JPH10127599A - Rf coil for mri - Google Patents

Rf coil for mri

Info

Publication number
JPH10127599A
JPH10127599A JP8290332A JP29033296A JPH10127599A JP H10127599 A JPH10127599 A JP H10127599A JP 8290332 A JP8290332 A JP 8290332A JP 29033296 A JP29033296 A JP 29033296A JP H10127599 A JPH10127599 A JP H10127599A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
mri
cylindrical shape
oscillating magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8290332A
Other languages
Japanese (ja)
Other versions
JP3836196B2 (en
Inventor
Atsuo Sugiura
淳夫 杉浦
Takashi Ishiguro
孝至 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
GE Yokogawa Medical System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Yokogawa Medical System Ltd filed Critical GE Yokogawa Medical System Ltd
Priority to JP29033296A priority Critical patent/JP3836196B2/en
Publication of JPH10127599A publication Critical patent/JPH10127599A/en
Application granted granted Critical
Publication of JP3836196B2 publication Critical patent/JP3836196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an RF coil for MRI to widen the sensitive range in a cylindrical shaped central axis direction and to apply a vibrating magnetic field from outside to inside without attenuating. SOLUTION: This RF coil 100 for MRI(Magnetic Resonance Imaging) has 8-shaped conductive passages 2s and 2b crossed into an 8-shape formed on a part corresponding to cylindrical shape side faces. When a vibration magnetic field By is applied from outside, induced electromotive force Vat generated at the upper half of the 8-shaped conductive passage 2a and induced electromotive force Vab mutually cancel not to flow induced current. Also induced electromotive force Vbt generated at the upper half of the 8-shaped conductive passage 2b and induced electromotive force Vbb mutually cancel not to flow induced current. Accordingly the vibration magnetic field By is not canceled. Thus the sensitive range in the central axis direction of the cylindrical shape can be widened. The vibration magnetic field in the radial direction of the cylindrical shape and the horizontal direction can be applied from outside to inside without attenuating and large RF power for exciting the subject becomes not necessary. It also prevents uniformity lowering of the excitation magnetic field applied to the subject.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MRI(Magneti
c Resonance Imaging )用RFコイルに関し、さらに
詳しくは、全体として筒状形状のMRI用RFコイルで
あって、筒状形状の中心軸方向の感度範囲が広く、しか
も、筒状形状の半径方向かつ水平方向の振動磁場を減衰
させずに外部から内部に印加できるMRI用RFコイル
に関する。特に、垂直磁場形MRI装置に用いる受信専
用RFコイルとして有用である。
The present invention relates to an MRI (Magneti)
More specifically, the present invention relates to an RF coil for resonance imaging, and more specifically, an RF coil for MRI having a cylindrical shape as a whole, which has a wide sensitivity range in the central axis direction of the cylindrical shape, and furthermore, has a radial and horizontal direction in the cylindrical shape. The present invention relates to an MRI RF coil that can be applied from outside to inside without attenuating the oscillating magnetic field in the direction. In particular, it is useful as a reception-only RF coil used in a vertical magnetic field type MRI apparatus.

【0002】[0002]

【従来の技術】図9は、従来のMRI用RFコイルの一
例であるソレノイドコイルを示す構成図である。このソ
レノイドコイル500は、幅W1が比較的狭い銅シート
を、両端間に短い間隔をあけて、筒状に丸めて筒状導体
部52を形成し、前記両端間に共振コンデンサ53を接
続した構造である。前記共振コンデンサ53の両端に
は、同軸ケーブルLの心線および外部導体がそれぞれ接
続されている。前記筒状導体部52の中心軸方向をz軸
方向とし、それに直交する2軸の方向をx軸,y軸と
し、z軸,y軸を水平面内とし、x軸を鉛直方向とする
直交座標系を想定するとき、上記ソレノイドコイル50
0は、x軸方向の静磁場Boを持つ垂直磁場形MRI装
置において使用される。そして、前記筒状導体部52で
囲まれた空洞が測定空間となる。すなわち、上記ソレノ
イドコイル500は、その空洞内に入った被検体を、外
部に設置した送信コイル(図示省略)の回転磁界(その
成分を振動磁場Bz,Byとする)により励起し、被検
体から放射されたNMR信号のz軸方向の振動磁場Ez
を感知するのに用いられる。
2. Description of the Related Art FIG. 9 is a configuration diagram showing a solenoid coil which is an example of a conventional MRI RF coil. This solenoid coil 500 has a structure in which a copper sheet having a relatively narrow width W1 is rolled into a cylindrical shape with a short interval between both ends to form a cylindrical conductor portion 52, and a resonance capacitor 53 is connected between the both ends. It is. The core wire of the coaxial cable L and an external conductor are connected to both ends of the resonance capacitor 53, respectively. Cartesian coordinates in which the central axis direction of the cylindrical conductor portion 52 is the z-axis direction, two axes perpendicular to the z-axis direction are the x-axis and the y-axis, the z-axis and the y-axis are in the horizontal plane, and the x-axis is the vertical direction. Assuming a system, the solenoid coil 50
0 is used in a vertical magnetic field type MRI apparatus having a static magnetic field Bo in the x-axis direction. Then, a cavity surrounded by the cylindrical conductor portion 52 becomes a measurement space. That is, the solenoid coil 500 excites the subject entering the cavity by a rotating magnetic field (the components thereof are oscillating magnetic fields Bz and By) of a transmitting coil (not shown) installed outside, and Oscillating magnetic field Ez in the z-axis direction of the emitted NMR signal
Used to sense

【0003】図10は、上記ソレノイドコイル500に
おけるz軸方向の感度分布を示す説明図である。説明の
都合上、コイル中央をz軸原点とする。上記ソレノイド
コイル500の感度は、コイル端から外れと急に低下す
る。
FIG. 10 is an explanatory diagram showing the sensitivity distribution in the z-axis direction of the solenoid coil 500. For convenience of explanation, the center of the coil is set as the z-axis origin. The sensitivity of the solenoid coil 500 suddenly decreases when it comes off the coil end.

【0004】図11は、従来のソレノイドコイルの他例
を示す構成図である。このソレノイドコイル600は、
幅Wが比較的広い銅シートを、両端間に短い間隔をあけ
て、筒状に丸めて筒状導体部62を形成し、前記両端間
に複数の共振コンデンサ63を接続した構造である。前
記共振コンデンサ63の両端には、同軸ケーブルLの心
線および外部導体がそれぞれ接続されている。前記筒状
導体部62の中心軸方向をz軸方向とし、それに直交す
る2軸の方向をx軸,y軸とし、z軸,y軸を水平面内
とし、x軸を鉛直方向とする直交座標系を想定すると
き、上記ソレノイドコイル600は、x軸方向の静磁場
Boを持つ垂直磁場形MRI装置において使用される。
そして、筒状導体部62で囲まれた空洞が測定空間とな
る。すなわち、上記ソレノイドコイル600は、その空
洞内に入った被検体を、外部に設置した送信コイル(図
示省略)の回転磁界(その成分を振動磁場Bz,Byと
する)により励起し、被検体から放射されたNMR信号
のz軸方向の振動磁場Ezを感知するのに用いられる。
FIG. 11 is a configuration diagram showing another example of a conventional solenoid coil. This solenoid coil 600
This is a structure in which a copper sheet having a relatively wide width W is rolled into a tube with a short interval between both ends to form a cylindrical conductor portion 62, and a plurality of resonance capacitors 63 are connected between the both ends. The core wire of the coaxial cable L and an external conductor are connected to both ends of the resonance capacitor 63, respectively. Orthogonal coordinates in which the central axis direction of the cylindrical conductor portion 62 is the z-axis direction, two axes orthogonal to the z-axis direction are the x-axis and the y-axis, the z-axis and the y-axis are in the horizontal plane, and the x-axis is the vertical direction. Assuming a system, the solenoid coil 600 is used in a vertical magnetic field type MRI apparatus having a static magnetic field Bo in the x-axis direction.
Then, a cavity surrounded by the cylindrical conductor portion 62 becomes a measurement space. That is, the solenoid coil 600 excites the subject entering the cavity by the rotating magnetic field (the components thereof are oscillating magnetic fields Bz and By) of the transmitting coil (not shown) provided outside, and It is used to sense the oscillating magnetic field Ez in the z-axis direction of the emitted NMR signal.

【0005】図12は、上記ソレノイドコイル600に
おけるz軸方向の感度分布を示す説明図である。ソレノ
イドコイル600のz軸方向の幅Wは、上記ソレノイド
コイル500の幅W1よりも広いので、NMR信号を受
信するのに必要な感度が得られるz軸方向の幅を広げる
ことが出来る。
FIG. 12 is an explanatory diagram showing the sensitivity distribution in the z-axis direction of the solenoid coil 600. Since the width W of the solenoid coil 600 in the z-axis direction is wider than the width W1 of the solenoid coil 500, the width in the z-axis direction at which the sensitivity required for receiving the NMR signal can be increased.

【0006】[0006]

【発明が解決しようとする課題】上記従来のソレノイド
コイル500では、図10に示したように振動磁場Ez
を感知しうる幅が狭い問題点がある。また、上記従来の
ソレノイドコイル600では、図12に示したように振
動磁場Ezを感知しうる幅が広くなるが、筒状導体部6
2が振動磁場Byを遮蔽するため、空洞内の被検体を励
起するのに大きなRFパワーを必要としたり、振動磁場
Byの均一性が損われるという問題点がある。
In the above-described conventional solenoid coil 500, as shown in FIG.
However, there is a problem that the width that can detect is narrow. Further, in the above-mentioned conventional solenoid coil 600, as shown in FIG.
2 shields the oscillating magnetic field By, so that there is a problem that a large RF power is required to excite the subject in the cavity, and the uniformity of the oscillating magnetic field By is deteriorated.

【0007】これに対して、図13に示すソレノイドコ
イル700のように、筒状導体部72の側面に開口部K
を開けて、振動磁場Byを透しやすくすることが考えら
れる。しかし、図14に示すように、開口部Kの周囲の
導体で形成される導電路に誘導電流iが流れ、振動磁場
Byを打ち消す振動磁場byを発生させるから、やはり
振動磁場Byが減衰させられる問題点がある。
On the other hand, like a solenoid coil 700 shown in FIG.
It is conceivable that the oscillating magnetic field By is easily transmitted by opening the oscillating magnetic field By. However, as shown in FIG. 14, the induced current i flows through the conductive path formed by the conductor around the opening K, and the oscillating magnetic field By is generated, so that the oscillating magnetic field By is also attenuated. There is a problem.

