JPH1012433A - Magnetic circuit having temperature compensation structure and non-reciprocal circuit element - Google Patents

Magnetic circuit having temperature compensation structure and non-reciprocal circuit element

Info

Publication number
JPH1012433A
JPH1012433A JP16551296A JP16551296A JPH1012433A JP H1012433 A JPH1012433 A JP H1012433A JP 16551296 A JP16551296 A JP 16551296A JP 16551296 A JP16551296 A JP 16551296A JP H1012433 A JPH1012433 A JP H1012433A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
steel
temperature compensation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16551296A
Other languages
Japanese (ja)
Other versions
JP3032468B2 (en
Inventor
Takao Okada
孝夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8165512A priority Critical patent/JP3032468B2/en
Publication of JPH1012433A publication Critical patent/JPH1012433A/en
Application granted granted Critical
Publication of JP3032468B2 publication Critical patent/JP3032468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic circuit having a temperature compensation structure wherein a space for arranging magnetic compensating steel is made as small as possible, form is simple, working is easy, cost is low, and magnetic flux distribution of a magnet is not disturbed. SOLUTION: This magnetic circuit consists of magnets 1-1, 1-2, magnetic material 2 to be magnetized by the magnets, a magnetic yoke 3 which effectively passes magnetic flux generated by the magnets, and magnetic shunt steel 4-2 performing temperature compensation of magnetic flux. The magnetic shunt steel 4-2 having a hole 4-1 smaller than the magnets is arranged between the magnet 1-2 and the magnetic material 2. By arbitrarily selecting the forms of the magnetic shunt steel 4-2 an its hole 4-1, magnetic flux distribution is made symmetric, and characteristics of a magnetic circuit is stabilized. By the structure wherein the magnetic shunt steel 4-2 is sandwiched between the magnet and the magnetic material, a magnetic circuit having a temperature compensation structure excellent in utilization factor of space can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は永久磁石や電磁石を
使用した磁気回路の温度補償構造に関する。
The present invention relates to a temperature compensation structure for a magnetic circuit using permanent magnets and electromagnets.

【0002】[0002]

【従来の技術】従来の実施の形態を図4乃至図9を用い
て説明する。一般に、磁気回路は図4に示すように、磁
束を発生する磁石1とその磁石1によって磁化される磁
性体2および磁性体2を効率的に磁化するための磁気ヨ
ーク3からなっている。磁石1には永久磁石あるいは電
磁石が用いられ、磁性体2には鉄、コイル、あるいはフ
ェライトなどがある。また磁気ヨークとしては透磁率が
大きく磁気抵抗の小さい軟鉄や純鉄、パーマロイなどが
用いられる。磁性体2は磁石1によって磁化される事に
よってその機能を発揮する。
2. Description of the Related Art A conventional embodiment will be described with reference to FIGS. In general, as shown in FIG. 4, the magnetic circuit includes a magnet 1 for generating a magnetic flux, a magnetic body 2 magnetized by the magnet 1, and a magnetic yoke 3 for efficiently magnetizing the magnetic body 2. A permanent magnet or an electromagnet is used for the magnet 1, and iron, a coil, or a ferrite is used for the magnetic body 2. As the magnetic yoke, soft iron, pure iron, permalloy, or the like having high magnetic permeability and low magnetic resistance is used. The magnetic body 2 exhibits its function by being magnetized by the magnet 1.

【0003】図5は図4の磁気回路を等価電気回路に置
き換えた図である。図5において、磁束Φは電流源とし
て、また抵抗Rmは磁性体2を磁化するときの磁気抵抗
として表すことができる。一般的に磁石および磁性体は
負の温度係数を持ち、温度が上がると磁石の発生する磁
束は減少し、かつ磁性体の磁気抵抗も大きくなるために
常温より磁性体が磁化される度合いが減少する。また逆
に温度が低くなると磁石の磁束は増加し、磁性体の磁気
抵抗も小さくなるため磁性体が磁化される度合が増大す
る。いずれの場合にしても温度変化により磁性体の機能
は低下する。特に低価格磁石であるフェライト磁石や軟
鉄材を使用した場合、温度依存性が非常に大きいものと
なり磁性体の機能が損なわれる。
FIG. 5 is a diagram in which the magnetic circuit of FIG. 4 is replaced with an equivalent electric circuit. In FIG. 5, the magnetic flux Φ can be expressed as a current source, and the resistance Rm can be expressed as a magnetic resistance when the magnetic body 2 is magnetized. Generally, magnets and magnetic materials have a negative temperature coefficient.When the temperature rises, the magnetic flux generated by the magnet decreases, and the magnetic resistance of the magnetic material also increases, so the degree of magnetization of the magnetic material decreases from room temperature. I do. Conversely, when the temperature decreases, the magnetic flux of the magnet increases, and the magnetic resistance of the magnetic body also decreases, so that the degree of magnetization of the magnetic body increases. In any case, the function of the magnetic material is reduced by the temperature change. In particular, when a low-cost magnet, such as a ferrite magnet or a soft iron material, is used, the temperature dependency is very large, and the function of the magnetic material is impaired.

【0004】図6は温度による磁性体の磁化の変化を一
定にするために考案された従来の温度補償構造を有する
磁気回路である。すなわち、磁気抵抗の温度係数が正で
ある整磁鋼4を磁気回路的に磁性体2と並列に配置すれ
ば磁石1の温度変化と磁性体2の温度変化を打ち消す事
ができる。図7は図5と同様に図6の磁気回路を等価的
電気回路に表した図である。同図において磁性体2を通
る磁束をΦm 、整磁鋼4を通る磁束をΦs とすれば
FIG. 6 shows a magnetic circuit having a conventional temperature compensation structure devised to make the change in magnetization of a magnetic material due to temperature constant. That is, if the magnetic shunt steel 4 having a positive magnetic coefficient of magnetic resistance is arranged in parallel with the magnetic body 2 in a magnetic circuit, the temperature change of the magnet 1 and the temperature change of the magnetic body 2 can be canceled. FIG. 7 is a diagram showing the magnetic circuit of FIG. 6 as an equivalent electric circuit similarly to FIG. In the same figure, if the magnetic flux passing through the magnetic body 2 is Φm and the magnetic flux passing through the magnetic shunt steel 4 is Φs,

【0005】[0005]

【数1】Φ = Φm + Φs 温度Tによる微分を取ればΦ = Φm + Φs Differentiation by temperature T

【0006】[0006]

【数2】 dΦ/dT = dΦm /dT + dΦs /dT ところでDΦ / dT = dΦm / dT + dΦs / dT

【0007】[0007]

【数3】 dΦs /dT > 0 , dΦm /dT < 0 であるから## EQU3 ## Since dΦs / dT> 0 and dΦm / dT <0,

【0008】[0008]

【数4】dΦs /dT = −dΦm /dT となるように整磁鋼4の温度係数を選べば## EQU4 ## If the temperature coefficient of the magnetic shunt steel 4 is selected so that dΦs / dT = −dΦm / dT,

【0009】[0009]

【数5】dΦ/dT = 0 とする事ができる。図6のような従来の磁気回路の変形
として図8のように磁石1に整磁鋼4を巻き付けたり、
図9のように磁石1の一部にコの字型に設置したものも
ある。
## EQU5 ## dΦ / dT = 0 can be satisfied. As a modification of the conventional magnetic circuit as shown in FIG. 6, a magnetic shunt steel 4 is wound around the magnet 1 as shown in FIG.
As shown in FIG. 9, there is a type in which a part of the magnet 1 is installed in a U-shape.

【0010】[0010]

【発明が解決しようとする課題】しかしながら従来の温
度補償構造を有する磁気回路では、空間利用率や整磁鋼
の形が複雑になり高価になったり、磁性体に印加される
磁束分布が非対称になり磁気回路の機能が損なわれるな
どの欠点があった。
However, in the conventional magnetic circuit having the temperature compensation structure, the space utilization factor and the shape of the magnetic shunt steel are complicated and expensive, and the magnetic flux distribution applied to the magnetic material is asymmetric. There is a drawback that the function of the magnetic circuit is impaired.

