JPH10123542A - Liquid crystal display element and its production - Google Patents

Liquid crystal display element and its production

Info

Publication number
JPH10123542A
JPH10123542A JP27271496A JP27271496A JPH10123542A JP H10123542 A JPH10123542 A JP H10123542A JP 27271496 A JP27271496 A JP 27271496A JP 27271496 A JP27271496 A JP 27271496A JP H10123542 A JPH10123542 A JP H10123542A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
crystal material
ultraviolet
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27271496A
Other languages
Japanese (ja)
Inventor
Atsumasa Naitou
温勝 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27271496A priority Critical patent/JPH10123542A/en
Publication of JPH10123542A publication Critical patent/JPH10123542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of a liquid crystal material and to embody a good display grade over the entire part of a liquid crystal display element by adding a UV absorptive material to the liquid crystal material adjacent near the sealing material for sealing liquid crystals formed by using a UV curing resin at the time of assembling the liquid crystal display element, such as a liquid crystal display panel. SOLUTION: This liquid crystal display element has the liquid crystal display panel constitution formed by adding a UV absorbent to the liquid crystals of part of the panel at the time of assembling the liquid crystal panel. A benzotriazole based UV absorbent or cyanoacrylate based UV absorbent is used as the UV absorbent. The amt. of the UV absorbent to be added to the liquid crystal material (32) adjacent near the sealing material for sealing liquid crystals is specified to 0.5 to 1.5wt.%. The unevenness in the threshold voltage drop which heretofore occurs in the display area near the liquid crystal sealing part for which the UV curing resin is used or the sealing part of the injection port is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示パネルの
画素表示領域の周辺部分、及び液晶材料を注入する注入
口付近の閾値電圧ムラを無くした表示品位の良好な液晶
表示素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device having good display quality, which eliminates threshold voltage unevenness near a pixel display area of a liquid crystal display panel and near an injection port for injecting a liquid crystal material, and a method of manufacturing the same. About.

【0002】[0002]

【従来の技術】液晶表示パネルの作製方法は、大まかに
大別すると、現在以下の2種類の方法によって生産され
ている。
2. Description of the Related Art A method of manufacturing a liquid crystal display panel can be roughly divided into two types.

【0003】第1の方法は、液晶材料を2枚のガラス基
板の間に挟み込む滴下工法である。この方法は、液晶表
示素子を組み立てる際に一方の基板の配向処理面上の画
素外部分に紫外線硬化樹脂からなるシールを印刷した
後、シール内側に液晶材料を滴下する。もう一方の配向
処理面上には、硝子基板間ギャップ厚を維持するために
球状のビーズを均一に分散している。各々の基板の配向
処理面を内側にして、真空中で張り合わせ、大気圧に戻
した後、紫外線をシール部分に照射して液晶材料を硝子
基板間に封入する。この滴下工法では、シール近傍の液
晶材料にも紫外線が僅かながら照射されるため、その部
分の液晶材料の劣化が認められていた。
The first method is a dropping method in which a liquid crystal material is sandwiched between two glass substrates. According to this method, when assembling a liquid crystal display element, a seal made of an ultraviolet curable resin is printed on an outer portion of a pixel on an alignment treatment surface of one substrate, and then a liquid crystal material is dropped inside the seal. On the other alignment treatment surface, spherical beads are uniformly dispersed in order to maintain the gap thickness between glass substrates. The substrates are bonded together in a vacuum with the alignment-treated surface of the substrates inside, and the pressure is returned to the atmospheric pressure. Then, ultraviolet rays are applied to the sealing portion to seal the liquid crystal material between the glass substrates. In this dripping method, the liquid crystal material in the vicinity of the seal is also slightly irradiated with ultraviolet rays, so that deterioration of the liquid crystal material in that portion has been recognized.

【0004】第2の方法は、2枚のガラス基板をあるギ
ャップ厚をもって張り合わせた後、内部の空気を真空中
にて液晶材料と置換する真空注入工法である。この方法
は、液晶表示素子を組み立てる際に一方の基板の配向処
理面上の画素外部分に熱硬化型樹脂からなるシールを印
刷し、もう一方の配向処理面上には、硝子基板間ギャッ
プ厚を維持するために球状のビーズを均一に分散してい
る。各々の基板の配向処理面を内側にして張り合わせ、
加熱プレスにより熱硬化樹脂の硬化を行い、空パネルを
完成する。その後、液晶と空パネル中の空気を置換す
る。均一に液晶材料が注入された時点で注入口部分を紫
外線硬化樹脂にて封口して紫外線照射により硬化する。
この真空注入工法では、封口に用いる紫外線硬化樹脂の
近傍にある液晶材料の劣化が認められていた。
[0004] A second method is a vacuum injection method in which two glass substrates are bonded together with a certain gap thickness, and the air inside is replaced with a liquid crystal material in a vacuum. In this method, when assembling a liquid crystal display element, a seal made of a thermosetting resin is printed on the outside of the pixel on the alignment processing surface of one substrate, and the gap thickness between the glass substrates is printed on the other alignment processing surface. In order to maintain the uniformity, spherical beads are dispersed. Laminate each substrate with the alignment treatment surface inside,
The thermosetting resin is cured by a hot press to complete the empty panel. Thereafter, the liquid crystal is replaced with air in the empty panel. When the liquid crystal material is uniformly injected, the injection port is sealed with an ultraviolet curable resin and cured by irradiation with ultraviolet light.
In this vacuum injection method, deterioration of the liquid crystal material near the ultraviolet curable resin used for sealing was recognized.

【0005】以上の第1〜2の方法においては、、液晶
表示パネルを構成する液晶封止シールは、ギャップ厚制
御と共に、耐候信頼性に於いても重要な役割を果たして
いる。
In the above first and second methods, the liquid crystal sealing seal constituting the liquid crystal display panel plays an important role in controlling the gap thickness and also in weather resistance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の技術は、液晶材料に紫外線が照射されると、分子構
造の分裂・分解が起こり、本来液晶材料が保有している
諸物性値を維持しないという問題があった。特に複屈折
率Δnの低下により光学補償構成から液晶パネルのリタ
ーデーションがずれる場合や、不純物性イオン成分によ
る閾値電圧の低下が発生するという問題があった。とく
に、滴下工法のシール近傍、及び真空注入工法の注入口
近傍の液晶の劣化が、電圧印加された画素部において、
閾値低下となっていた。また、さらに液晶材料の劣化が
進んだ場合、電圧無印加時においても色目異常となって
認識されていた。これらの液晶材料の劣化は、紫外線が
エステル結合を有する液晶分子中に照射された場合に顕
著である。液晶分子内の結合が切れ、一部の液晶分子長
が短くなるために複屈折率の低下となり閾値低下となっ
て認識される。また、液晶材料の劣化の程度が大きい場
合、目視で認識されるという問題がある。
However, in the prior art, when the liquid crystal material is irradiated with ultraviolet light, the molecular structure is split or decomposed, and the various physical properties originally held by the liquid crystal material are not maintained. There was a problem. In particular, there has been a problem that the retardation of the liquid crystal panel is deviated from the optical compensation configuration due to a decrease in the birefringence Δn, and a decrease in the threshold voltage due to an impurity ion component occurs. In particular, the deterioration of the liquid crystal near the seal of the dropping method and the vicinity of the injection port of the vacuum injection method, in the pixel portion to which voltage is applied,
The threshold was lowered. Further, when the deterioration of the liquid crystal material further progressed, it was recognized that the color tone was abnormal even when no voltage was applied. The deterioration of these liquid crystal materials is remarkable when ultraviolet rays are irradiated into liquid crystal molecules having an ester bond. Since the bonds in the liquid crystal molecules are broken and the length of some of the liquid crystal molecules is shortened, the birefringence is lowered and the threshold value is lowered. Further, when the degree of deterioration of the liquid crystal material is large, there is a problem that the liquid crystal material is visually recognized.

【0007】本発明は、前記従来の問題を解決するた
め、液晶材料の劣化を防止し、良好な表示品位を液晶表
示パネル全面に渡って実現した液晶表示素子及びその製
造方法を提供することを目的とする。
An object of the present invention is to provide a liquid crystal display element which prevents deterioration of a liquid crystal material and realizes good display quality over the entire surface of a liquid crystal display panel, and a method of manufacturing the same, in order to solve the conventional problems. Aim.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の液晶表示素子は、内側面に薄膜透明電極、
及び液晶配向処理薄膜を施した各々のガラス基板間に液
晶を狭持して成る液晶表示パネルにおいて、液晶表示パ
ネルを組み立てる際に、紫外線硬化樹脂を用いた液晶封
止用シール材料の近傍に隣接する液晶材料に紫外線吸収
材料を添加したことを特徴とする。
In order to achieve the above object, a liquid crystal display device of the present invention comprises a thin film transparent electrode on the inner surface,
And a liquid crystal display panel having liquid crystal sandwiched between respective glass substrates on which a liquid crystal alignment treatment thin film is applied. When assembling the liquid crystal display panel, the liquid crystal display panel is adjacent to a liquid crystal sealing seal material using an ultraviolet curable resin. Characterized in that an ultraviolet absorbing material is added to the liquid crystal material.

【0009】次に本発明の液晶表示素子の製造方法は、
内側面に薄膜透明電極、及び液晶配向処理薄膜を施した
各々のガラス基板間に液晶を狭持して成る液晶表示パネ
ルにおいて、まず熱硬化樹脂による液晶封止用シールを
構成し、真空中においてセル内部の空気と液晶材料を交
換する工程で、まず大部分の液晶材料を注入し、その
後、残りの液晶材料に紫外線吸収材料を添加して注入
し、しかる後、紫外線硬化樹脂を用いて封口することを
特徴とする。
Next, a method for manufacturing a liquid crystal display element according to the present invention is as follows.
In a liquid crystal display panel in which liquid crystal is sandwiched between each glass substrate having a thin film transparent electrode and a liquid crystal alignment treatment thin film on the inner surface, a liquid crystal sealing seal made of a thermosetting resin is first formed, and the liquid crystal is sealed in vacuum. In the process of exchanging air and liquid crystal material inside the cell, most of the liquid crystal material is injected first, and then the remaining liquid crystal material is added with an ultraviolet absorbing material and injected, and then sealed using an ultraviolet curable resin. It is characterized by doing.

【0010】前記本発明の液晶表示素子及びその製造方
法においては、紫外線吸収材料が、前記式(化1)で示
されるベンゾトリアゾール系紫外線吸収剤、前記式(化
2)で示されるベンゾトリアゾール系紫外線吸収剤、及
び前記式(化3)で示されるシアノ−アクリレート系紫
外線吸収剤から選ばれる少なくとも一つの紫外線吸収剤
であることが好ましい。
In the liquid crystal display device and the method of manufacturing the same according to the present invention, the ultraviolet absorbing material may be a benzotriazole-based ultraviolet absorber represented by the above formula (1) or a benzotriazole-based ultraviolet absorber represented by the above formula (2). It is preferably at least one ultraviolet absorber selected from an ultraviolet absorber and a cyano-acrylate ultraviolet absorber represented by the above formula (Formula 3).

【0011】また本発明の液晶表示素子及びその製造方
法においては、紫外線吸収剤の添加量が、液晶材料に対
して0.5〜1.5重量%の範囲であることが好まし
い。ここで紫外線吸収剤の添加量は、液晶封止用シール
材料の近傍に隣接する液晶材料のみに対して0.5〜
1.5重量%の範囲である。紫外線吸収剤の添加量が
0.5重量%未満では、紫外光(UV光)から液晶材料
を保護する効果が低くなり、1.5重量%以上では液晶
材料を保護する効果が飽和するばかりでなく、液晶材料
の低温での結晶化が問題となる。
In the liquid crystal display device and the method of manufacturing the same according to the present invention, the amount of the ultraviolet absorber is preferably in the range of 0.5 to 1.5% by weight based on the liquid crystal material. Here, the addition amount of the ultraviolet absorber is 0.5 to only the liquid crystal material adjacent to the vicinity of the liquid crystal sealing material.
It is in the range of 1.5% by weight. When the amount of the ultraviolet absorber is less than 0.5% by weight, the effect of protecting the liquid crystal material from ultraviolet light (UV light) is low, and when the amount is 1.5% by weight or more, the effect of protecting the liquid crystal material is only saturated. However, crystallization of the liquid crystal material at a low temperature becomes a problem.

【0012】また本発明の液晶表示素子の製造方法にお
いては、最初に注入する大部分の液晶材料が95重量%
前後であり、紫外線吸収材料を添加した液晶材料が5重
量%前後であることが好ましい。
In the method of manufacturing a liquid crystal display device according to the present invention, most of the liquid crystal material initially injected is 95% by weight.
It is preferable that the content of the liquid crystal material to which the ultraviolet absorbing material is added is about 5% by weight.

【0013】前記において、薄膜透明電極とはインジウ
ム−スズ酸化物合金(ITO)薄膜電極等をいう。紫外
線硬化樹脂の硬化は、重合反応を開始する光開始剤の開
裂により生じるラジカルにより始まる。よって、光開始
剤の開裂に必要な吸収波長帯域の光を照射する必要があ
る。また、材料によって、吸収波長帯域が異なり、用途
に合った材料選択が必要となる。通常、液晶表示パネル
用のシール樹脂として、この吸収波長帯域が紫外波長の
最大波長域までブロードに広がった材料系が使い易い。
In the above, the thin film transparent electrode refers to an indium-tin oxide alloy (ITO) thin film electrode or the like. Curing of the ultraviolet curable resin is initiated by radicals generated by cleavage of a photoinitiator that initiates a polymerization reaction. Therefore, it is necessary to irradiate light in an absorption wavelength band necessary for cleavage of the photoinitiator. Further, the absorption wavelength band differs depending on the material, and it is necessary to select a material suitable for the application. Usually, a material system in which this absorption wavelength band is broadly spread to the maximum wavelength region of the ultraviolet wavelength is easy to use as a sealing resin for a liquid crystal display panel.

【0014】また、紫外波長帯域の短波長側は、光ポテ
ンシャルエネルギーが高いため、光開始剤の開裂速度も
速く、効率的な紫外線照射による硬化が望めるが、シー
ル樹脂に接する液晶材料の劣化も同時に発生する。この
ため、紫外線照射する場合に短波長側のカットをする必
要がある。
On the short wavelength side of the ultraviolet wavelength band, since the photopotential energy is high, the cleavage rate of the photoinitiator is high, and curing by efficient ultraviolet irradiation can be expected. However, deterioration of the liquid crystal material in contact with the sealing resin is also expected. Occurs at the same time. For this reason, when irradiating with ultraviolet rays, it is necessary to cut on the short wavelength side.

【0015】しかしながら、この様な紫外線波長帯域の
分離を行うと光開始剤が開裂する確率が低下し、よって
シール硬化の時間効率が低下する。このため、実際に液
晶表示パネルを生産する場合には、シールの硬化効率と
時間効率のバランスが取れた紫外波長域での波長カット
操作が必要となる。
However, such separation of the ultraviolet wavelength band reduces the probability that the photoinitiator will be cleaved, and thus reduces the time efficiency of the seal curing. Therefore, when actually producing a liquid crystal display panel, it is necessary to perform a wavelength cut operation in an ultraviolet wavelength region in which the curing efficiency of the seal and the time efficiency are balanced.

【0016】そこで、紫外線硬化樹脂による液晶封止シ
ールを硬化する場合に紫外波長が近傍となる表示領域の
液晶材料に照射された時点で同時に吸収させるため、こ
の領域の液晶材料のみに紫外線吸収材料を添加する。紫
外線吸収材料の存在により紫外波長光は、表示領域液晶
材料まで届かない。また、液晶表示パネルが完成後、加
熱アニール処理することにより、表示エリア周辺部分に
局在化していた紫外線吸収材料は、十分に熱拡散し最終
的な濃度が一桁低下するため、結晶化による表示欠陥等
の悪影響を与えない。
Therefore, when a liquid crystal sealing seal made of an ultraviolet curable resin is cured, the liquid crystal material in the display region where the ultraviolet wavelength is close to the ultraviolet light is simultaneously absorbed when it is irradiated. Is added. The ultraviolet wavelength light does not reach the display area liquid crystal material due to the presence of the ultraviolet absorbing material. In addition, after the liquid crystal display panel is completed, by performing a heat annealing treatment, the ultraviolet absorbing material localized in the peripheral area of the display area is sufficiently diffused by heat and the final concentration is reduced by one digit. Does not adversely affect display defects.

【0017】本発明の構成では、液晶材料に400nm
以下の波長に吸収帯を持つ一種以上の紫外線吸収剤を添
加したことにより、パネル作製時に照射される紫外線に
より液晶材料が劣化することを最小限にとどめ、良好な
表示品位を液晶パネル全面に渡って実現した構成を有し
ている。
In the structure of the present invention, the liquid crystal material has a thickness of 400 nm.
By adding one or more UV absorbers having absorption bands at the following wavelengths, it is possible to minimize the deterioration of the liquid crystal material due to the UV light radiated during panel production, and to provide good display quality over the entire LCD panel. It has a configuration realized by:

【0018】[0018]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。 (実施例1)まず、光学応答評価に用いたテストセルに
ついて説明する。前処理として、ガラス基板上にインジ
ウム・スズ酸化物薄膜電極(ITO電極)を互いに直行
する様な短冊状に形成した2枚の基板を用意した。それ
ぞれの基板上に芳香族系ポリアミック酸溶液(チッソ石
油化学製PSI−A−2201)をスピンコート法によ
り膜厚800オングストローム(80nm)となるよう
に塗布した。80℃、15分の仮硬化熱処理後、220
℃、1時間の熱硬化処理を行い、ポリイミド配向膜を形
成した。次に、各々の基板(第1基板,第2基板)の配
向膜表面を通常のラビング法により、第1基板,第2基
板の配向膜表面間に液晶材料の長軸の方向が250゜回
転したツイスト角構成となるような配向処理を施した
(基板前工程)。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. (Example 1) First, a test cell used for optical response evaluation will be described. As a pretreatment, two substrates were prepared in which a thin indium-tin oxide thin film electrode (ITO electrode) was formed on a glass substrate so as to be perpendicular to each other. An aromatic polyamic acid solution (PSI-A-2201 manufactured by Chisso Petrochemical) was applied onto each of the substrates by spin coating so as to have a thickness of 800 Å (80 nm). After temporary hardening heat treatment at 80 ° C for 15 minutes, 220
A thermosetting treatment was performed at 1 ° C. for 1 hour to form a polyimide alignment film. Next, the direction of the long axis of the liquid crystal material is rotated by 250 ° between the surfaces of the alignment films of the first substrate and the second substrate by the ordinary rubbing method on the surfaces of the alignment films of the respective substrates (the first substrate and the second substrate). An orientation process was performed so as to obtain a twist angle configuration (substrate pre-process).

【0019】次に、第1基板のITO電極画素外に液晶
封止(シール)用の紫外線硬化性樹脂に所定の径を持つ
グスファイバーを0.1重量%混合し所定の線幅にてス
クリーン印刷した。前記シール樹脂の内側に液晶材料を
必要量滴下し、また、第2基板のラビング処理した表面
には、必要ギッャプ厚を保証するためのプラスチックビ
ーズを必要相当量散布した。これら第1ガラス基板、第
2ガラス基板をラビング処理面が互いに内側になるよう
に真空中にて張り合わせ、大気中にてシール樹脂部分に
ガラス基板外から紫外線を線状に照射した。この後、液
晶材料の液晶−等方相転移温度以上にて所定の時間以
上、加熱アニール処理して実験セル(1)を形成した
(図1、2)。図1〜2において、1,5はITO電
極、2は紫外線硬化樹脂(シール樹脂)、3はガラス基
板、4は第1ガラス基板、6はプラスチックビーズ、7
はガラス繊維、8は紫外線硬化樹脂、9はITO電極、
10は第2ガラス基板、11は液晶材料である。
Next, 0.1% by weight of a grease fiber having a predetermined diameter is mixed with an ultraviolet curable resin for sealing a liquid crystal outside of the ITO electrode pixel of the first substrate, and the screen is formed with a predetermined line width. Printed. A required amount of a liquid crystal material was dropped inside the sealing resin, and a considerable amount of plastic beads for ensuring a required gap thickness was sprayed on the rubbed surface of the second substrate. The first glass substrate and the second glass substrate were bonded together in a vacuum such that the rubbed surfaces faced each other, and ultraviolet rays were linearly irradiated from outside the glass substrate to the sealing resin portion in the atmosphere. Thereafter, a heating annealing treatment was performed at a temperature equal to or higher than the liquid crystal-isotropic phase transition temperature of the liquid crystal material for a predetermined time or more to form an experimental cell (1) (FIGS. 1 and 2). 1 and 2, reference numerals 1 and 5 denote ITO electrodes, 2 denotes an ultraviolet curing resin (seal resin), 3 denotes a glass substrate, 4 denotes a first glass substrate, 6 denotes plastic beads, 7
Is glass fiber, 8 is ultraviolet curing resin, 9 is ITO electrode,
Reference numeral 10 denotes a second glass substrate, and reference numeral 11 denotes a liquid crystal material.

【0020】また、同様の工法にて、液晶材料の滴下パ
ターンを(図5(C))に示す様に液晶封止シール樹脂
近傍の1列分に紫外線吸収剤を添加した液晶材料とし実
験セル(2)を得た(図5(B))。図5(B)におい
て、25は液晶材料の部分、26は紫外線吸収剤添加部
分である。また図5(C)において、27は滴下点の液
晶材料、28は滴下点の紫外線吸収剤添加部分である。
紫外線吸収剤としては前記式(化1)で示されるベンゾ
トリアゾール系紫外線吸収剤を、液晶封止用シール材料
の近傍に隣接する液晶材料に対して1.0重量%となる
ように添加した。
In a similar manner, the liquid crystal material was changed to a liquid crystal material in which an ultraviolet absorber was added to one row near the liquid crystal sealing resin as shown in FIG. 5 (C). (2) was obtained (FIG. 5 (B)). In FIG. 5B, 25 is a liquid crystal material portion, and 26 is a portion to which an ultraviolet absorber is added. In FIG. 5C, reference numeral 27 denotes a liquid crystal material at a dropping point, and reference numeral 28 denotes a portion to which an ultraviolet absorber is added at the dropping point.
As an ultraviolet absorber, a benzotriazole-based ultraviolet absorber represented by the above formula (Formula 1) was added so as to be 1.0% by weight with respect to a liquid crystal material adjacent to a sealing material for sealing a liquid crystal.

【0021】実験セル(1),(2)について、液晶封
止シールから画素内方向へ向けて(図5(A))、閾値
電圧測定を行った結果を図6に示す。図5(A)におい
て、23は正規閾値電圧、24は閾値電圧低下部分であ
る。この評価結果より明かにシール近傍の液晶材料に紫
外線吸収剤を添加した場合に閾値電圧低下が抑制されて
いることが確認できた。この閾値電圧の抑制分により、
シール近傍の閾値電圧低下による表示ムラは、完全に認
識されなくなった。
FIG. 6 shows the results of measurement of the threshold voltages of the experimental cells (1) and (2) from the liquid crystal sealing seal toward the inside of the pixel (FIG. 5A). In FIG. 5A, reference numeral 23 denotes a normal threshold voltage, and reference numeral 24 denotes a portion where the threshold voltage decreases. From the evaluation results, it was clearly confirmed that the threshold voltage drop was suppressed when the ultraviolet absorber was added to the liquid crystal material near the seal. Due to the suppression of the threshold voltage,
The display unevenness due to the decrease in the threshold voltage near the seal was not completely recognized.

【0022】(実施例2)実施例1において基板前工程
まで行った第1ガラス基板、第2ガラス基板を用いて、
第1基板のITO電極画素外に熱硬化性樹脂に所定の径
を持つグスファイバーを0.1重量%混合し、所定の線
幅にてスクリーン印刷した。また、第2基板のラビング
処理した表面には、必要ギッャプ厚を保証するためのプ
ラスチックビーズを必要相当量散布した。その後、第1
基板、第2基板をラビング配向処理した表面が内側とな
るように張り合わせ、耐熱性フィルムを用いた真空パッ
クを行った後、所定条件で加熱硬化処理して、空セルを
得た。空セル中の空気と液晶材料を真空置換して所定ギ
ャップ厚となったところで紫外線硬化樹脂で注入口を塞
ぎ、紫外線照射により硬化して封口した。この後、液晶
材料の液晶−等方相転移温度以上にて所定の時間以上、
加熱アニール処理して実験セル(3)を得た(図3、図
4)。図3〜4において、12はITO電極、13は紫
外線硬化樹脂(シール樹脂)、14はガラス基板、15
は紫外線硬化樹脂、16は第1ガラス基板、17はIT
O電極、18はプラスチックビーズ、19は紫外線硬化
樹脂、20はITO電極、21は第2ガラス基板、22
は液晶材料である。
(Embodiment 2) Using the first glass substrate and the second glass substrate which were performed up to the substrate pre-process in the first embodiment,
A 0.1% by weight of a grease fiber having a predetermined diameter was mixed in a thermosetting resin outside the ITO electrode pixels of the first substrate, and screen printing was performed with a predetermined line width. Further, on the rubbed surface of the second substrate, a considerable amount of plastic beads for guaranteeing a required gap thickness was sprayed. Then the first
The substrate and the second substrate were bonded together such that the surface subjected to the rubbing orientation treatment was on the inside, and vacuum-packing using a heat-resistant film was performed, followed by heat-curing treatment under predetermined conditions to obtain empty cells. When the air in the empty cell and the liquid crystal material were vacuum-replaced to a predetermined gap thickness, the injection port was closed with an ultraviolet curable resin, cured by ultraviolet irradiation, and sealed. Thereafter, the liquid crystal material is higher than the liquid crystal-isotropic phase transition temperature for a predetermined time,
An experimental cell (3) was obtained by heat annealing (FIGS. 3 and 4). 3 and 4, 12 is an ITO electrode, 13 is an ultraviolet curing resin (seal resin), 14 is a glass substrate, 15
Is an ultraviolet curable resin, 16 is a first glass substrate, 17 is IT
O electrode, 18 is a plastic bead, 19 is an ultraviolet curing resin, 20 is an ITO electrode, 21 is a second glass substrate, 22
Is a liquid crystal material.

【0023】また、同様の工法にて、注入口付近の液晶
材料に紫外線吸収剤を添加した。具体的には、液晶材料
の注入終了直前に紫外線吸収剤の添加された液晶材料に
交換した。紫外線吸収剤としては前記式(化1)で示さ
れるベンゾトリアゾール系紫外線吸収剤を、液晶封止用
シール材料の近傍に隣接する液晶材料に対して1.0重
量%となるように添加した。このようにして実験セル
(4)を得た(図7(B))。図7(B)において、3
1は液晶材料の部分、32は紫外線吸収剤添加部分、3
3は紫外線照射ランプ、34は紫外線遮蔽マスクであ
る。
In the same manner, an ultraviolet absorber was added to the liquid crystal material near the injection port. Specifically, immediately before the completion of the injection of the liquid crystal material, the liquid crystal material was replaced with a liquid crystal material to which an ultraviolet absorber was added. As an ultraviolet absorber, a benzotriazole-based ultraviolet absorber represented by the above formula (Formula 1) was added so as to be 1.0% by weight with respect to a liquid crystal material adjacent to a sealing material for sealing a liquid crystal. Thus, an experimental cell (4) was obtained (FIG. 7B). In FIG. 7B, 3
1 is a liquid crystal material portion, 32 is an ultraviolet absorber added portion, 3
Reference numeral 3 denotes an ultraviolet irradiation lamp, and reference numeral 34 denotes an ultraviolet shielding mask.

【0024】実験セル(3)、(4)について、注入口
封口樹脂部分から画素内方向へ向けて(図7(A))、
閾値電圧測定を行った結果を図8に示す。図7(A)に
おいて、27は滴下点の液晶材料、28は滴下点の紫外
線吸収剤添加部分である。この評価結果より明かに封口
樹脂近傍の液晶材料に紫外線吸収剤を添加した場合に、
閾値電圧低下が抑制されていることが確認できた。ただ
し、真空注入工法では、液晶材料中の極性分子や不純物
イオン成分等が注入口付近に吸着するため、工法上の違
いも含めて実施例1の場合とは、僅かな電圧差が生じ
る。この閾値電圧の抑制分により、シール近傍の閾値電
圧低下による表示ムラは、完全に認識されなくなった。
Regarding the experimental cells (3) and (4), from the injection port sealing resin portion toward the inside of the pixel (FIG. 7 (A)),
FIG. 8 shows the result of the threshold voltage measurement. In FIG. 7A, reference numeral 27 denotes a liquid crystal material at a dropping point, and reference numeral 28 denotes an ultraviolet absorber-added portion at the dropping point. When an ultraviolet absorber is added to the liquid crystal material in the vicinity of the sealing resin clearly from this evaluation result,
It was confirmed that the threshold voltage drop was suppressed. However, in the vacuum injection method, since a polar molecule and an impurity ion component in the liquid crystal material are adsorbed in the vicinity of the injection port, a slight voltage difference is generated from the first embodiment including the difference in the method. Due to the suppression of the threshold voltage, display unevenness due to a decrease in the threshold voltage in the vicinity of the seal is not completely recognized.

【0025】(実施例3)実施例3では、ベゾトリアゾ
ール系の紫外線吸収剤(化1)を実験セル構成(2)で
作製し、紫外線吸収剤の添加量を変化させて閾値電圧測
定を行った。測定結果を図9に示す。ベンゾトリアゾー
ル系紫外線吸収剤の添加量0.5重量%以上により閾値
低下として認識できなかった。また、添加濃度1.5重
量%以上において閾値電圧低下抑制効果が飽和した。ま
た、液晶表示パネルが完成後、加熱アニール処理するこ
とにより、表示エリア周辺部分に局在化していた紫外線
吸収材料は、十分に熱拡散し最終的な濃度が一桁低下す
るため、表示状態に悪影響を与えなかった。また、前記
(化3)のシアノ−アクリレート系の紫外線吸収剤につ
いても同程度の効果があった。
Example 3 In Example 3, a benzotriazole-based UV absorber (Formula 1) was prepared in an experimental cell configuration (2), and the threshold voltage was measured by changing the amount of the UV absorber added. went. FIG. 9 shows the measurement results. When the amount of the benzotriazole-based ultraviolet absorber added was 0.5% by weight or more, the threshold value could not be recognized as lowering. Further, the threshold voltage drop suppressing effect was saturated at an addition concentration of 1.5% by weight or more. In addition, after the liquid crystal display panel is completed, by performing a heat annealing process, the ultraviolet absorbing material localized in the peripheral area of the display area is sufficiently diffused by heat and the final concentration is reduced by one digit, so that the display state is changed. Has no adverse effect. The cyano-acrylate-based UV absorber of the above formula (Chem. 3) had the same effect.

【0026】[0026]

【発明の効果】以上説明したように本発明は、液晶表示
パネル等の液晶表示素子を組み立てる際に、紫外線硬化
樹脂を用いた液晶封止用シール材料の近傍に隣接する液
晶材料に紫外線吸収材料を添加したことにより、液晶材
料の劣化を防止し、良好な表示品位を液晶表示素子全面
に渡って実現できる。また本発明の製造方法は、前記本
発明の液晶表示素子を効率良く合理的に製造できる。
As described above, according to the present invention, when assembling a liquid crystal display element such as a liquid crystal display panel, a liquid crystal material adjacent to a liquid crystal encapsulating seal material using an ultraviolet curable resin is provided with an ultraviolet absorbing material. By adding, the deterioration of the liquid crystal material can be prevented, and good display quality can be realized over the entire surface of the liquid crystal display element. Further, the manufacturing method of the present invention can efficiently and rationally manufacture the liquid crystal display device of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の滴下工法を用いて作製し
た実験セル(1)を表した模式平面図。
FIG. 1 is a schematic plan view showing an experimental cell (1) manufactured by using a dropping method according to one embodiment of the present invention.

【図2】 同、滴下工法を用いて作製した実験セル
(1)の断面を表した模式図。
FIG. 2 is a schematic diagram showing a cross section of an experimental cell (1) manufactured by using the dropping method.

【図3】 本発明の別の実施例の真空注入工法を用いて
作製した実験セル(3)を表した模式平面図。
FIG. 3 is a schematic plan view showing an experimental cell (3) manufactured by using a vacuum injection method according to another embodiment of the present invention.

【図4】 同、真空注入工法を用いて作製した実験セル
(3)の断面を表した模式図。
FIG. 4 is a schematic diagram showing a cross section of an experimental cell (3) manufactured using the vacuum injection method.

【図5】 (A)は本発明の一実施例の実験セル(1)
の閾値電圧測定経路を表した模式図。(B)は実験セル
(2)の加熱アニール処理前の紫外線吸収剤添加液晶の
液晶表示エリア内の分布を表した模式図。(C)は実験
セル(2)において紫外線吸収剤を添加した液晶材料、
及び液晶材料のみを滴下した状態を表した模式図。
FIG. 5A is an experimental cell (1) of one embodiment of the present invention.
FIG. 2 is a schematic diagram showing a threshold voltage measurement path of FIG. (B) is a schematic diagram showing the distribution of the ultraviolet absorbent-added liquid crystal in the liquid crystal display area before the heat annealing treatment of the experimental cell (2). (C) is a liquid crystal material added with an ultraviolet absorber in the experimental cell (2),
And a schematic diagram showing a state where only a liquid crystal material is dropped.

【図6】 本発明の一実施例の実験セル(1),(2)
の閾値電圧測定結果を表した図。
FIG. 6 shows experimental cells (1) and (2) according to one embodiment of the present invention.
FIG. 5 is a diagram showing a result of measuring a threshold voltage of FIG.

【図7】 (A)は本発明の別の実施例の実験セル
(3)の閾値電圧測定経路を表した模式図。(B)は実
験セル(4)の加熱アニール処理前の紫外線吸収剤添加
液晶の液晶表示エリア内の分布を表した模式図、及び注
入口部分の紫外線硬化樹脂への紫外線照射を表した模式
図。
FIG. 7A is a schematic diagram showing a threshold voltage measurement path of an experimental cell (3) according to another embodiment of the present invention. (B) is a schematic diagram showing the distribution of the ultraviolet absorber-added liquid crystal in the liquid crystal display area before the heat annealing treatment of the experimental cell (4), and a schematic diagram showing the ultraviolet irradiation on the ultraviolet curing resin at the injection port. .

【図8】 本発明の別の実施例の実験セル(3),
(4)の閾値電圧測定結果を表した図。
FIG. 8 shows an experimental cell (3) according to another embodiment of the present invention.
The figure showing the threshold voltage measurement result of (4).

【図9】本発明の一実施例の紫外線吸収剤の添加量と閾
値電圧低下との関係を表した図(測定部分は、シール位
置より10mmの位置)。
FIG. 9 is a diagram showing the relationship between the amount of the ultraviolet absorber added and the decrease in threshold voltage according to one embodiment of the present invention (the measurement portion is at a position 10 mm from the seal position).

【符号の説明】[Explanation of symbols]

1,5,9,12,17,20 ITO電極 2,13 紫外線硬化樹脂(シール樹脂) 3,14 ガラス基板 4,16 第1ガラス基板 6,18 プラスチックビーズ 7 ガラス繊維 8,15,19 紫外線硬化樹脂 10,21 第2ガラス基板 11,22 液晶材料 23,29 正規閾値電圧 24,30 閾値電圧低下部分 25,31 液晶材料の部分 26,32 紫外線吸収剤添加部分 27 滴下点の液晶材料 28 滴下点の紫外線吸収剤添加部分 33 紫外線照射ランプ 34 紫外線遮蔽マスク 1,5,9,12,17,20 ITO electrode 2,13 UV curable resin (seal resin) 3,14 Glass substrate 4,16 First glass substrate 6,18 Plastic bead 7 Glass fiber 8,15,19 UV curable Resin 10, 21 Second glass substrate 11, 22 Liquid crystal material 23, 29 Normal threshold voltage 24, 30 Threshold voltage lowering portion 25, 31 Liquid crystal material portion 26, 32 UV absorber added portion 27 Dropping liquid crystal material 28 Dropping point UV absorber addition part 33 UV irradiation lamp 34 UV shielding mask

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内側面に薄膜透明電極、及び液晶配向処
理薄膜を施した各々のガラス基板間に液晶を狭持して成
る液晶表示パネルにおいて、液晶表示パネルを組み立て
る際に、紫外線硬化樹脂を用いた液晶封止用シール材料
の近傍に隣接する液晶材料に紫外線吸収材料を添加した
ことを特徴とする液晶表示素子。
1. A liquid crystal display panel having a liquid crystal sandwiched between respective glass substrates having a thin film transparent electrode and a liquid crystal alignment treatment thin film formed on an inner surface thereof. A liquid crystal display device characterized by adding an ultraviolet absorbing material to a liquid crystal material adjacent to a used liquid crystal sealing material.
【請求項2】 内側面に薄膜透明電極、及び液晶配向処
理薄膜を施した各々のガラス基板間に液晶を狭持して成
る液晶表示パネルにおいて、まず熱硬化樹脂による液晶
封止用シールを構成し、真空中においてセル内部の空気
と液晶材料を交換する工程で、まず大部分の液晶材料を
注入し、その後、残りの液晶材料に紫外線吸収材料を添
加して注入し、しかる後、紫外線硬化樹脂を用いて封口
することを特徴とする液晶表示素子の製造方法。
2. A liquid crystal display panel comprising a liquid crystal sandwiched between respective glass substrates provided with a thin film transparent electrode and a liquid crystal alignment treatment thin film on an inner surface thereof, first comprising a liquid crystal sealing seal made of a thermosetting resin. Then, in the process of exchanging the air inside the cell with the liquid crystal material in a vacuum, most of the liquid crystal material is injected first, and then the remaining liquid crystal material is added with the ultraviolet absorbing material and injected, and then cured by ultraviolet light A method for manufacturing a liquid crystal display element, which comprises sealing with a resin.
【請求項3】 紫外線吸収材料が、下記式(化1)で示
されるベンゾトリアゾール系紫外線吸収剤、下記式(化
2)で示されるベンゾトリアゾール系紫外線吸収剤、及
び下記式(化3)で示されるシアノ−アクリレート系紫
外線吸収剤から選ばれる少なくとも一つの紫外線吸収剤
である請求項1または2に記載の液晶表示素子及びその
製造方法。 【化1】 【化2】 【化3】
3. An ultraviolet absorbent comprising a benzotriazole-based ultraviolet absorber represented by the following formula (Chem. 1), a benzotriazole-based ultraviolet absorber represented by the following formula (Chem. 2), and a compound represented by the following formula (Chem. 3). The liquid crystal display device according to claim 1 or 2, which is at least one ultraviolet absorber selected from the cyano-acrylate-based ultraviolet absorbers described above. Embedded image Embedded image Embedded image
【請求項4】 紫外線吸収剤の添加量が、液晶材料に対
して0.5〜1.5重量%の範囲である請求項1〜3の
いずれかに記載の液晶表示素子及びその製造方法。
4. The liquid crystal display device according to claim 1, wherein the amount of the ultraviolet absorber added is in the range of 0.5 to 1.5% by weight based on the liquid crystal material.
【請求項5】 最初に注入する大部分の液晶材料が95
重量%前後であり、紫外線吸収材料を添加した液晶材料
が5重量%前後である請求項2に記載の液晶表示素子の
製造方法。
5. A method according to claim 1, wherein most of the liquid crystal material to be initially injected is 95%.
3. The method according to claim 2, wherein the amount of the liquid crystal material is about 5% by weight, and the amount of the liquid crystal material to which the ultraviolet absorbing material is added is about 5% by weight.
JP27271496A 1996-10-15 1996-10-15 Liquid crystal display element and its production Pending JPH10123542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27271496A JPH10123542A (en) 1996-10-15 1996-10-15 Liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27271496A JPH10123542A (en) 1996-10-15 1996-10-15 Liquid crystal display element and its production

Publications (1)

Publication Number Publication Date
JPH10123542A true JPH10123542A (en) 1998-05-15

Family

ID=17517772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27271496A Pending JPH10123542A (en) 1996-10-15 1996-10-15 Liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPH10123542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124544A (en) * 2004-10-29 2006-05-18 Dainippon Ink & Chem Inc Nematic liquid crystal composition and liquid crystal display element using the same
JP2006206819A (en) * 2005-01-31 2006-08-10 Dainippon Ink & Chem Inc Nematic liquid crystal composition and liquid crystal display element using this
CN102516916A (en) * 2011-12-12 2012-06-27 东莞市派乐玛新材料技术开发有限公司 Liquid crystal sealant composition
JP2017082232A (en) * 2016-12-22 2017-05-18 Dic株式会社 Liquid crystal composition and liquid crystal display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124544A (en) * 2004-10-29 2006-05-18 Dainippon Ink & Chem Inc Nematic liquid crystal composition and liquid crystal display element using the same
JP2006206819A (en) * 2005-01-31 2006-08-10 Dainippon Ink & Chem Inc Nematic liquid crystal composition and liquid crystal display element using this
CN102516916A (en) * 2011-12-12 2012-06-27 东莞市派乐玛新材料技术开发有限公司 Liquid crystal sealant composition
JP2017082232A (en) * 2016-12-22 2017-05-18 Dic株式会社 Liquid crystal composition and liquid crystal display element

Similar Documents

Publication Publication Date Title
US5771084A (en) Liquid crystal display device and method for fabricating the same
JP3874871B2 (en) Manufacturing method of liquid crystal display device
JP3178773B2 (en) Liquid crystal display device and method of manufacturing the same
JPH11109388A (en) Production of liquid crystal display device
JP2002202514A (en) Liquid crystal panel, and method and manufacturing apparatus for manufacturing the same
KR101593796B1 (en) Liquid crystal display device and manufacturing method thereof
JPH0973075A (en) Production of liquid crystal display element and apparatus for producing liquid crystal display element
JP2002122870A (en) Liquid crystal display device, method of manufacturing the same and device for dropping liquid crystal
CN102308252A (en) Liquid crystal display device and method for producing the same
JPH0772483A (en) Substrate with oriented film for liquid crystal display element, its production, and liquid crystal element
JP3886592B2 (en) LCD panel
JPH10123542A (en) Liquid crystal display element and its production
JP3088908B2 (en) Liquid crystal display panel manufacturing method
US20060187398A1 (en) Method of manufacturing liquid crystal device, liquid crystal device, liquid crystal display, and projection system
JP4004457B2 (en) Peripheral structure of LCD panel
JP4109557B2 (en) Structure of liquid crystal display and manufacturing method thereof
JP2000227595A (en) Production of liquid crystal display device
JP2000019540A (en) Liquid crystal display device
JP4719289B2 (en) Liquid crystal display device
JPH11125808A (en) Liquid crystal optical element and its production
JPH09197417A (en) Liquid crystal display element
JP2000089231A (en) Manufacture of alignment layer and optical element, and optical element
JP4444706B2 (en) Manufacturing method of liquid crystal display device
JPH09236822A (en) Liquid crystal display element and its production
JPH07333624A (en) Production of liquid crystal display device and light shielding mask for curing sealing material