【0008】そこで、本発明の目的は、筒状形状の中心
軸(z軸)方向の感度範囲が広く、しかも、筒状形状の
半径方向かつ水平方向の振動磁場(By)を減衰させず
に外部から内部に印加できるMRI用RFコイルを提供
することにある。
Accordingly, an object of the present invention is to provide a wide sensitivity range in the direction of the central axis (z axis) of the cylindrical shape, and to reduce the radial and horizontal oscillating magnetic field (By) of the cylindrical shape. An object of the present invention is to provide an MRI RF coil that can be applied from outside to inside.

【0009】[0009]

【課題を解決するための手段】第1の観点では、本発明
は、全体として筒状形状のMRI用RFコイルであっ
て、筒状形状の側面に相当する部分に、8の字形に交差
した8の字型導電路を形成したことを特徴とするMRI
用RFコイルを提供する。上記第1の観点のMRI用R
Fコイルでは、筒状形状の中心軸方向の幅を比較的広く
することにより、筒状形状の中心軸方向の感度範囲を広
くできる。また、筒状形状の半径方向かつ水平方向の振
動磁場に対し、8の字型導電路の上半分と下半分で互い
に逆向きの誘導起電力を生じるので、それらが打ち消し
合い、誘導電流が流れない。この結果、筒状形状の半径
方向かつ水平方向の振動磁場を打ち消す振動磁場が発生
しない。よって、筒状形状の半径方向かつ水平方向の振
動磁場を減衰させずに外部から内部に印加できるように
なる。また、振動磁場の均一性の低下を防止することが
出来る。
According to a first aspect of the present invention, there is provided an MRI RF coil having a cylindrical shape as a whole, wherein a portion corresponding to a side surface of the cylindrical shape intersects with a figure eight. An MRI characterized by forming a figure-eight conductive path.
An RF coil is provided. R for MRI of the first aspect
In the F coil, the sensitivity range in the central axis direction of the cylindrical shape can be widened by relatively widening the width of the cylindrical shape in the central axis direction. In addition, induced electromotive forces are generated in the upper and lower halves of the 8-shaped conductive path in opposite directions to the radial and horizontal oscillating magnetic field of the cylindrical shape. Absent. As a result, no oscillating magnetic field that cancels the radial and horizontal oscillating magnetic field of the cylindrical shape is generated. Therefore, the cylindrical oscillating magnetic field in the radial and horizontal directions can be applied from outside to inside without attenuating. Further, it is possible to prevent a decrease in the uniformity of the oscillating magnetic field.

【0010】第2の観点では、本発明は、全体として筒
状形状のMRI用RFコイルであって、筒状形状の側面
に相当する部分に、筒状形状の半径方向かつ水平方向の
振動磁場を加えたときに互いに打ち消し合う逆向きの誘
導起電力を生じるような導電路を形成したことを特徴と
するMRI用RFコイルを提供する。上記第2の観点の
MRI用RFコイルでは、筒状形状の中心軸方向の幅を
比較的広くすることにより、筒状形状の中心軸方向の感
度範囲を広くできる。また、筒状形状の半径方向かつ水
平方向の振動磁場に対し、互いに打ち消し合う逆向きの
誘導起電力を生じるので、誘導電流が流れない。この結
果、筒状形状の半径方向かつ水平方向の振動磁場を打ち
消す振動磁場が発生しない。よって、筒状形状の半径方
向かつ水平方向の振動磁場を減衰させずに外部から内部
に印加できるようになる。また、振動磁場の均一性の低
下を防止することが出来る。
According to a second aspect, the present invention relates to an MRI RF coil having a cylindrical shape as a whole, wherein a radially and horizontally oscillating magnetic field of the cylindrical shape is provided on a portion corresponding to a side surface of the cylindrical shape. The present invention provides an MRI RF coil characterized in that a conductive path is formed so as to generate induced electromotive forces in opposite directions that cancel each other out when added. In the MRI RF coil of the second aspect, the sensitivity range in the central axis direction of the cylindrical shape can be widened by relatively widening the width of the cylindrical shape in the central axis direction. In addition, an induced electromotive force is generated that cancels each other against the oscillating magnetic field in the radial and horizontal directions of the cylindrical shape, so that no induced current flows. As a result, no oscillating magnetic field that cancels the radial and horizontal oscillating magnetic field of the cylindrical shape is generated. Therefore, the cylindrical oscillating magnetic field in the radial and horizontal directions can be applied from outside to inside without attenuating. Further, it is possible to prevent a decrease in the uniformity of the oscillating magnetic field.

【0011】[0011]

【発明の実施の形態】以下、図に示す発明の実施の形態
により本発明をさらに詳細に説明する。なお、これによ
り本発明が限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the embodiments of the invention shown in the drawings. Note that the present invention is not limited by this.

【0012】−第1の実施形態− 図1は、本発明の第1の実施形態にかかるMRI用RF
コイルを示す構成図である。このMRI用RFコイル1
00は、8の字形に交差する8の字型導電路2a,2b
を筒状形状の側面に相当する部分に形成され且つ8の字
型導電路2a,2bの上辺に相当する導体部分の間に短
い間隔をあけた筒状導体部2と、前記導体部分の間に接
続された複数の共振コンデンサ3とを具備して構成され
ている。前記筒状導体部2は例えば銅やアルミニウム製
であり、その幅Wは比較的広くなっている。前記8の字
の上半分と下半分は、交差部に対して対称となってい
る。前記共振コンデンサ3のうちの1つの両端には、同
軸ケーブルLの心線および外部導体がそれぞれ接続され
ている(同軸ケーブルを直接には接続せず、バランを介
して導出してもよい)。前記筒状導体部2の中心軸方向
をz軸方向とし、それに直交する2軸の方向をx軸,y
軸とし、z軸,y軸を水平面内とし、x軸を鉛直方向と
する直交座標系を想定するとき、このMRI用RFコイ
ル100は、x軸方向の静磁場Boを持つ垂直磁場形M
RI装置において使用される。そして、前記筒状導体部
2で囲まれた空洞が測定空間となる。すなわち、このM
RI用RFコイル100は、その空洞内に入った被検体
を、外部に設置した送信コイル(図示省略)の回転磁界
(その成分を振動磁場Bz,Byとする)により励起
し、被検体から放射されたNMR信号のz軸方向の振動
磁場Ezを感知するのに用いられる。
First Embodiment FIG. 1 is an MRI RF according to a first embodiment of the present invention.
It is a block diagram showing a coil. This MRI RF coil 1
00 is a figure-eight conductive path 2a, 2b that intersects the figure eight
Is formed in a portion corresponding to the side surface of the cylindrical shape, and is provided between the cylindrical conductor portion 2 having a short interval between the conductor portions corresponding to the upper sides of the figure-shaped conductive paths 2a and 2b; , And a plurality of resonance capacitors 3 connected to each other. The tubular conductor 2 is made of, for example, copper or aluminum, and has a relatively large width W. The upper half and the lower half of the figure 8 are symmetric with respect to the intersection. The core wire and the outer conductor of the coaxial cable L are respectively connected to both ends of one of the resonance capacitors 3 (the coaxial cable may not be directly connected but may be led out via a balun). The central axis direction of the cylindrical conductor portion 2 is defined as a z-axis direction, and two directions orthogonal to the z-axis direction are defined as x-axis and y-axis.
When assuming an orthogonal coordinate system in which the z axis and the y axis are in a horizontal plane and the x axis is a vertical direction, the MRI RF coil 100 has a vertical magnetic field type M having a static magnetic field Bo in the x axis direction.
Used in RI equipment. Then, a cavity surrounded by the cylindrical conductor portion 2 becomes a measurement space. That is, this M
The RF coil for RI 100 excites the subject in the cavity by a rotating magnetic field (the components thereof are oscillating magnetic fields Bz and By) of a transmitting coil (not shown) provided outside, and radiates from the subject. It is used to sense the oscillating magnetic field Ez in the z-axis direction of the obtained NMR signal.

【0013】図2は、MRI用RFコイル100に振動
磁場Byが加わったときに生じる誘導起電力を示す説明
図である。振動磁場Byが加わったとき、8の字型導電
路2aの上半分には、振動磁場Byを打ち消す方向の振
動磁場を発生させる誘導電流を流す方向の誘導起電力V
atが発生する。一方、8の字型導電路2aの下半分に
も、振動磁場Byを打ち消す方向の振動磁場を発生させ
る誘導電流を流す方向の誘導起電力Vabが発生する。と
ころが、これらは8の字型導電路2a上で逆方向である
から、互いに打ち消し合い、振動磁場Byを打ち消す方
向の振動磁場を発生させる誘導電流は流れない。また、
8の字型導電路2bの上半分には、振動磁場Byを打ち
消す方向の振動磁場を発生させる誘導電流を流す方向の
誘導起電力Vbtが発生する。一方、8の字型導電路2b
の下半分にも、振動磁場Byを打ち消す方向の振動磁場
を発生させる誘導電流を流す方向の誘導起電力Vbbが発
生する。ところが、これらは8の字型導電路2b上で逆
方向であるから、互いに打ち消し合い、振動磁場Byを
打ち消す方向の振動磁場を発生させる誘導電流は流れな
い。この結果、振動磁場Byを打ち消す振動磁場が発生
せず、振動磁場Byを減衰させずに外部から内部に印加
できるようになる。
FIG. 2 is an explanatory diagram showing an induced electromotive force generated when the oscillating magnetic field By is applied to the MRI RF coil 100. When the oscillating magnetic field By is applied, the induced electromotive force V in the direction of flowing an induced current for generating an oscillating magnetic field in a direction to cancel the oscillating magnetic field By is provided in the upper half of the figure-shaped conductive path 2a.
at occurs. On the other hand, an induced electromotive force Vab is generated in the lower half of the figure-shaped conductive path 2a in the direction in which an induced current is generated to generate an oscillating magnetic field in a direction to cancel the oscillating magnetic field By. However, since these are in opposite directions on the figure-eight conductive path 2a, no induced current flows to cancel each other out and generate an oscillating magnetic field in a direction to cancel the oscillating magnetic field By. Also,
An induced electromotive force Vbt in the direction of flowing an induced current for generating an oscillating magnetic field in a direction to cancel the oscillating magnetic field By is generated in the upper half of the figure-eight conductive path 2b. On the other hand, the figure-shaped conductive path 2b
In the lower half, an induced electromotive force Vbb in the direction of flowing an induced current for generating an oscillating magnetic field in a direction to cancel the oscillating magnetic field By is generated. However, since these are in the opposite directions on the figure-eight conductive path 2b, no induced current flows to cancel each other out and generate an oscillating magnetic field in a direction to cancel the oscillating magnetic field By. As a result, no oscillating magnetic field for canceling the oscillating magnetic field By is generated, and the oscillating magnetic field By can be applied from outside to inside without attenuating the oscillating magnetic field By.

【0014】図3は、MRI用RFコイル100により
振動磁場Ezを感知するときに生じる誘導電流の分布状
態を示す説明図である。矢印方向の磁場Ezが加わった
とき、8の字型導電路2aには、上向きの誘導電流ia
t,iabが流れる。また、8の字型導電路2bには、下
向きの誘導電流ibt,ibbが流れる。すなわち、MRI
用RFコイル100の全体としてみると、図11,図1
3に示したソレノイドコイル600,700と同様に誘
導電流が流れ、NMR信号のz軸方向の振動磁場Ezを
感知できる。
FIG. 3 is an explanatory diagram showing a distribution state of induced current generated when the oscillating magnetic field Ez is sensed by the MRI RF coil 100. When a magnetic field Ez in the direction of the arrow is applied, an upward induced current ia is applied to the 8-shaped conductive path 2a.
t, iab flows. Further, downward induced currents ibt and ibb flow through the figure-eight conductive path 2b. That is, MRI
11 and FIG.
As in the case of the solenoid coils 600 and 700 shown in FIG. 3, an induced current flows, and the oscillating magnetic field Ez in the z-axis direction of the NMR signal can be sensed.

【0015】図4は、MRI用RFコイル100におけ
るz軸方向の感度分布を示す説明図である。MRI用R
Fコイル100のz軸方向の幅Wを広くすれば、NMR
信号を受信するのに必要な感度が得られるz軸方向の幅
を十分に広くできる。
FIG. 4 is an explanatory diagram showing the sensitivity distribution in the z-axis direction of the MRI RF coil 100. R for MRI
If the width W of the F coil 100 in the z-axis direction is increased, NMR
The width in the z-axis direction at which the sensitivity required for receiving a signal can be obtained can be made sufficiently large.

【0016】以上の第1の実施形態のMRI用RFコイ
ル100によれば、筒状導体部2の幅Wを広くしてz軸
方向の感度範囲を広くできると共に、振動磁場Byを減
衰させずに外部から内部に印加でき、被検体を励起する
ために大きなRFパワーを必要としなくなる。また、振
動磁場Byの均一性を損わないから、被検体を好適に励
起できる。
According to the MRI RF coil 100 of the first embodiment, the width W of the cylindrical conductor 2 can be widened to widen the sensitivity range in the z-axis direction, and the oscillating magnetic field By is not attenuated. Can be applied from outside to inside, and a large RF power is not required to excite the subject. Further, since the uniformity of the oscillating magnetic field By is not impaired, the subject can be preferably excited.

【0017】−第2の実施形態− 図5は、本発明の第2の実施形態にかかるMRI用RF
コイルを示す構成図である。このMRI用RFコイル2
00においては、筒状導体部22の8の字型導電路22
a,22bの上辺に相当する導体部分の間と,下辺に相
当する導体部分の間の2箇所の間隙に、それぞれ複数の
共振コンデンサ23a,23bを接続している。上記第
2の実施形態にかかるMRI用RFコイル200によれ
ば、筒状導体部22の幅を広くして、筒状形状の中心軸
方向の感度範囲を広くできる。また、筒状形状の半径方
向かつ水平方向の振動磁場を減衰させずに外部から内部
に印加でき、被検体を励起するために大きなRFパワー
を必要としなくなる。さらに、筒状導体部22の2箇所
の間隙にそれぞれ共振コンデンサ23a,23bを接続
するので、共振周波数をNMR信号の周波数に合わせる
調整が容易となる。
Second Embodiment FIG. 5 shows an RF for MRI according to a second embodiment of the present invention.
It is a block diagram showing a coil. This MRI RF coil 2
In FIG. 00, the figure-eight conductive path 22 of the cylindrical conductor portion 22
A plurality of resonance capacitors 23a and 23b are connected to two gaps between the conductor portions corresponding to the upper side and the lower side, respectively. According to the RF coil 200 for MRI according to the second embodiment, the width of the cylindrical conductor portion 22 can be widened, and the sensitivity range in the central axis direction of the cylindrical shape can be widened. Further, the oscillating magnetic field in the radial and horizontal directions of the cylindrical shape can be applied from outside to inside without attenuating, so that a large RF power is not required to excite the subject. Further, since the resonance capacitors 23a and 23b are connected to the two gaps of the cylindrical conductor 22, respectively, it is easy to adjust the resonance frequency to the frequency of the NMR signal.

【0018】−第3の実施形態− 図6は、本発明の第3の実施形態にかかるMRI用RF
コイルを示す構成図である。このMRI用RFコイル3
00の筒状導体部32は、8の字型導電路32aが形成
された導体部分と、8の字型導電路32bが形成された
導体部分と、前記8の字型導電路32a,32bの下辺
に相当する導体部分との間にそれぞれ短い間隔を開け且
つ円筒形状の周面に沿って形成された周面導体部分とか
ら構成されている。そして、8の字型導電路32a,3
2bの上辺に相当する導体部分の間と,前記8の字型導
電路32aの下辺に相当する部分と前記周面導体部分と
の間と,前記8の字型導電路32bの下辺に相当する部
分と前記周面導体部分の間の3箇所の間隙に、それぞれ
複数の共振コンデンサ33a,33b,33cを接続し
ている。上記第3の実施形態にかかるMRI用RFコイ
ル300によれば、筒状導体部32の幅を広くして、筒
状形状の中心軸方向の感度範囲を広くできる。また、筒
状形状の半径方向かつ水平方向の振動磁場を減衰させず
に外部から内部に印加でき、被検体を励起するために大
きなRFパワーを必要としなくなる。さらに、筒状導体
部32の3箇所の間隙にそれぞれ共振コンデンサ33
a,33b,33bを接続するので、共振周波数をNM
R信号の周波数に合わせる調整が容易となる。
Third Embodiment FIG. 6 shows an RF for MRI according to a third embodiment of the present invention.
It is a block diagram showing a coil. This MRI RF coil 3
The 00-shaped cylindrical conductor portion 32 includes a conductor portion in which an eight-shaped conductive path 32a is formed, a conductor portion in which an eight-shaped conductive path 32b is formed, and a conductor portion in which the eight-shaped conductive paths 32a and 32b are formed. And a peripheral conductor formed along the cylindrical peripheral surface with a short interval between the conductor and the conductor corresponding to the lower side. Then, the figure-shaped conductive paths 32a, 3
2b, between the conductor corresponding to the upper side of the figure-eight conductive path 32a, between the part corresponding to the lower side of the figure-shaped conductive path 32a and the peripheral conductor part, and to the lower side of the figure-shaped conductive path 32b. A plurality of resonance capacitors 33a, 33b, 33c are connected to three gaps between the portion and the peripheral conductor portion, respectively. According to the MRI RF coil 300 according to the third embodiment, the width of the cylindrical conductor portion 32 can be widened, and the sensitivity range in the center axis direction of the cylindrical shape can be widened. Further, the oscillating magnetic field in the radial and horizontal directions of the cylindrical shape can be applied from outside to inside without attenuating, so that a large RF power is not required to excite the subject. Further, the resonance capacitors 33 are respectively provided in three gaps of the cylindrical conductor portion 32.
a, 33b, and 33b are connected, so that the resonance frequency is set to NM.
Adjustment to match the frequency of the R signal is facilitated.

【0019】−第4の実施形態− 図7は、本発明の第4の実施形態にかかるMRI用RF
コイルを示す構成図である。このMRI用RFコイル4
00は、直列に連なった8の字型導電路42a,42b
(この場合、蛇行した導電経路の上半分と下半分をそれ
ぞれ8の字の形状とみなす)および直列に連なった8の
字型導電路42c,42dを形成され且つ前記8の字型
導電路42a,42cの上辺に相当する導体部分の間に
短い間隔をあけた筒状導体部42と、前記導体部分の間
に接続された複数の共振コンデンサ43とを具備して構
成されている。図8は、MRI用RFコイル400に振
動磁場Byが加わったときに生じる誘導起電力の方向を
示す説明図である。振動磁場Byが加わったとき、8の
字型導電路42aの上半分と下半分には、逆向きの誘導
起電力Vat,Vabが発生し、互いに打ち消し合う。ま
た、8の字型導電路42bの上半分と下半分には、逆向
きの誘導起電力Vbt,Vbbが発生し、互いに打ち消し合
う。また、8の字型導電路42cの上半分と下半分に
は、逆向きの誘導起電力Vct,Vcbが発生し、互いに打
ち消し合う。さらに、8の字型導電路42dの上半分と
下半分には、逆向きの誘導起電力Vdt,Vdbが発生し、
互いに打ち消し合う。従って、誘導電流は流れず、振動
磁場Byを打ち消すような振動磁場は発生しない。上記
第4の実施形態にかかるMRI用RFコイル400によ
れば、筒状導体部42の幅を広くして、筒状形状の中心
軸方向の感度範囲を広くできる。また、振動磁場Byを
減衰させずに外部から内部に印加でき、被検体を励起す
るために大きなRFパワーを必要としなくなる。さら
に、筒状導体部42のz軸方向に走行する導電路の数を
増やすことが出来る。
Fourth Embodiment FIG. 7 shows an MRI RF according to a fourth embodiment of the present invention.
It is a block diagram showing a coil. This MRI RF coil 4
00 is a figure-shaped conductive path 42a, 42b connected in series.
(In this case, the upper half and the lower half of the meandering conductive path are each regarded as a figure-eight shape) and the figure-shaped conductive paths 42c and 42d connected in series are formed and the figure-shaped conductive path 42a is formed. , 42c are provided with a cylindrical conductor portion 42 having a short interval between conductor portions corresponding to the upper sides thereof, and a plurality of resonance capacitors 43 connected between the conductor portions. FIG. 8 is an explanatory diagram showing the direction of the induced electromotive force generated when the oscillating magnetic field By is applied to the MRI RF coil 400. When the oscillating magnetic field By is applied, induced electromotive forces Vat and Vab in opposite directions are generated in the upper half and the lower half of the figure-shaped conductive path 42a, and cancel each other. In addition, induced electromotive forces Vbt and Vbb in opposite directions are generated in the upper half and the lower half of the figure-eight conductive path 42b, and cancel each other. In addition, induced electromotive forces Vct and Vcb in opposite directions are generated in the upper half and the lower half of the figure-shaped conductive path 42c, and cancel each other. Furthermore, induced electromotive forces Vdt and Vdb in opposite directions are generated in the upper half and the lower half of the figure-shaped conductive path 42d,
Cancel each other out. Therefore, no induced current flows and no oscillating magnetic field that cancels the oscillating magnetic field By is generated. According to the RF coil 400 for MRI according to the fourth embodiment, the width of the cylindrical conductor portion 42 can be widened, and the sensitivity range in the central axis direction of the cylindrical shape can be widened. In addition, the oscillating magnetic field By can be applied from outside to inside without attenuating, so that a large RF power is not required to excite the subject. Further, the number of conductive paths running in the z-axis direction of the tubular conductor 42 can be increased.

【0020】[0020]

【発明の効果】本発明のMRI用RFコイルによれば、
筒状導体部の幅を広くして、筒状形状の中心軸方向の感
度範囲を広くできる。また、筒状形状の半径方向かつ水
平方向の振動磁場を減衰させずに外部から内部に印加で
き、被検体を励起するために大きなRFパワーを必要と
しなくなる。さらに、被検体に印加される励起磁場の均
一性の低下を防止できるようになる。
According to the RF coil for MRI of the present invention,
By increasing the width of the cylindrical conductor, the sensitivity range in the central axis direction of the cylindrical shape can be widened. Further, the oscillating magnetic field in the radial and horizontal directions of the cylindrical shape can be applied from outside to inside without attenuating, so that a large RF power is not required to excite the subject. Further, it is possible to prevent a decrease in the uniformity of the excitation magnetic field applied to the subject.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態にかかるMRI用RF
コイルを示す構成図である。
FIG. 1 is an RF for MRI according to a first embodiment of the present invention.
It is a block diagram showing a coil.

【図2】図1のMRI用RFコイルに振動磁場Byを加
えたときに生じる誘導電流の分布状態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a distribution state of an induced current generated when an oscillating magnetic field By is applied to the MRI RF coil of FIG. 1;

【図3】図1のMRI用RFコイルにより振動磁場Bz
を感知するときに生じる誘導電流の分布状態を示す説明
図である。
FIG. 3 shows an oscillating magnetic field Bz by the MRI RF coil of FIG.
FIG. 4 is an explanatory diagram showing a distribution state of an induced current generated when sensing is detected.

【図4】図1のMRI用RFコイルにおけるz軸方向の
感度分布の説明図である。
FIG. 4 is an explanatory diagram of a sensitivity distribution in the z-axis direction in the MRI RF coil of FIG. 1;

【図5】本発明の第2の実施形態にかかるMRI用RF
コイルを示す構成図である。
FIG. 5 is an RF for MRI according to a second embodiment of the present invention.
It is a block diagram showing a coil.

【図6】本発明の第3の実施形態にかかるMRI用RF
コイルを示す構成図である。
FIG. 6 is an RF for MRI according to a third embodiment of the present invention.
It is a block diagram showing a coil.

【図7】本発明の第4の実施形態にかかるMRI用RF
コイルを示す構成図である。
FIG. 7 is an RF for MRI according to a fourth embodiment of the present invention.
It is a block diagram showing a coil.

【図8】図7のMRI用RFコイルに振動磁場Byを加
えたときに生じる誘導電流の分布状態を示す説明図であ
る。
8 is an explanatory diagram showing a distribution state of an induced current generated when an oscillating magnetic field By is applied to the MRI RF coil of FIG. 7;

【図9】従来のソレノイドコイルの一例を示す構成図で
ある。
FIG. 9 is a configuration diagram illustrating an example of a conventional solenoid coil.

【図10】図9のソレノイドコイルにおけるz軸方向の
感度分布の説明図である。
FIG. 10 is an explanatory diagram of a sensitivity distribution in the z-axis direction in the solenoid coil of FIG.

【図11】従来のソレノイドコイルの他例を示す構成図
である。
FIG. 11 is a configuration diagram showing another example of a conventional solenoid coil.