【0011】そこで本発明は、整磁鋼が設置される空間
をできるだけ小さくし、かつ簡単な形状で加工しやすく
安価であり、磁石の磁束分布を対称に保つ温度補償構造
を有する磁気回路及び非可逆回路素子を提供することを
目的とする。
Accordingly, the present invention provides a magnetic circuit having a temperature compensation structure that minimizes the space in which the magnetic shunt steel is installed, is easy to machine with a simple shape, is inexpensive, and has a symmetrical magnetic flux distribution of the magnet. An object is to provide a reversible circuit element.

【0012】[0012]

【課題を解決するための手段】前述のような目的を達成
するために、本発明は磁石と、磁石により磁化される磁
性体と、磁石によってもたらされる磁束を効率よく通す
磁気ヨークと、磁束の温度補償を行うための整磁鋼から
成る磁気回路において、磁石と磁性体の間に磁石より小
さい寸法の穴を有する整磁鋼が設置されている。この構
成により、整磁鋼及び整磁鋼の穴の形状を任意に選べ
ば、磁束分布が対称になり磁気回路の特性が安定する。
更に、整磁鋼を磁石と磁性体の間に挟む構造から、空間
利用率の高い温度補償構造を有する磁気回路を提供でき
る。
In order to achieve the above object, the present invention provides a magnet, a magnetic body magnetized by the magnet, a magnetic yoke for efficiently passing a magnetic flux provided by the magnet, and In a magnetic circuit made of a magnetic shunt steel for performing temperature compensation, a magnetic shunt steel having a hole smaller in size than the magnet is provided between the magnet and the magnetic body. With this configuration, if the shapes of the magnetic shunt steel and the holes of the magnetic shunt steel are arbitrarily selected, the magnetic flux distribution becomes symmetric and the characteristics of the magnetic circuit are stabilized.
Further, a magnetic circuit having a temperature compensation structure with a high space utilization ratio can be provided from the structure in which the magnetic shunt steel is sandwiched between the magnet and the magnetic body.

【0013】また、他の本発明は磁性体と電極と磁石と
が層状に配置された非可逆回路素子において、磁石と磁
性体の間に磁石より小さい寸法の穴を有する整磁鋼が設
置されている。この構造により、回路特性が安定した、
省スペースな温度補償構造を有する非可逆回路素子を提
供することができる。
According to another aspect of the present invention, there is provided a non-reciprocal circuit device in which a magnetic material, an electrode and a magnet are arranged in layers, wherein a magnetic shunt steel having a hole smaller than the magnet is provided between the magnet and the magnetic material. ing. With this structure, the circuit characteristics are stable,
A non-reciprocal circuit device having a space-saving temperature compensation structure can be provided.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図1乃至図
3を用いて説明する。本発明の第1の実施の形態を図1
で説明する。磁石1−1の片面に磁石1−1の面積より
小さい穴4−1を有し、かつ磁石1−1の外形より若干
大きい整磁鋼4−2を設置している。この整磁鋼4−2
の磁石1−1と接しない面と磁石1−2の間に磁性体2
を設置し、磁石1−1と磁石1−2は磁気ヨーク3で接
続され閉磁気回路を構成している。この閉磁気回路は磁
気ヨーク3を通じて磁性体2に磁束を印加する。磁性体
2への主磁束Φm は整磁鋼4−2に空けられた穴の空間
を通して供給され、整磁鋼4−2の中を通った磁束Φs
は整磁鋼4−2の縁端部4−3から空間を通じて磁石1
−1へ戻る。このようにして並列の磁気回路を形成し、
磁気回路の温度係数が相殺される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a first embodiment of the present invention.
Will be described. The magnet 1-1 has a hole 4-1 smaller than the area of the magnet 1-1 on one side, and a magnetizing steel 4-2 slightly larger than the outer shape of the magnet 1-1 is provided. This magnetic shunt steel 4-2
Of the magnetic material 2 between the surface not in contact with the magnet 1-1 and the magnet 1-2
And the magnets 1-1 and 1-2 are connected by the magnetic yoke 3 to form a closed magnetic circuit. This closed magnetic circuit applies a magnetic flux to the magnetic body 2 through the magnetic yoke 3. The main magnetic flux Φm to the magnetic body 2 is supplied through the space of the hole formed in the magnetic shunt steel 4-2, and the magnetic flux Φs passing through the magnetic shunt steel 4-2.
Is the magnet 1 through the space from the edge 4-3 of the magnetic shunt steel 4-2.
Return to -1. In this way, a parallel magnetic circuit is formed,
The temperature coefficient of the magnetic circuit is canceled.

