce
The catalyst of Example 2 was prepared by mixing 2 g of the O 2 powder and forming the mixture into a pellet shape of 1 to 2 mm. (Comparative Example 2) A catalyst of Comparative Example 2 was prepared in the same manner as in Example 2 except that CeO 2 powder was not contained.

【0022】(実施例3)CeO2 粉末の代わりにNi
O粉末を含むこと以外は実施例2と同様にして、実施例
3の触媒を調製した。 (比較例3)NiO粉末を含まないこと以外は実施例3
と同様にして、比較例3の触媒を調製した。
Example 3 Instead of CeO 2 powder, Ni
A catalyst of Example 3 was prepared in the same manner as in Example 2 except that it contained O powder. Comparative Example 3 Example 3 except that no NiO powder was included.
In the same manner as in the above, a catalyst of Comparative Example 3 was prepared.

【0023】上記の各触媒の構成を表1にまとめて示
す。
The constitution of each of the above catalysts is summarized in Table 1.

【0024】[0024]

【表1】 (○:含有 −:非含有) (各触媒のNOx 浄化活性評価)上記の各触媒に対し、
表2に示す組成の排気モデルガスを用いて触媒活性を測
定した。なお炭化水素を含むモデルガスAのHCとして
は、デカンを用いている。
[Table 1] (O: contained-: not contained) (Evaluation of NO x purification activity of each catalyst)
The catalytic activity was measured using an exhaust gas model having the composition shown in Table 2. Decane is used as HC of the model gas A containing hydrocarbons.

【0025】先ず入りガス温度120℃において、炭化
水素を含むモデルガスAを10L/min(0℃、1a
tm)の流速で15分間流して、触媒にHCを吸着させ
た。次にガスを炭化水素を含まないモデルガスBに切り
換え、入りガス温度を38℃/minの昇温速度で50
0℃まで昇温させ、触媒からの出ガスの成分を分析して
各温度におけるNOx 浄化率を測定した。結果を図1及
び図2に示す。
First, at an inlet gas temperature of 120 ° C., a model gas A containing hydrocarbons is supplied at 10 L / min (0 ° C., 1a
tm) for 15 minutes to adsorb HC on the catalyst. Next, the gas was switched to the model gas B containing no hydrocarbon, and the temperature of the incoming gas was increased to 50 ° C. at a rate of 38 ° C./min.
The temperature was raised to 0 ° C., the components of the gas emitted from the catalyst were analyzed, and the NO x purification rate at each temperature was measured. The results are shown in FIGS.

【0026】[0026]

【表2】 図1において、実施例1と比較例1の比較からわかるよ
うに、ゼオライトを含むことによりNOx 浄化率が大き
く向上していることがわかる。
[Table 2] In FIG. 1, as can be seen from a comparison between Example 1 and Comparative Example 1, it can be seen that the NO x purification rate is greatly improved by including zeolite.

【0027】また図2において、実施例2と比較例2の
比較からわかるように、酸素吸蔵放出能を有する希土類
酸化物(CeO2 )を含むことにより、NOx 浄化温度
域が低温側へ移行し、かつ最大NOx 浄化率が向上して
いることが明らかである。また図3において、実施例3
と比較例3との比較からわかるように、酸素吸蔵放出能
を有する遷移金属酸化物(NiO)を含むことにより、
NOx 浄化温度域が低温側へ移行し、かつ最大NOx
化率が大きく向上していることがわかる。
In FIG. 2, as can be seen from a comparison between Example 2 and Comparative Example 2, the NO x purification temperature range shifts to a lower temperature side by containing a rare earth oxide (CeO 2 ) having an oxygen storage / release capability. It is clear that the maximum NO x purification rate has been improved. Also, in FIG.
As can be seen from the comparison between Comparative Example 3 and Comparative Example 3, by including a transition metal oxide (NiO) having an oxygen storage / release capability,
It can be seen that the NO x purification temperature range shifts to the low temperature side and the maximum NO x purification rate is greatly improved.

【0028】以上の結果から、実施例1〜3の排ガス浄
化用触媒の優れたNOx 浄化作用は、ゼオライトと酸素
吸蔵放出能を有する酸化物とを併用した効果であること
が明らかである。
From the above results, it is clear that the excellent NO x purification action of the exhaust gas purifying catalysts of Examples 1 to 3 is an effect obtained by using zeolite in combination with an oxide having an oxygen storage / release capability.

【0029】[0029]

【発明の効果】すなわち本発明の排ガス浄化用触媒及び
排ガス浄化方法によれば、酸素を過剰に含む排ガスにお
いても、低温域から高いNOx 浄化率を確保することが
でき、ディーゼルエンジンなどの排ガスの浄化にきわめ
て有用である。
According to the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, a high NO x purification rate can be ensured even in an exhaust gas containing an excessive amount of oxygen from a low temperature range. It is extremely useful for the purification of water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒入りガス温度とNOx 浄化率の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the temperature of a gas containing a catalyst and the NO x purification rate.

【図2】触媒入りガス温度とNOx 浄化率の関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the temperature of a gas containing a catalyst and the NO x purification rate.

【図3】触媒入りガス温度とNOx 浄化率の関係を示す
グラフである。
FIG. 3 is a graph showing a relationship between a temperature of a gas containing a catalyst and a NO x purification rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新庄 博文 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 畑中 美穂 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 高田 登志広 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirofumi Shinjo 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. 41 Toyota Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Toshihiro Takada 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素を過剰に含む排ガス中に炭化水素を
供給して該排ガス中に含まれる窒素酸化物を還元浄化す
るのに用いられる排ガス浄化用触媒であって、 多孔質酸化物、ゼオライト及び酸素吸蔵放出能を有する
酸化物を含む担体と、該担体に担持された貴金属と、を
含んでなることを特徴とする排ガス浄化用触媒。
An exhaust gas purifying catalyst used for supplying hydrocarbons to an exhaust gas containing an excessive amount of oxygen to reduce and purify nitrogen oxides contained in the exhaust gas, comprising a porous oxide, a zeolite, and the like. A catalyst for purifying exhaust gas, comprising: a carrier containing an oxide having an oxygen storage / release capability; and a noble metal carried on the carrier.
【請求項2】 多孔質酸化物、ゼオライト及び酸素吸蔵
放出能を有する酸化物を含む担体と、該担体に担持され
た貴金属と、を含んでなる排ガス浄化用触媒を用いて、 酸素を過剰に含む排ガス中に炭化水素を供給し、該ゼオ
ライトは該排ガス中の炭化水素が酸化されない温度領域
において該排ガス中の炭化水素を吸着保持し、該排ガス
の昇温時には吸着した炭化水素を還元剤として該排ガス
中の窒素酸化物を浄化することを特徴とする排ガス浄化
方法。
2. Excessive oxygen using a catalyst for purifying exhaust gas, comprising a carrier containing a porous oxide, a zeolite and an oxide having an oxygen storage / release ability, and a noble metal supported on the carrier. Supplying hydrocarbons in the exhaust gas containing, the zeolite adsorbs and holds the hydrocarbons in the exhaust gas in a temperature range where the hydrocarbons in the exhaust gas are not oxidized, and uses the adsorbed hydrocarbon as a reducing agent when the temperature of the exhaust gas rises. An exhaust gas purification method comprising purifying nitrogen oxides in the exhaust gas.
JP28405096A 1996-10-25 1996-10-25 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP3534286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28405096A JP3534286B2 (en) 1996-10-25 1996-10-25 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28405096A JP3534286B2 (en) 1996-10-25 1996-10-25 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH10128122A true JPH10128122A (en) 1998-05-19
JP3534286B2 JP3534286B2 (en) 2004-06-07

Family

ID=17673651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28405096A Expired - Fee Related JP3534286B2 (en) 1996-10-25 1996-10-25 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3534286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330856A (en) * 2006-06-13 2007-12-27 Ne Chemcat Corp Denitration catalyst composition, integral denitration catalyst, and denitration method employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330856A (en) * 2006-06-13 2007-12-27 Ne Chemcat Corp Denitration catalyst composition, integral denitration catalyst, and denitration method employing the same
JP4644634B2 (en) * 2006-06-13 2011-03-02 エヌ・イーケムキャット株式会社 Denitration catalyst composition, monolithic structure type denitration catalyst, and denitration method using the same

Also Published As

Publication number Publication date
JP3534286B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
EP1188908B1 (en) Exhaust gas purifying system
JPH05261287A (en) Method for purifying exhaust gas and catalyst therefor
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH08299793A (en) Catalyst for purification of exhaust gas and its production
JP2006289301A (en) Catalyst for clarifying exhaust gas
US20020076373A1 (en) Use of lithium in NOx adsorbers for improved low temperature performance
JPH10109032A (en) Exhaust gas purification catalyst for internal combustion engine
JP5094199B2 (en) Exhaust gas purification device
JP2003290629A (en) Cleaning system for exhaust gas
JP2002168117A (en) Exhaust emission control system
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP2005205302A (en) Exhaust gas cleaning catalyst and apparatus for combustion engine
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JP2003135970A (en) Exhaust gas cleaning catalyst
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP3338889B2 (en) Exhaust gas purification device
JPH10128122A (en) Exhaust gas purifying catalyst and purification of exhaust gas
JP3347481B2 (en) Exhaust gas purification catalyst
JP3106567B2 (en) Exhaust gas purification device
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JPH0857318A (en) Catalyst and method for purifying exhaust gas from lean burnengine
EP1262642A2 (en) Exhaust gas purifying system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees