JPH10123523A - Production of liquid crystal oriented film - Google Patents

Production of liquid crystal oriented film

Info

Publication number
JPH10123523A
JPH10123523A JP27928696A JP27928696A JPH10123523A JP H10123523 A JPH10123523 A JP H10123523A JP 27928696 A JP27928696 A JP 27928696A JP 27928696 A JP27928696 A JP 27928696A JP H10123523 A JPH10123523 A JP H10123523A
Authority
JP
Japan
Prior art keywords
alignment film
polarized light
compound
oriented film
phase mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27928696A
Other languages
Japanese (ja)
Other versions
JP2848362B2 (en
Inventor
Nobu Okumura
展 奥村
Shigeyoshi Suzuki
成嘉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27928696A priority Critical patent/JP2848362B2/en
Publication of JPH10123523A publication Critical patent/JPH10123523A/en
Application granted granted Critical
Publication of JP2848362B2 publication Critical patent/JP2848362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a process for producing an oriented film having a polarized light irradiation stage of high throughput by irradiating the oriented film with polarized light through a phase mask or hologram element. SOLUTION: The surface of a substrate 1 is coated with transparent electrodes 2 and an oriented film forming compd. 3. The oriented film forming compd. 3 is irradiated with the polarized light emitted from a polarized light source 4, by which the oriented film 7 is formed. An optical system including a slit 5 and a lens 6 is provided with the phase mask 8. The polarized light is enlarged with good uniformity by the phase mask 8, by which the large area simultaneous irradiation is made possible. A similar effect is obtainable even if the hologram element 8 is used in place of the phase mask 8. The oriented film forming compd. 3 is preferably an oriented film forming compd. contg. photosensitive groups. The polarized light is preferably UV light and further preferably UV pulse laser beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶ディスプレイの
製造等に利用されるものであって、液晶分子を一定方向
に配向させるための配向膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an alignment film for aligning liquid crystal molecules in a certain direction, which is used for manufacturing a liquid crystal display or the like.

【0002】[0002]

【従来の技術】従来、液晶表示素子としての液晶セル
は、一対のガラス基板の対向面に配向膜を設け、これら
一対のガラス基板をシール材により所定間隔をおいて接
合し、このシール材および一対のガラス基板によって囲
まれた領域内に液晶を封入し、この液晶の分子を配向膜
によって配向させた構造になっている。上述の配向膜を
形成する方法には、斜方蒸着法、ラングミュア・ブロジ
ェット法、ラビング法などがあり、量産には、塗布した
配向膜を植毛した布で擦る方法であり、簡便で高スルー
プットのラビング法が主に用いられてきた。
2. Description of the Related Art Conventionally, in a liquid crystal cell as a liquid crystal display element, an alignment film is provided on a pair of glass substrates facing each other, and the pair of glass substrates is joined at a predetermined interval by a sealing material. Liquid crystal is sealed in a region surrounded by a pair of glass substrates, and molecules of the liquid crystal are aligned by an alignment film. Examples of the method for forming the above-mentioned alignment film include an oblique deposition method, a Langmuir-Blodgett method, and a rubbing method.For mass production, a method in which the applied alignment film is rubbed with a flocked cloth is a simple and high-throughput method. Rubbing method has been mainly used.

【0003】しかしながら、ラビング法では静電気が発
生しやすいという問題があり、静電気が配向膜に発生す
ると、配向膜の表面が汚染され、表示ムラが発生した
り、薄膜トランジスタ(TFT)を搭載したアクティブ
マトリックス方式の液晶セルでは、静電気はTFT破壊
をもたらす。そこで、静電気を発生させない配向膜形成
法として、光により一部が崩壊する配向膜化合物、また
は感光性基を含む配向膜化合物、またはホトクロミック
化合物を含む配向膜形成化合物に、偏光を照射すること
によって配向膜を形成する光配向法が提案されている。
However, the rubbing method has a problem that static electricity is easily generated. When static electricity is generated on the alignment film, the surface of the alignment film is contaminated, causing display unevenness or an active matrix having a thin film transistor (TFT) mounted thereon. In such a liquid crystal cell, static electricity causes TFT breakdown. Therefore, as a method of forming an alignment film that does not generate static electricity, a polarized light is applied to an alignment film compound that partially collapses by light, an alignment film compound including a photosensitive group, or an alignment film formation compound including a photochromic compound. There is proposed a photo-alignment method for forming an alignment film.

【0004】光により一部が崩壊する配向膜化合物と
は、例えば1994年アイ・ディー・アール・シー(I
DRC)予稿集の213−216頁に開示されているよ
うな、通常のポリイミド化合物である。また、感光性基
を含む配向膜化合物とは、例えばジェー・ジェー・エー
・ピー(JJAP)34巻(1995年)L764−L
767頁に開示されているような、ケイ皮酸基を有する
ポリビニルシンナメート、ポリビニルメトキシシンナメ
ートのように光によって反応する部位を有する化合物で
ある。また、ホトクロミック化合物とは、例えば特開平
4−7520号公報に開示されているように、光の作用
で構造変化を生じ、その光に対して挙動、例えば、色調
が変化する化合物であって、これまで炭素−炭素間、炭
素−窒素間、窒素−窒素間の不飽和二重結合の光幾何異
性化反応、原子価光異性化反応、へテロリティックな光
開閉環反応、光閉環反応、光互変異性化反応などを利用
した多種多様の化合物が知られている。
[0004] The alignment film compound which is partially decomposed by light is described in, for example, IRD (1994)
DRC) is a common polyimide compound as disclosed in Proceedings, pages 213-216. In addition, the alignment film compound containing a photosensitive group is described in, for example, JJA (34) (1995) L764-L
Compounds having a site that reacts with light, such as polyvinyl cinnamate having a cinnamic acid group and polyvinyl methoxycinnamate, as disclosed on page 767. In addition, a photochromic compound is a compound that undergoes a structural change by the action of light and behaves in response to the light, for example, a color tone, as disclosed in JP-A-4-7520. Until now, carbon-carbon, carbon-nitrogen, nitrogen-nitrogen unsaturated double bond photogeometric isomerization reaction, valence photoisomerization reaction, heterolytic photo opening and closing ring reaction, photo ring closing reaction, A wide variety of compounds utilizing phototautomerization reactions and the like are known.

【0005】このような化合物の内、光幾何異性化に基
づくホトクロミック化合物の例としては、アゾベンゼ
ン、インジゴ、アシルインジゴ、チオインジゴ、セレノ
インジゴ、ベリナフトインジゴ、ヘミインジゴ、ヘミチ
オインジゴ、アゾメチンなどを、へテロリティックな光
開閉環反応に基づくホトクロミック化合物の例として
は、インドリノスピロベンゾピラン、インドリノスピロ
ナフトオキサジン、ベンゾチアゾリノスピロベンゾピラ
ン、インドリノスピロベンゾチオピラン、スピロインド
リジンなどを、光閉環反応に基づくホトクロミック化合
物の例としては、スチルベン、フルギドなどを、また光
互変異性化反応に基づくホトクロミック化合物の例とし
ては、サリチリデンアニル、o−ヒドロキシアゾベンゼ
ン、o−ニトロベンジルなどを、それぞれ基本骨格とす
る化合物を挙げることができる。
Among such compounds, examples of photochromic compounds based on photogeometric isomerization include azobenzene, indigo, acylindigo, thioindigo, selenoindigo, berinaftindigo, hemiindigo, hemithioindigo, azomethine and the like. Examples of photochromic compounds based on a lithic photocycling reaction include indolinospirobenzopyran, indolinospironaphtoxazine, benzothiazolinospirobenzopyran, indolinospirobenzothiopyran, spiroindolizine, and the like. Examples of photochromic compounds based on a ring closure reaction include stilbene and fulgide, and examples of photochromic compounds based on a phototautomerization reaction include salicylidene anil, o-hydroxyazobenzene, and o-nitrobenzide. Etc., each may be a compound having a basic skeleton.

【0006】これらの化合物を使用した光配向法として
は、図3に示すように、透明電極2が成膜されている基
板1上に光により一部が崩壊する配向膜化合物、または
感光性基を含む配向膜化合物、またはホトクロミック化
合物とポリイミドを混合した配向膜形成化合物3を塗布
し、この配向膜形成化合物3に偏光源4から発せられた
偏光を、スリット5やレンズ6などの光学系を通して、
破線で表した順路に従って照射すると、配向膜形成化合
物3の感光性の部位が構造変化を起こすと同時に、偏光
面に対して固有の角度で配向することにより、配向膜7
を形成する方法が知られている。
As a photo-alignment method using these compounds, as shown in FIG. 3, an alignment film compound partially decomposed by light on a substrate 1 on which a transparent electrode 2 is formed, or a photosensitive group Or an alignment film forming compound 3 in which a photochromic compound and a polyimide are mixed, and the polarized light emitted from the polarization source 4 is applied to the alignment film forming compound 3 by an optical system such as a slit 5 or a lens 6. Through
When the irradiation is performed in accordance with the path indicated by the broken line, the photosensitive portion of the alignment film forming compound 3 undergoes structural change, and at the same time, is oriented at a specific angle with respect to the polarization plane.
Are known.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
光配向法では、スリットを介した一軸の偏光を用いてい
るため、偏光照射範囲はスポット状で狭く、基板全面を
照射するには時間が掛かり、偏光照射工程のスループッ
トは低い。スループットを向上させるために、照射面積
を基板サイズ程度にレンズを用いて拡大すると、拡大光
の中心部と周辺部の光強度差が大きくなり、均一性が低
下する。そのため、膜の配向性の均一性が低下するとい
う問題が起きる。
However, in the conventional photo-alignment method, since uniaxial polarized light through a slit is used, the polarized light irradiation range is narrow and spot-shaped, and it takes time to irradiate the entire substrate. In addition, the throughput of the polarized light irradiation step is low. When the irradiation area is enlarged to about the substrate size using a lens in order to improve the throughput, the difference in light intensity between the central portion and the peripheral portion of the enlarged light increases, and the uniformity decreases. Therefore, there is a problem that the uniformity of the orientation of the film is reduced.

【0008】また、光を均一性良く拡大するためには、
多数の小さなレンズを整列させたフライアレイレンズか
らなるビームホモジナイザーが一般的には用いらていれ
るが、光学系のコストが上昇し、また寸法的にも大きく
なり、好ましいものではない。
Further, in order to expand light with good uniformity,
Although a beam homogenizer composed of a fly array lens in which a number of small lenses are arranged is generally used, the cost of the optical system is increased and the size is increased, which is not preferable.

【0009】さらに、一つの画素内に複数の異なる配向
方向を有する領域を形成する、分割配向方式により液晶
ディスプレイの広視野角化を図る場合には、マスクを用
いた選択的な偏光照射を繰り返し行う必要があり、この
とき偏光照射工程のスループットは更に低下する。
Further, in order to form a region having a plurality of different alignment directions in one pixel and to widen the viewing angle of the liquid crystal display by a divided alignment method, selective polarized light irradiation using a mask is repeated. In this case, the throughput of the polarized light irradiation step is further reduced.

【0010】以上説明したように、従来の光配向法で
は、光学系コストの上昇あるいは偏光照射工程のスルー
プットが低いという問題があった。
As described above, the conventional optical alignment method has a problem that the cost of the optical system is increased or the throughput of the polarized light irradiation step is low.

【0011】本発明は上記の事情に基づき、目的とする
ところは、光学系コストの上昇を抑え、高スループット
偏光照射工程を有する配向膜の製造方法を提供すること
にある。
An object of the present invention is to provide a method for manufacturing an alignment film having a high-throughput polarized light irradiation step while suppressing an increase in the cost of an optical system based on the above circumstances.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、基板上に形成される、配向膜形成
用化合物からなる層に、直線偏光を照射して配向膜を製
造する工程において、位相マスクあるいはホログラム素
子を通して偏光を照射することを特徴とする配向膜の製
造方法、が提供される。
According to the present invention, there is provided, according to the present invention, a method for producing an alignment film by irradiating linearly polarized light to a layer formed on a substrate and comprising a compound for forming an alignment film. In the process, there is provided a method for producing an alignment film, which comprises irradiating polarized light through a phase mask or a hologram element.

【0013】また、複数の直線偏光を、それぞれ異なる
入射角でもって、配向膜形成用化合物からなる層に、位
相マスクあるいはホログラム素子を通して照射すること
を特徴とする、広視野角化をもたらす配向膜の製造方法
が提供される。
[0013] An alignment film for widening the viewing angle, characterized by irradiating a plurality of linearly polarized lights at different incident angles to a layer made of an alignment film forming compound through a phase mask or a hologram element. Is provided.

【0014】本発明においては、前記配向膜形成化合物
は、好ましくは感光性基を含む配向膜形成用化合物であ
り、さらに、好ましくは、前記感光性基を含む配向膜形
成用化合物がホトクロミック化合物を含む配向膜形成用
化合物である。
In the present invention, the compound for forming an alignment film is preferably a compound for forming an alignment film containing a photosensitive group, and more preferably, the compound for forming an alignment film containing a photosensitive group is a photochromic compound. And a compound for forming an alignment film.

【0015】また、前記偏光は、好ましくは、紫外光、
さらに好ましくは、紫外パルスレーザ光である。
Preferably, the polarized light is ultraviolet light,
More preferably, it is an ultraviolet pulse laser beam.

【0016】[0016]

【発明の実施の形態】本発明は上記した構成によって、
偏光を位相マスクあるいはホログラム素子を通して照射
することにより、偏光の照射領域を拡大することができ
る。位相マスクは光を複数に分割し、分割光の空間周波
数をそれぞれ変化させることにより、分割光を任意の角
度で光路を変換させて照射することが可能である。照射
面における分割光の間隔が0となるように位相マスクを
調整したときは、光の拡大照射効果を有するが、一般の
レンズに見られるような光の中心部と周辺部の強度差は
抑制され、ビームホモジナイサーを用いることなく、光
を成形して均一性良く拡大することができる。また、任
意の間隔で照射可能であるため、分割配向用の画素間隔
に合わせた選択的な照射も簡便に行える。同様に、ホロ
グラム素子も光を分割して任意の位置に照射することが
可能である。このように位相マスクあるいはホログラム
素子を用いることにより、偏光照射工程のスループット
は向上する。特に、分割配向方式による広視野角化液晶
ディスプレイの配向膜を作製するとき、偏光照射工程の
スループットは著しく向上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has
By irradiating polarized light through a phase mask or a hologram element, the irradiation area of polarized light can be enlarged. The phase mask divides light into a plurality of light beams and changes the spatial frequency of each of the divided light beams, so that the divided light can be irradiated at an arbitrary angle by changing the optical path. When the phase mask is adjusted so that the interval between the divided lights on the irradiation surface becomes 0, it has an effect of expanding the light, but suppresses the difference in intensity between the central portion and the peripheral portion of the light as seen in a general lens. Thus, light can be shaped and expanded with good uniformity without using a beam homogenizer. In addition, since irradiation can be performed at an arbitrary interval, selective irradiation can be easily performed in accordance with the pixel interval for divided alignment. Similarly, the hologram element can divide the light and irradiate the light to an arbitrary position. By using the phase mask or the hologram element in this manner, the throughput of the polarized light irradiation step is improved. In particular, when producing an alignment film of a liquid crystal display having a wide viewing angle by a split alignment method, the throughput of the polarized light irradiation step is significantly improved.

【0017】次に、本発明の実施形態について図面を参
照して説明する。図1は本発明の一実施形態になる概念
構造図である。基板1上には透明電極2および配向膜形
成化合物3が塗布されており。この配向膜形成化合物3
に偏光源4から発せられた偏光を照射して配向膜7を形
成するが、このときスリット5及びレンズ6を含む光学
系にはさらに位相マスク8が備えられている。位相マス
ク8により偏光は均一性良く拡大され、大面積一括照射
が可能となる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual structural diagram according to an embodiment of the present invention. On a substrate 1, a transparent electrode 2 and an alignment film forming compound 3 are applied. This alignment film forming compound 3
Is irradiated with polarized light emitted from the polarization source 4 to form an alignment film 7. At this time, the optical system including the slit 5 and the lens 6 is further provided with a phase mask 8. The polarized light is expanded with good uniformity by the phase mask 8, and a large area batch irradiation becomes possible.

【0018】次に、本発明の第2の実施の形態について
図2を参照にして説明する。第2の実施形態において
は、透明電極2および配向膜形成化合物3が塗布された
基板1上に照射される偏光は、偏光源4から発せられた
偏光はビームスプリッタ9により分割されたものであ
り、分割された偏光はそれぞれ異なる入射角でもって、
それぞれ位相マスク8により一定の間隔となるよう更に
分割されて、互い違いに配向膜形成化合物3を照射され
ている。異なる偏光入射角に対応して、配向膜7中に異
なる配向方向を有する領域11が形成される。このよう
にして、分割配向膜を大面積一括照射で作製できる。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the polarized light emitted on the substrate 1 coated with the transparent electrode 2 and the alignment film forming compound 3 is obtained by splitting the polarized light emitted from the polarization source 4 by the beam splitter 9. , The split polarizations have different angles of incidence,
Each of them is further divided by the phase mask 8 so as to have a constant interval, and the alignment film forming compound 3 is irradiated alternately. Regions 11 having different alignment directions are formed in the alignment film 7 corresponding to different incident angles of polarized light. In this manner, a divided alignment film can be produced by large-area batch irradiation.

【0019】以上の実施の形態では、位相マスク8を使
用したが、位相マスクの代わりにホログラム素子8を用
いても同様の効果が得られる。
In the above embodiment, the phase mask 8 is used, but the same effect can be obtained by using the hologram element 8 instead of the phase mask.

【0020】本発明で使用する位相マスク及びホログラ
ム素子は、前述のように光を複数に分割し、分割光の空
間周波数をそれぞれ変化させることにより、分割光を任
意の角度で光路を変換させて照射することが可能となる
ものであり、例えば、位相マスクとしては、ラザリス社
(LASIRIS)製の合成石英ガラスにグレーティン
グ波形を加工することにより作製されたPMシリーズな
どが市販品として入手できる。位相マスクは一次ビーム
の自己干渉を用いているため、通常の透過や反射を用い
たハーフミラーやプリズムを貼り合わせて作製したビー
ムスプリッタと異なり、機械的安定性が高く、強度分布
の優れた、高コントラストのフリンジ型に形状に変化し
た分割光が、光学系部品点数を増やすことなしに得られ
る。従って、液晶の光配向に用いた場合には、配向膜上
の照射強度格差が小さく、プレティルト角の面内分布は
高い均一性を有し、しかも、異なる配向方向を有する領
域間の界面においては、プレティルト角の変化が急峻で
あり、視野角特性に優れた液晶表示装置が実現される。
The phase mask and the hologram element used in the present invention divide the light into a plurality of parts as described above and change the spatial frequency of the divided light to convert the divided light into an optical path at an arbitrary angle. Irradiation is possible. For example, as a phase mask, a PM series produced by processing a grating waveform on a synthetic quartz glass manufactured by LASERIS, etc. can be obtained as a commercial product. Since the phase mask uses the self-interference of the primary beam, unlike a beam splitter manufactured by bonding a half mirror or prism using normal transmission or reflection, it has high mechanical stability and excellent intensity distribution. Divided light that has changed into a high-contrast fringe shape can be obtained without increasing the number of optical system components. Therefore, when used for photo-alignment of liquid crystal, the difference in irradiation intensity on the alignment film is small, the in-plane distribution of the pretilt angle has high uniformity, and at the interface between regions having different alignment directions. In addition, a liquid crystal display device having a sharp change in pretilt angle and excellent viewing angle characteristics is realized.

【0021】またホログラム素子としては、合成石英ガ
ラスに、入射光の方向と形状およびホログラムによる回
折光として実現したい方向と形状から計算されるホログ
ラム干渉縞パターンを加工することにより作製されるも
のなどが使用できる。従って、光学系部品点数を増やす
ことなく、計算により導き出された任意の形状および強
度に光を分割することができ、位相マスクと同様に視野
角特性に優れた液晶表示装置が実現される。
As the hologram element, one manufactured by processing a hologram interference fringe pattern calculated from the direction and shape of incident light and the direction and shape desired to be realized as diffracted light by the hologram on synthetic quartz glass, and the like. Can be used. Therefore, light can be divided into arbitrary shapes and intensities derived by calculation without increasing the number of optical system components, and a liquid crystal display device having excellent viewing angle characteristics like a phase mask can be realized.

【0022】[0022]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0023】実施例1 次に本発明の第一の実施例について説明する。寸法30
0mm×350mmのガラス基板に透明電極としてIT
Oを成膜した。ITO上に、ホトクロミック化合物を含
む配向膜形成化合物として、アゾベンゼンとポリイミド
からなる配向膜形成化合物をスピンコーターを用いて塗
布した。この配向膜形成化合物に出力10J、波長30
8nmのXeClエキシマレーザを、偏光板および位相
マスクを備えた光学系を通して、基板全面に照射した。
なお位相マスクとしては、PMシリーズ(ラザリス社
製)を用いた。レーザ光のエネルギーが10mJ/cm
2の場合は、配向膜形成化合物の表面がアブレーション
してしまい、良好な配向膜が得られなかった。レーザ光
のエネルギーが5mJ/cm2のとき、アブレーション
は起こらず、良好な配向膜が得られた。このようにして
形成された配向膜を用いて、TNモードの液晶ディスプ
レイを作製したところ、液晶分子のプレティルト角はエ
キシマレーザのエネルギーおよびパルス数に依存して変
化していることが明らかになった。前述のエネルギー条
件でパルス数が1のときはプレティルト角は3度であ
り、パルス数が20のときのはプレティルト角は7度で
あった。レーザ光のエネルギーが2mJ/cm2のとき
も良好な配向膜が得られ、パルス数が1のときのプレテ
ィルト角は1度であり、パルス数が20のときのプレテ
ィルト角は5度であった。このように、上記方法によれ
ば、大面積一括偏光照射が可能であり、偏光照射工程の
高スループット化が可能となった。また、上記方法によ
れば、光学系の部品点数を位相マスク以外に増加するこ
となくエキシマレーザ光のエネルギーおよびパルス数を
変化させることにより、液晶プレティルト角の制御が可
能となった。
Embodiment 1 Next, a first embodiment of the present invention will be described. Dimension 30
IT as a transparent electrode on a glass substrate of 0 mm x 350 mm
O was deposited. As an alignment film forming compound containing a photochromic compound, an alignment film forming compound composed of azobenzene and polyimide was applied on the ITO using a spin coater. The alignment film forming compound has an output of 10 J and a wavelength of 30.
An 8 nm XeCl excimer laser was applied to the entire surface of the substrate through an optical system having a polarizing plate and a phase mask.
Note that a PM series (manufactured by Lazaris) was used as a phase mask. Laser light energy is 10mJ / cm
In the case of 2 , the surface of the alignment film forming compound was ablated, and a good alignment film could not be obtained. When the energy of the laser beam was 5 mJ / cm 2 , no ablation occurred and a good alignment film was obtained. When a TN mode liquid crystal display was fabricated using the alignment film thus formed, it was found that the pretilt angle of the liquid crystal molecules changed depending on the energy and the number of pulses of the excimer laser. . Under the above energy conditions, when the number of pulses was 1, the pretilt angle was 3 degrees, and when the number of pulses was 20, the pretilt angle was 7 degrees. A good alignment film was obtained even when the energy of the laser beam was 2 mJ / cm 2 , the pretilt angle was 1 degree when the number of pulses was 1, and the pretilt angle was 5 degrees when the number of pulses was 20. . As described above, according to the above method, large-area collective polarized light irradiation can be performed, and high throughput of the polarized light irradiation step can be achieved. Further, according to the above method, the liquid crystal pretilt angle can be controlled by changing the energy and the pulse number of the excimer laser light without increasing the number of parts of the optical system other than the phase mask.

【0024】実施例2 次に本発明の第二の実施例について説明する。寸法30
0mm×350mmのガラス基板に透明電極としてIT
Oを成膜した。ITO上に、ホトクロミック化合物を含
む配向膜形成化合物として、アゾベンゼンとポリイミド
からなる配向膜形成化合物をスピンコーターを用いて塗
布した。この配向膜形成化合物に出力10J、波長30
8nmのXeClエキシマレーザを、図2に示すように
ビームスプリッタ9としてハーフミラーを用いてレーザ
光を分割し、分割レーザ光それぞれを偏光板およびホロ
グラム素子を備えた光学系を通して、基板全面に照射し
た。このとき直線偏光レーザ光は2つとも、ホログラム
素子によって長さ280mm、幅0.15mmとなるよ
うに整形され、それぞれ互い違いとなるように、異なる
入射角でもって配向膜形成化合物を照射して、分割配向
した配向膜を形成した。このように形成された、分割配
向した配向膜を用いてTNモードの液晶ディスプレイを
作製したところ、視野角は通常の配向膜を用いたものと
比べて、4倍以上に拡大した。
Embodiment 2 Next, a second embodiment of the present invention will be described. Dimension 30
IT as a transparent electrode on a glass substrate of 0 mm x 350 mm
O was deposited. As an alignment film forming compound containing a photochromic compound, an alignment film forming compound composed of azobenzene and polyimide was applied on the ITO using a spin coater. The alignment film forming compound has an output of 10 J and a wavelength of 30.
As shown in FIG. 2, an 8 nm XeCl excimer laser is used to split a laser beam using a half mirror as a beam splitter 9, and each of the split laser beams is applied to the entire surface of the substrate through an optical system having a polarizing plate and a hologram element. . At this time, the two linearly polarized laser beams are shaped by the hologram element so as to have a length of 280 mm and a width of 0.15 mm, and are irradiated with the alignment film forming compound at different incident angles so as to be alternated. An alignment film having a split orientation was formed. When a TN-mode liquid crystal display was manufactured using the thus-aligned divided alignment film, the viewing angle was expanded to four times or more as compared with that using a normal alignment film.

【0025】このように、上記方法によれば、分割配向
した配向膜を作製する場合においても、大面積一括偏光
照射が可能であり、偏光照射工程の高スループット化が
可能となった。また、実施例1と同様に、エキシマレー
ザ光のエネルギーおよびパルス数を変化させることによ
り、液晶プレティルト角の制御が可能である。
As described above, according to the above-described method, even in the case of forming an alignment film having a divided orientation, large-area collective polarized light irradiation can be performed, and high throughput of the polarized light irradiation step can be achieved. As in the first embodiment, the liquid crystal pretilt angle can be controlled by changing the energy and the number of pulses of the excimer laser light.

【0026】以上の実施例1、2では、ホトクロミック
化合物としてアゾベンゼンを用いたが、上述した他のホ
トクロミック化合物を用いても同様な効果が得られた。
In Examples 1 and 2 described above, azobenzene was used as the photochromic compound. However, similar effects were obtained by using the other photochromic compounds described above.

【0027】実施例3 次に本発明の第三の実施例について説明する。寸法30
0mm×350mmのガラス基板に透明電極としてIT
Oを成膜した。ITO上に、感光性基を含む配向膜形成
化合物として、ポリビニルメトキシシンナメートとポリ
イミドからなる配向膜形成化合物をスピンコーターを用
いて塗布した。この配向膜形成化合物に出力10J、波
長308nmのXeClエキシマレーザを、ハーフミラ
ーを用いてレーザ光を分割し、分割レーザ光それぞれを
実施例1と同様に偏光板および位相マスクを備えた光学
系を通して、基板全面に照射した。このとき直線偏光レ
ーザ光は2つとも、位相マスクによって長さ280m
m、幅0.15mmとなるように整形され、それぞれ互
い違いとなるように、異なる入射角でもって配向膜形成
化合物を照射して、分割配向した配向膜を形成した。こ
のように形成された、分割配向した配向膜を用いてTN
モードの液晶ディスプレイを作製したところ、視野角は
通常の配向膜を用いたものと比べて、4倍以上に拡大し
た。
Embodiment 3 Next, a third embodiment of the present invention will be described. Dimension 30
IT as a transparent electrode on a glass substrate of 0 mm x 350 mm
O was deposited. As an alignment film forming compound containing a photosensitive group, an alignment film forming compound composed of polyvinyl methoxycinnamate and polyimide was applied on the ITO using a spin coater. XeCl excimer laser having an output of 10 J and a wavelength of 308 nm is split into the alignment film forming compound using a half mirror, and the split laser light is passed through an optical system having a polarizing plate and a phase mask in the same manner as in Example 1. The entire surface of the substrate was irradiated. At this time, both linearly polarized laser beams are 280 m long by the phase mask.
m and a width of 0.15 mm, and the alignment film forming compounds were irradiated at different angles of incidence so as to be alternate with each other, thereby forming a divided alignment film. The TN is formed by using the thus-formed divided alignment film.
When a mode liquid crystal display was manufactured, the viewing angle was expanded to four times or more as compared with that using a normal alignment film.

【0028】このように、上記方法によれば、分割配向
した配向膜を作製する場合においても、大面積一括偏光
照射が可能であり、偏光照射工程の高スループット化が
可能となった。また、第1の実施例と同様に、エキシマ
レーザ光のエネルギーおよびパルス数を変化させること
により、液晶プレティルト角の制御が可能である。
As described above, according to the above-mentioned method, even in the case of producing an alignment film having a divided orientation, large-area collective polarized light irradiation can be performed, and the throughput of the polarized light irradiation step can be increased. Further, similarly to the first embodiment, the liquid crystal pretilt angle can be controlled by changing the energy and the number of pulses of the excimer laser light.

【0029】以上の実施例3では、感光性基を含む化合
物としてポリビニルメトキシシンナメートを用いたが、
上述した他の感光性基を含む化合物を用いても同様な効
果が得られた。
In Example 3 above, polyvinyl methoxycinnamate was used as the compound containing a photosensitive group.
Similar effects were obtained by using other compounds containing a photosensitive group described above.

【0030】以上の実施例1〜3では光源として、波長
308nmのXeClレーザ光を用いたが、波長248
nmのKrFレーザ光、波長193nmのArFレーザ
光など、他の紫外パルスレーザ光や紫外線ランプを用い
ても同様な効果があった。
In the first to third embodiments, a XeCl laser beam having a wavelength of 308 nm is used as a light source.
The same effect was obtained by using other ultraviolet pulsed laser light or an ultraviolet lamp, such as a KrF laser light having a wavelength of nm or an ArF laser light having a wavelength of 193 nm.

【0031】実施例4 次に本発明の第四の実施例について説明する。寸法30
0mm×350mmのガラス基板に透明電極としてIT
Oを成膜した。ITO上に、光により一部が崩壊する配
向膜化合物として、日本合成ゴム製ポリイミドAL12
54をスピンコーターを用いて塗布し、180℃、1時
間の焼成を行った。このポリイミドに出力10J、波長
248nmのKrFエキシマレーザを、ハーフミラーを
用いてレーザ光を分割し、分割レーザ光それぞれを偏光
板および位相マスクを備えた光学系を通して、基板全面
に照射した。このとき直線偏光レーザ光は2つとも、位
相マスクによって長さ280mm、幅0.15mmとな
るように整形され、それぞれ互い違いとなるように、異
なる入射角でもって配向膜形成化合物を照射して、分割
配向した配向膜を形成した。このように形成された、分
割配向した配向膜を用いてTNモードの液晶ディスプレ
イを作製したところ、視野角は通常の配向膜を用いたも
のと比べて、4倍以上に拡大した。
Embodiment 4 Next, a fourth embodiment of the present invention will be described. Dimension 30
IT as a transparent electrode on a glass substrate of 0 mm x 350 mm
O was deposited. As an alignment film compound that is partially decomposed by light on ITO, polyimide AL12 manufactured by Nippon Synthetic Rubber Co., Ltd.
54 was applied using a spin coater and baked at 180 ° C. for 1 hour. The polyimide was irradiated with a KrF excimer laser having an output of 10 J and a wavelength of 248 nm by using a half mirror to divide the laser light and irradiating the divided laser light to the entire surface of the substrate through an optical system having a polarizing plate and a phase mask. At this time, the two linearly polarized laser beams are shaped by a phase mask so as to have a length of 280 mm and a width of 0.15 mm, and are irradiated with the alignment film forming compound at different incident angles so as to be staggered. An alignment film having a split orientation was formed. When a TN-mode liquid crystal display was manufactured using the thus-aligned divided alignment film, the viewing angle was expanded to four times or more as compared with that using a normal alignment film.

【0032】このように、上記方法によれば、分割配向
した配向膜を作製する場合においても、大面積一括偏光
照射が可能であり、偏光照射工程の高スループット化が
可能となった。また、実施例1と同様に、エキシマレー
ザ光のエネルギーおよびパルス数を変化させることによ
り、液晶プレティルト角の制御が可能である。以上の実
施例4では光源として、波長248nmのKrFレーザ
光を用いたが、波長193nmのArFレーザ光など、
他の波長が280nm以下の紫外パルスレーザ光や紫外
線ランプを用いても同様な効果があった。
As described above, according to the above-described method, even in the case of producing an alignment film having a divided orientation, large-area collective polarized light irradiation can be performed, and the throughput of the polarized light irradiation step can be increased. As in the first embodiment, the liquid crystal pretilt angle can be controlled by changing the energy and the number of pulses of the excimer laser light. In the above Example 4, the KrF laser light having a wavelength of 248 nm was used as a light source.
Similar effects were obtained by using an ultraviolet pulsed laser beam or an ultraviolet lamp having a wavelength of 280 nm or less.

【0033】[0033]

【発明の効果】以上説明したように、本発明による配向
膜の製造方法は、位相マスクあるいはホログラム素子を
用いて大面積一括偏光照射が可能なため、照射工程のス
ループットが大幅に向上した。さらに、紫外パルスレー
ザ光のエネルギーおよびパルス数を変化させることによ
り、光学系部品の大幅な増加を行うことなく、液晶分子
のプレティルト角を制御することができ、視野角特性に
優れた液晶表示装置が得られた。
As described above, in the method of manufacturing an alignment film according to the present invention, large-area collective polarized light irradiation can be performed using a phase mask or a hologram element, so that the throughput of the irradiation step has been greatly improved. Further, by changing the energy and the number of pulses of the ultraviolet pulsed laser light, the pretilt angle of liquid crystal molecules can be controlled without significantly increasing the number of optical components, and a liquid crystal display device having excellent viewing angle characteristics. was gotten.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す概念構成図である。FIG. 1 is a conceptual configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施形態を示す概念構成図であ
る。
FIG. 2 is a conceptual configuration diagram showing another embodiment of the present invention.

【図3】従来の光配向法を説明する概念構成図である。FIG. 3 is a conceptual diagram illustrating a conventional photo-alignment method.

【符号の説明】[Explanation of symbols]

1 基板 2 透明電極 3 配向膜形成用化合物 4 偏光源 5 スリット 6 レンズ 7 配向膜 8 位相マスク又はホログラム素子 9 ビームスプリッタ 10 ミラー 11 異なる配向方向を有する領域 DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode 3 Compound for forming alignment film 4 Polarization source 5 Slit 6 Lens 7 Alignment film 8 Phase mask or hologram element 9 Beam splitter 10 Mirror 11 Region having different alignment directions

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成される、配向膜形成用化合
物からなる層に、直線偏光を照射して配向膜を製造する
工程において、位相マスクを通して偏光を照射すること
を特徴とする配向膜の製造方法。
1. An alignment film, comprising: irradiating polarized light through a phase mask in a step of irradiating linearly polarized light to a layer made of an alignment film forming compound formed on a substrate to produce an alignment film. Manufacturing method.
【請求項2】 基板上に形成される、配向膜形成用化合
物からなる層に、直線偏光を照射して配向膜を製造する
工程において、ホログラム素子を通して偏光を照射する
ことを特徴とする配向膜の製造方法。
2. An alignment film, comprising: irradiating polarized light through a hologram element in a process of manufacturing an alignment film by irradiating linearly polarized light to a layer formed on a substrate and comprising an alignment film forming compound. Manufacturing method.
【請求項3】 複数の直線偏光を、それぞれ異なる入射
角でもって、配向膜形成用化合物からなる層に照射する
ことを特徴とする、請求項1または2記載の配向膜の製
造方法。
3. The method for producing an alignment film according to claim 1, wherein a plurality of linearly polarized lights are applied to the layer made of the alignment film forming compound at different incident angles.
【請求項4】 前記配向膜形成用化合物が感光性基を含
む配向膜形成用化合物であることを特徴とする、請求項
1〜3のいずれかに記載の配向膜の製造方法。
4. The method for producing an alignment film according to claim 1, wherein said compound for forming an alignment film is a compound for forming an alignment film containing a photosensitive group.
【請求項5】 前記感光性基を含む配向膜形成用化合物
が、ホトクロミック化合物を含む配向膜形成用化合物で
あることを特徴とする、請求項4記載の配向膜の製造方
法。
5. The method for producing an alignment film according to claim 4, wherein the compound for forming an alignment film containing a photosensitive group is a compound for forming an alignment film containing a photochromic compound.
【請求項6】 前記偏光が紫外光であることを特徴とす
る、請求項1〜3のいずれかに記載の配向膜の製造方
法。
6. The method according to claim 1, wherein the polarized light is ultraviolet light.
【請求項7】 前記紫外光がパルスレーザ光であること
を特徴とする、請求項6記載の配向膜の製造方法。
7. The method according to claim 6, wherein the ultraviolet light is pulsed laser light.
JP27928696A 1996-10-22 1996-10-22 Method for manufacturing liquid crystal alignment film Expired - Lifetime JP2848362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27928696A JP2848362B2 (en) 1996-10-22 1996-10-22 Method for manufacturing liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27928696A JP2848362B2 (en) 1996-10-22 1996-10-22 Method for manufacturing liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JPH10123523A true JPH10123523A (en) 1998-05-15
JP2848362B2 JP2848362B2 (en) 1999-01-20

Family

ID=17609056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27928696A Expired - Lifetime JP2848362B2 (en) 1996-10-22 1996-10-22 Method for manufacturing liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP2848362B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425511B1 (en) * 2000-08-23 2004-03-30 양근창 Apparatus and Method for Manufacturing light guide plate for plane light source unit
KR100437763B1 (en) * 2001-05-23 2004-06-26 엘지전자 주식회사 method for fabricating hologram diffuser
JP2006113180A (en) * 2004-10-13 2006-04-27 Hitachi Displays Ltd Polarized light irradiation method for photo orientation and apparatus therefor
JP2006220682A (en) * 2005-02-08 2006-08-24 Fuji Photo Film Co Ltd Optical compensation sheet and manufacturing method for the same, polarizing plate and liquid crystal display
KR100634755B1 (en) * 1999-08-25 2006-10-16 삼성전자주식회사 Apparatus for forming a align pattern for liquid crystal display device and method for forming the align pattern using the same
JP2007071952A (en) * 2005-09-05 2007-03-22 Fujifilm Corp Optical anisotropic body, its manufacturing method, and optical element and display element using it
WO2007133337A1 (en) * 2006-05-08 2007-11-22 Bright View Technologies, Inc. Methods and apparatus for processing a pulsed laser beam to create apertures through microlens arrays, and products produced thereby
US8062836B2 (en) * 2009-02-03 2011-11-22 Lg Chem, Ltd. Method for manufacturing an optical filter for a stereoscopic image display device
JP2013007842A (en) * 2011-06-23 2013-01-10 Toyo Seikan Kaisha Ltd Structure forming device, structure forming method, and structure
WO2015002353A1 (en) * 2013-07-02 2015-01-08 한국생산기술연구원 Photo-alignment method using polarized pulse uv and method for manufacturing patterned retarder
US9494420B2 (en) 2013-04-30 2016-11-15 Korea Institute Of Industrial Technology Optical alignment device using UV pulse

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634755B1 (en) * 1999-08-25 2006-10-16 삼성전자주식회사 Apparatus for forming a align pattern for liquid crystal display device and method for forming the align pattern using the same
KR100425511B1 (en) * 2000-08-23 2004-03-30 양근창 Apparatus and Method for Manufacturing light guide plate for plane light source unit
KR100437763B1 (en) * 2001-05-23 2004-06-26 엘지전자 주식회사 method for fabricating hologram diffuser
JP2006113180A (en) * 2004-10-13 2006-04-27 Hitachi Displays Ltd Polarized light irradiation method for photo orientation and apparatus therefor
JP2006220682A (en) * 2005-02-08 2006-08-24 Fuji Photo Film Co Ltd Optical compensation sheet and manufacturing method for the same, polarizing plate and liquid crystal display
JP2007071952A (en) * 2005-09-05 2007-03-22 Fujifilm Corp Optical anisotropic body, its manufacturing method, and optical element and display element using it
WO2007133337A1 (en) * 2006-05-08 2007-11-22 Bright View Technologies, Inc. Methods and apparatus for processing a pulsed laser beam to create apertures through microlens arrays, and products produced thereby
US7394594B2 (en) 2006-05-08 2008-07-01 Bright View Technologies, Inc. Methods for processing a pulsed laser beam to create apertures through microlens arrays
US7652822B2 (en) 2006-05-08 2010-01-26 Bright View Technologies, Inc. Methods and apparatus for processing a large area pulsed laser beam to create apertures through microlens arrays
US8062836B2 (en) * 2009-02-03 2011-11-22 Lg Chem, Ltd. Method for manufacturing an optical filter for a stereoscopic image display device
JP2013007842A (en) * 2011-06-23 2013-01-10 Toyo Seikan Kaisha Ltd Structure forming device, structure forming method, and structure
US9494420B2 (en) 2013-04-30 2016-11-15 Korea Institute Of Industrial Technology Optical alignment device using UV pulse
WO2015002353A1 (en) * 2013-07-02 2015-01-08 한국생산기술연구원 Photo-alignment method using polarized pulse uv and method for manufacturing patterned retarder
US10247868B2 (en) 2013-07-02 2019-04-02 Korea Institute Of Industrial Technology Optical alignment method and patterned retarder manufacturing method using polarized pulse UV

Also Published As

Publication number Publication date
JP2848362B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3075917B2 (en) Liquid crystal display device, its manufacturing method and its manufacturing device
US6292296B1 (en) Large scale polarizer and polarizer system employing it
JP2848362B2 (en) Method for manufacturing liquid crystal alignment film
US6741621B2 (en) Laser irradiation apparatus and method of treating semiconductor thin film
KR100329695B1 (en) Liquid crystal device alignment
GB2310934A (en) Liquid crystal cell
JPH11337891A (en) Grating modulator array
JPH07230092A (en) Liquid crystal display panel and preparation thereof
JPS6060624A (en) Liquid crystal display panel and its production
JP3939341B2 (en) Alignment of liquid crystal devices
EP0518449B1 (en) Optical interconnection apparatus
JPH11202336A (en) Method and device for radiating light and method and device for producing high molecular alignment layer
JP3649824B2 (en) Method for manufacturing liquid crystal display device and apparatus for manufacturing the same
GB2343525A (en) Light irradiating device
JP3561970B2 (en) Processing method of liquid crystal alignment film
JPH0875925A (en) Production of hologram and producing device therefor
RU2695937C1 (en) Method of manufacturing a liquid crystal structure for a diffraction grating (versions), a liquid crystal diffraction grating, a dynamic diffraction grating
KR100205260B1 (en) Method for fabricating lc cell using photo-alignment process
JPH11119439A (en) Liquid crystal mask type exposure marking device
KR100294683B1 (en) Method for forming alignment film of liquid crystal display
JPS60244930A (en) Liquid crystal display device and its production
JPH1039267A (en) Liquid crystal polarization control element
KR100298330B1 (en) Method for manufacturing liquid crystal display
JPS61109025A (en) Manufacture of liquid crystal display apparatus
KR930022100A (en) Manufacturing method of color filter of color liquid crystal display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term