【0015】本発明の実施の形態では、磁石1−1、1
−2と整磁鋼4−2及び整磁鋼の穴4−1の形状は四角
形を用いた例を用いているが、他の形状でもよく、穴が
複数のものでも本発明は適用できる。また、整磁鋼は必
ずしも穴だけを有するものでなくてもよく、一部分欠落
した形状のものでも本発明は適用できる。更に、整磁鋼
を複数の異なる温度係数の整磁鋼を積層したものでも、
本発明は適用できる。
In the embodiment of the present invention, the magnets 1-1, 1
-2, the magnetizing steel 4-2, and the hole 4-1 of the magnetizing steel use an example in which a square is used, but other shapes may be used, and the present invention can be applied to a case where there are a plurality of holes. In addition, the magnetic shunting steel does not necessarily have to have only holes, and the present invention can be applied to a magnetic deflecting steel having a partially missing shape. Furthermore, even when the magnetic shunt steel is formed by stacking a plurality of magnetic shunt steels having different temperature coefficients,
The present invention is applicable.

【0016】この構成から従来の磁気回路と異なり、整
磁鋼4−2の構造は整磁鋼板をプレス加工等によって簡
単に作ることができる。また特に、整磁鋼に加工された
穴を適度の大きさにすることによって磁束Φm とΦs の
比率と整磁鋼の外形を最小化でき、形状を適当な形にす
ることによって磁気回路の磁束が乱れず磁気回路の特性
の最適化ができる。更に、複数の異なる温度係数の整磁
鋼を積層すれば、温度係数の組みあわせにより、磁性体
の温度係数を打ち消す最適な整磁鋼を得ることができ
る。
With this configuration, unlike the conventional magnetic circuit, the structure of the magnetic shunt steel 4-2 can be easily formed by pressing a magnetic shunt steel plate or the like. In particular, by making the holes formed in the magnetic shunt steel moderate, the ratio of the magnetic flux Φm and Φs and the outer shape of the magnetic shunt steel can be minimized. The characteristics of the magnetic circuit can be optimized without disturbance. Furthermore, by stacking a plurality of magnetic shunt steels having different temperature coefficients, it is possible to obtain an optimum magnetic shunt steel that cancels the temperature coefficient of the magnetic material by combining the temperature coefficients.

【0017】本発明の第2の実施の形態を図2で説明す
る。図2(a) 、(b) は本発明をマイクロ波アイソレータ
に応用した実施の形態を示した図である。磁気ヨークを
通じた閉磁気回路を形成していないが、磁石1とフェラ
イト基板5との間にリング状の整磁鋼4−4を挟み、フ
ェライト基板5には回路パターン8、終端器9が形成さ
れ、キャリアプレートを最下層にして積層された構造で
ある。整磁鋼4−4とフェライト基板5の間にはスペー
サ7が積層されているが、これは磁石1の磁力をスペー
サ7の高さで調節するもので、磁気回路の構成に影響を
与えない透磁率1の非磁性体のものを用いている。ま
た、キャリアプレート6は磁気ヨークと同じ役目を果た
すもので、磁束を効率良く通す軟鉄等からなる。
A second embodiment of the present invention will be described with reference to FIG. FIGS. 2A and 2B show an embodiment in which the present invention is applied to a microwave isolator. Although a closed magnetic circuit is not formed through the magnetic yoke, a ring-shaped magnetic shunt steel 4-4 is sandwiched between the magnet 1 and the ferrite substrate 5, and a circuit pattern 8 and a terminator 9 are formed on the ferrite substrate 5. This is a structure in which the carrier plate is laminated with the lowermost layer. A spacer 7 is laminated between the magnetic shunt steel 4-4 and the ferrite substrate 5, but this adjusts the magnetic force of the magnet 1 by the height of the spacer 7, and does not affect the configuration of the magnetic circuit. A non-magnetic material having a magnetic permeability of 1 is used. The carrier plate 6 has the same function as the magnetic yoke, and is made of soft iron or the like that efficiently passes magnetic flux.

【0018】磁石1から整磁鋼4−4の穴4−5を通じ
て磁性体としてのフェライト基板5を通った磁束Φm は
磁気ヨーク6から空間を通じて磁石1の他極へ戻り、同
時に磁石1から整磁鋼4−4の中を通った磁束Φs は整
磁鋼4−4の縁端部4−6を通じて空間から磁石1の他
極へ戻る。
The magnetic flux Φm from the magnet 1 through the ferrite substrate 5 as a magnetic material through the hole 4-5 of the magnetic shunt steel 4-4 returns from the magnetic yoke 6 to the other pole of the magnet 1 through the space, and at the same time, from the magnet 1 The magnetic flux Φs passing through the magnetic steel 4-4 returns from the space to the other pole of the magnet 1 through the edge 4-6 of the magnetic shunt steel 4-4.

【0019】本発明の第2の実施の形態の特性を図3で
説明する。図3( a) 、( b) はそれぞれ整磁鋼4−4
が無いアイソレータ、整磁鋼4−4を使用したアイソレ
ータの温度特性を示した図である。整磁鋼が無いアイソ
レータでは、温度の差によってアイソレーション、入出
力反射損失、挿入損失特性がそれぞれ大きく異なる。こ
れに比べて本発明の整磁鋼4−4を使用したアイソレー
タは、温度の差による温度特性の差が小さい。このよう
に本発明は温度変化による特性が補償されていることが
わかる。
The characteristics of the second embodiment of the present invention will be described with reference to FIG. 3 (a) and 3 (b) are magnetic shunt steels 4-4, respectively.
FIG. 4 is a diagram showing temperature characteristics of an isolator without a magnetic field and an isolator using a magnetic shunt steel 4-4. In an isolator without magnetic shunt steel, the isolation, input / output reflection loss, and insertion loss characteristics greatly differ depending on the temperature difference. In comparison, the isolator using the magnetic shunt steel 4-4 of the present invention has a small difference in temperature characteristics due to a difference in temperature. As described above, it can be understood that the characteristics of the present invention due to the temperature change are compensated.

【0020】本発明の第2の実施例では整磁鋼4−4は
リング状の形状であるが、他の形状でも本発明は適用で
きる。また、アイソレータについて述べてきたが、同様
な構造を有するサーキュレータ等の非可逆回路素子につ
いても本発明は適用できる。更に、整磁鋼を複数の異な
る温度係数の整磁鋼を積層したものでも、本発明は適用
できる。
In the second embodiment of the present invention, the magnetic shunt steel 4-4 has a ring shape, but the present invention can be applied to other shapes. Although the isolator has been described, the present invention can be applied to a non-reciprocal circuit device such as a circulator having a similar structure. Further, the present invention can be applied to a magnetic shunt steel in which a plurality of magnetic shunt steels having different temperature coefficients are laminated.

【0021】この構成から、磁石1に配置した整磁鋼4
−4は円形のリング状なので、磁石面からフェライト基
板5には円状均一に磁界が印加されるためアイソレータ
特性に不要モードスプリアスを生じない。また、温度補
償の度合いは整磁鋼の穴の寸法、厚さ、外径によって最
適化できる。更に、複数の異なる温度係数の整磁鋼を積
層すれば、温度係数の組みあわせにより、磁性体の温度
係数を打ち消す最適な整磁鋼を得ることができる。
From this configuration, the magnetic shunt steel 4 disposed on the magnet 1
Since -4 is a circular ring, a magnetic field is uniformly applied to the ferrite substrate 5 from the magnet surface so that unnecessary mode spurious does not occur in the isolator characteristics. Further, the degree of temperature compensation can be optimized by the size, thickness, and outer diameter of the hole of the magnetic shunt steel. Furthermore, by stacking a plurality of magnetic shunt steels having different temperature coefficients, it is possible to obtain an optimum magnetic shunt steel that cancels the temperature coefficient of the magnetic material by combining the temperature coefficients.

【0022】[0022]

【発明の効果】本発明によれば、不要な空間を必要とせ
ず、簡単で安価な構造で、磁気回路温度補償効果をえる
ことができる。
According to the present invention, it is possible to obtain a magnetic circuit temperature compensation effect with a simple and inexpensive structure without requiring unnecessary space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の斜視図を示したものである。FIG. 1 shows a perspective view of the present invention.

【図2】マイクロ波アイソレータに応用した本発明の斜
視図とその側断面図を示したものである。
FIG. 2 shows a perspective view and a side sectional view of the present invention applied to a microwave isolator.

【図3】温度補償前後のアイソレータのアイソレーショ
ンおよび挿入損失の温度特性図
FIG. 3 is a graph showing temperature characteristics of isolation and insertion loss of an isolator before and after temperature compensation.

【図4】従来の磁気回路を示す斜視図FIG. 4 is a perspective view showing a conventional magnetic circuit.

【図5】従来の磁気回路の等価電気回路を示す図FIG. 5 is a diagram showing an equivalent electric circuit of a conventional magnetic circuit.

【図6】従来の温度補償構造を示す斜視図FIG. 6 is a perspective view showing a conventional temperature compensation structure.

【図7】従来の温度補償構造の等価電気回路を示す図FIG. 7 is a diagram showing an equivalent electric circuit of a conventional temperature compensation structure.

【図8】従来の他の温度補償構造を示す斜視図FIG. 8 is a perspective view showing another conventional temperature compensation structure.

【図9】従来の他の温度補償構造を示す斜視図FIG. 9 is a perspective view showing another conventional temperature compensation structure.

【符合の説明】[Description of sign]

1・・・磁石 2・・・磁性体 3・・・磁気ヨーク 4・・・整磁鋼 5・・・フェライト基板 6・・・キャリアプレート 7・・・スペーサ 8・・・パターン 9・・・終端器 DESCRIPTION OF SYMBOLS 1 ... Magnet 2 ... Magnetic body 3 ... Magnetic yoke 4 ... Magnetic shunting steel 5 ... Ferrite substrate 6 ... Carrier plate 7 ... Spacer 8 ... Pattern 9 ... Terminator

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】磁石と、前記磁石によって磁化される磁性
体と、前記磁石によってもたらされる磁束を前記磁性体
に通す磁気ヨークと、前記磁束の温度補償を行うための
整磁鋼とからなる磁気回路において、前記整磁鋼が磁石
と磁性体の間に設置され、磁石より小さい寸法の穴を有
することを特徴とする温度補償構造を有する磁気回路
1. A magnet comprising: a magnet; a magnetic body magnetized by the magnet; a magnetic yoke for passing a magnetic flux provided by the magnet through the magnetic body; and a magnetic shunt steel for performing temperature compensation of the magnetic flux. A magnetic circuit having a temperature compensation structure, wherein the magnetic shunt steel is disposed between a magnet and a magnetic body, and has a hole smaller in size than the magnet.
【請求項2】磁石の中心軸を中心点とした円に内接し、
かつ中心点が前記円の中心点と同一点である形状の穴を
有する整磁鋼を具備することを特徴とする請求項1記載
の温度補償構造を有する磁気回路。
2. A magnet inscribed in a circle centered on the center axis of the magnet,
The magnetic circuit having a temperature compensation structure according to claim 1, further comprising a magnetic shunt steel having a hole whose center point is the same as the center point of the circle.
【請求項3】磁石の中心軸を中心点とした円に内接し、
かつ中心点が前記円の中心点と同一点である形状の整磁
鋼を具備することを特徴とする請求項1記載の温度補償
構造を有する磁気回路。
3. A magnet inscribed in a circle centered on the center axis of the magnet,
The magnetic circuit having a temperature compensation structure according to claim 1, further comprising a magnetic shunt steel having a shape whose center point is the same as the center point of the circle.
【請求項4】前記整磁鋼が2種類以上の異なる温度係数
の整磁鋼からなることを特徴とする請求項1記載の温度
補償構造を有する磁気回路。
4. A magnetic circuit having a temperature compensation structure according to claim 1, wherein said magnetic shunt steel is made of two or more kinds of magnetic shunt steels having different temperature coefficients.
【請求項5】磁性体と、所定形状の回路パターンと、磁
石とが層状に配置された非可逆回路素子において、前記
磁石と前記磁性体の間に、磁石より小さい寸法の穴を有
する整磁鋼を具備したことを特徴とする非可逆回路素
子。
5. A non-reciprocal circuit device in which a magnetic material, a circuit pattern of a predetermined shape, and a magnet are arranged in layers, wherein a magnetic shunt having a hole smaller than the magnet is provided between the magnet and the magnetic material. A non-reciprocal circuit device comprising steel.
【請求項6】磁石の中心軸を中心点とした円に内接し、
かつ中心点が前記円の中心点と同一点である形状の穴の
整磁鋼を具備することを特徴とする請求項5記載の非可
逆回路素子。
6. A magnet inscribed in a circle centered on the center axis of the magnet,
6. The non-reciprocal circuit device according to claim 5, further comprising a magnetic shunt steel having a hole whose center point is the same as the center point of the circle.
【請求項7】磁石の中心軸を中心点とした円に内接し、
かつ中心点が前記円の中心点と同一点である形状の整磁
鋼を具備することを特徴とする請求項5記載の非可逆回
路素子。
7. Inscribed in a circle centered on the center axis of the magnet,
6. The non-reciprocal circuit device according to claim 5, further comprising a magnetic shunt steel having a shape whose center point is the same as the center point of the circle.
【請求項8】前記整磁鋼が2種類以上の異なる温度係数
の整磁鋼からなることを特徴とする請求項5記載の非可
逆回路素子。
8. The non-reciprocal circuit device according to claim 5, wherein said magnetic shunt steel is made of two or more kinds of magnetic shunt steels having different temperature coefficients.
JP8165512A 1996-06-26 1996-06-26 Magnetic circuit and non-reciprocal circuit device having temperature compensation structure Expired - Lifetime JP3032468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165512A JP3032468B2 (en) 1996-06-26 1996-06-26 Magnetic circuit and non-reciprocal circuit device having temperature compensation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8165512A JP3032468B2 (en) 1996-06-26 1996-06-26 Magnetic circuit and non-reciprocal circuit device having temperature compensation structure

Publications (2)

Publication Number Publication Date
JPH1012433A true JPH1012433A (en) 1998-01-16
JP3032468B2 JP3032468B2 (en) 2000-04-17

Family

ID=15813811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165512A Expired - Lifetime JP3032468B2 (en) 1996-06-26 1996-06-26 Magnetic circuit and non-reciprocal circuit device having temperature compensation structure

Country Status (1)

Country Link
JP (1) JP3032468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412059B1 (en) 1998-10-02 2002-06-25 Nec Corporation Method and device for controlling cache memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412059B1 (en) 1998-10-02 2002-06-25 Nec Corporation Method and device for controlling cache memory

Also Published As

Publication number Publication date
JP3032468B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US5631616A (en) Magnetic field generating device for use in MRI
US5283544A (en) Magnetic field generating device used for MRI
JPS61285055A (en) Electromagnetic actuator
US4914412A (en) Magnetic circuit
JPH1098868A (en) Pole layout system for electromagnetic brake
US4306206A (en) Linear solenoid device
JP3032468B2 (en) Magnetic circuit and non-reciprocal circuit device having temperature compensation structure
JPS5827747B2 (en) Stator of DC rotating electric machine
US6545582B2 (en) Magnetic core having an effective magnetic bias and magnetic device using the magnetic core
JP2649437B2 (en) Magnetic field generator for MRI
JPH0115142Y2 (en)
JPH04138131A (en) Magnetic field generation device for mri
JPS61203605A (en) Magnet having highly uniform magnetic field
JP3473639B2 (en) Voice coil type linear motor
JPH0738528B2 (en) YIG thin film microwave device
JP3073933B2 (en) Magnetic field generator for MRI
JP3009560U (en) Electromagnetic drive type magneto-optical device
JPH11103568A (en) Movable magnet type linear actuator
JPS63251139A (en) Electromagnetic chuck of permanent magnet type
US20050093542A1 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JPH01298945A (en) Permanent magnet type linear pulse motor
Stern et al. Temperature stabilization of unsaturated microwave ferrite devices
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
KR0183559B1 (en) Spin-valve type magnetoresistance unit
JP3445303B2 (en) Magnetic field generator for MRI

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

EXPY Cancellation because of completion of term