【図12】図11のソレノイドコイルにおけるz軸方向
の感度分布の説明図である。
FIG. 12 is an explanatory diagram of a sensitivity distribution in the z-axis direction in the solenoid coil of FIG.

【図13】筒状導体部の側面に開口部を開けた場合を想
定したソレノイドコイルの説明図である。
FIG. 13 is an explanatory diagram of a solenoid coil assuming a case where an opening is opened in a side surface of a cylindrical conductor.

【図14】図13のMRI用RFコイルに振動磁場By
を加えたときに生じる誘導電流の分布状況を示す説明図
である。
FIG. 14 shows an oscillating magnetic field By applied to the MRI RF coil of FIG.
FIG. 9 is an explanatory diagram showing a distribution state of an induced current generated when a signal is added.

【符号の説明】[Explanation of symbols]

100,200,300,400 MRI
用RFコイル 2,22,32,42 筒状導
体部 2a,2b,22a,22b,32a,32b 8の字
型導電路 42a,42b,42c,42d 8の字
型導電路 3,23a,23b,33a,33b,33c,43
共振コンデンサ L 同軸ケ
ーブル S 鞍形コ
イル
100, 200, 300, 400 MRI
RF coil 2, 22, 32, 42 Cylindrical conductor portions 2a, 2b, 22a, 22b, 32a, 32b 8-shaped conductive paths 42a, 42b, 42c, 42d 8-shaped conductive paths 3, 23a, 23b, 33a, 33b, 33c, 43
Resonant capacitor L Coaxial cable S Saddle coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全体として筒状形状のMRI用RFコイ
ルであって、筒状形状の側面に相当する部分に、8の字
形に交差した8の字型導電路を形成したことを特徴とす
るMRI用RFコイル。
1. An MRI RF coil having a cylindrical shape as a whole, characterized in that a figure-eight conductive path crossing an figure eight is formed in a portion corresponding to a side surface of the cylindrical shape. RF coil for MRI.
【請求項2】 全体として筒状形状のMRI用RFコイ
ルであって、筒状形状の側面に相当する部分に、筒状形
状の半径方向かつ水平方向の振動磁場を加えたときに互
いに打ち消し合う逆向きの誘導起電力を生じるような導
電路を形成したことを特徴とするMRI用RFコイル。
2. An MRI RF coil having a cylindrical shape as a whole, wherein the RF coils cancel each other when a radial and horizontal oscillating magnetic field is applied to a portion corresponding to a side surface of the cylindrical shape. An RF coil for MRI, wherein a conductive path that generates a reverse induced electromotive force is formed.
JP29033296A 1996-10-31 1996-10-31 RF coil for MRI Expired - Fee Related JP3836196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29033296A JP3836196B2 (en) 1996-10-31 1996-10-31 RF coil for MRI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29033296A JP3836196B2 (en) 1996-10-31 1996-10-31 RF coil for MRI

Publications (2)

Publication Number Publication Date
JPH10127599A true JPH10127599A (en) 1998-05-19
JP3836196B2 JP3836196B2 (en) 2006-10-18

Family

ID=17754703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29033296A Expired - Fee Related JP3836196B2 (en) 1996-10-31 1996-10-31 RF coil for MRI

Country Status (1)

Country Link
JP (1) JP3836196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126934A1 (en) * 2017-12-25 2019-07-04 深圳先进技术研究院 Local shimming system and shimming method for magnetic resonance imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126934A1 (en) * 2017-12-25 2019-07-04 深圳先进技术研究院 Local shimming system and shimming method for magnetic resonance imaging
US11378636B2 (en) 2017-12-25 2022-07-05 Shenzhen Institutes Of Advanced Technology Local shimming system for magnetic resonance imaging

Also Published As

Publication number Publication date
JP3836196B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US4737716A (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
JP3786460B2 (en) Magnetic resonance equipment
JPH0641969B2 (en) Distributed phase type high frequency coil device
JPH0243706A (en) Radio frequency volume coil for optimizing signal/noise ratio
JPS61742A (en) High-frequency coil device for nuclear magnetic resonance (nmr) mapping device
JPS61249458A (en) Nuclear spin tomographic apparatus
JPH04299275A (en) Magnetic resonance device
US6084497A (en) Superconducting magnets
JP4155605B2 (en) Saddle type multi-turn RF coil for NMR probe
JP2001167927A (en) Magnetic-field gradient coil and its design method
US5786694A (en) Gradient coil system for use in a diagnostic magnetic resonance apparatus
US5563567A (en) Transverse gradient coil system
JP3110115B2 (en) Magnetic resonance imaging equipment
JPH10127599A (en) Rf coil for mri
US20050122106A1 (en) Gradient coil arrangement
JPS62224005A (en) Magnet for nuclear spin resonance device
JPH11253418A (en) Rf coil of magnetic resonance imaging device
JP4105646B2 (en) Nuclear magnetic resonance apparatus
JP3461573B2 (en) Gradient coil
JPS60171439A (en) Coil for nmr image diagnosing apparatus
JP4392978B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
JP2838106B2 (en) Nuclear magnetic resonance imaging equipment
JPS58139053A (en) Measuring device for nuclear magnetic resonance
WO2004095046A1 (en) Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus
JP2001041913A (en) Nmr probe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees