JPH10123118A - Ultra-pure-water manufacturing device - Google Patents
Ultra-pure-water manufacturing deviceInfo
- Publication number
- JPH10123118A JPH10123118A JP27943496A JP27943496A JPH10123118A JP H10123118 A JPH10123118 A JP H10123118A JP 27943496 A JP27943496 A JP 27943496A JP 27943496 A JP27943496 A JP 27943496A JP H10123118 A JPH10123118 A JP H10123118A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- water
- toc
- ion exchange
- oxidizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は超純水製造装置に係
り、特に、紫外線(UV)酸化装置とイオン交換塔とを
備える超純水製造装置において、UV酸化装置のUV照
射量の制御を行うことでTOCの分解除去を効率的に行
えるようにした超純水製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing ultrapure water, and more particularly to an apparatus for producing ultrapure water having an ultraviolet (UV) oxidizer and an ion exchange tower, which controls the amount of UV irradiation of the UV oxidizer. The present invention relates to an ultrapure water production apparatus capable of efficiently decomposing and removing TOC.
【0002】[0002]
【従来の技術】河川水、工業用水、水道水などの原水か
ら、半導体製造工程等で使用される超純水を製造する場
合の一般的な製造システムは、前処理工程、一次純水製
造工程及び二次純水製造工程(サブシステム)からな
る。2. Description of the Related Art A general production system for producing ultrapure water used in a semiconductor production process or the like from raw water such as river water, industrial water, or tap water includes a pretreatment process and a primary pure water production process. And a secondary pure water production process (subsystem).
【0003】UV酸化装置は、水中の有機物を酸化分解
するために、このような超純水製造システムにおける一
次純水製造工程、二次純水製造工程に適用されている。
また、イオン交換塔は、アニオン交換樹脂及び/又はカ
チオン交換樹脂が充填されたもので、水中のイオン性物
質を除去するために、一次純水製造工程及び二次純水製
造工程のUV酸化装置の後段に設置されている。[0003] The UV oxidizer is applied to a primary pure water production process and a secondary pure water production process in such an ultrapure water production system in order to oxidatively decompose organic substances in water.
Further, the ion exchange tower is filled with an anion exchange resin and / or a cation exchange resin. In order to remove ionic substances in water, a UV oxidizer in a primary pure water production step and a secondary pure water production step is used. It is installed after.
【0004】従来の超純水製造システムでは、UV酸化
装置の流入水(入口水)のTOC濃度の最大含有量を設
定し、この設定したTOC含有量(以下「最大TOC設
定濃度」と称す。)の酸化分解除去に必要な量のOHラ
ジカルを発生させるUV照射量を固定値として発生する
UV酸化装置が設置されている。即ち、従来では、流入
水のTOC濃度の変動に関らず、常に最大TOC設定濃
度のTOCを酸化分解除去し得るUVを照射すること
で、UV酸化後のTOCの残留を防止している。[0004] In the conventional ultrapure water production system, the maximum TOC content of the inflow water (inlet water) of the UV oxidizer is set, and this set TOC content (hereinafter referred to as "maximum TOC set concentration"). A UV oxidizing apparatus that generates a fixed amount of UV irradiation that generates an amount of OH radicals necessary for the oxidative decomposition and removal is installed. That is, conventionally, regardless of the fluctuation of the TOC concentration of the inflow water, the residual TOC after the UV oxidation is prevented by irradiating UV that can oxidatively decompose and remove the TOC having the maximum TOC set concentration.
【0005】[0005]
【発明が解決しようとする課題】従来の超純水製造シス
テムでは、UV酸化後のTOCの残留を防止するため
に、UV酸化装置のUV照射量が最大TOC設定濃度に
対応した、高い値に固定されているが、このようなUV
酸化装置では、最大TOC設定濃度より低TOC濃度の
水が流入した場合、必要以上のUVが照射されることと
なり、UVコストが高くつく上に、次のような問題があ
ることが本発明者らの検討により見出された。In the conventional ultrapure water production system, in order to prevent TOC from remaining after UV oxidation, the UV irradiation amount of the UV oxidizer is set to a high value corresponding to the maximum TOC set concentration. Fixed, but such UV
In the oxidizing apparatus, when water having a TOC concentration lower than the maximum TOC setting concentration flows in, the UV is irradiated more than necessary, which increases the UV cost and has the following problems. They have been found by these studies.
【0006】即ち、UV酸化装置の流入水中のTOC濃
度が最大TOC設定濃度より低い場合、TOCのUV酸
化分解に使われなかった余剰のOHラジカルがDO(溶
存酸素)成分となって処理水中に残留する。これは、余
剰のOHラジカルから過酸化水素が生成し、これがUV
酸化装置の後段のイオン交換塔のイオン交換樹脂、特に
アニオン交換樹脂と接触すると、酸素を生成するためで
あると推定される。That is, when the TOC concentration in the inflow water of the UV oxidizer is lower than the maximum TOC set concentration, excess OH radicals not used for the UV oxidative decomposition of TOC become DO (dissolved oxygen) components in the treated water. Remains. This is because hydrogen peroxide is generated from excess OH radicals,
It is presumed that this is due to the generation of oxygen when contacting with an ion exchange resin, particularly an anion exchange resin, of an ion exchange tower at the latter stage of the oxidizing apparatus.
【0007】このため、TOC濃度が最大TOC設定濃
度よりも低い水をUV酸化装置及びイオン交換塔で処理
した場合、イオン交換塔の流出水のDOはUV酸化装置
流入水のDOよりも高いものとなる。従って、このよう
な場合には、最終処理水の超純水のDOも高くなる。For this reason, when water having a TOC concentration lower than the maximum TOC set concentration is treated in the UV oxidizer and the ion exchange tower, the DO of the effluent of the ion exchange tower is higher than the DO of the inflow water of the UV oxidizer. Becomes Therefore, in such a case, the DO of the ultrapure water of the final treatment water also increases.
【0008】例えば、TOC2ppb,DO2ppbを
含む純水に、この純水1m3 当り0.3kWのUVを照
射して混床式イオン交換塔に通水した場合、イオン交換
塔の流出水(出口水)のDOは5ppbに増加する。[0008] For example, TOC2ppb, the pure water containing DO2ppb, if it treated so as to reduce the ion exchange column was irradiated with UV in the pure water 1 m 3 per 0.3 kW, effluent of the ion exchange column (outlet water ) DO increases to 5 ppb.
【0009】超純水中にDOが存在すると、これを半導
体製造工程のウェハ洗浄水として用いた場合、シリコン
ウェハ表面に酸化膜を生じさせるなどの弊害が起きる。When DO is present in ultrapure water, if it is used as wafer cleaning water in a semiconductor manufacturing process, it causes adverse effects such as formation of an oxide film on the surface of a silicon wafer.
【0010】本発明は上記従来の問題点を解決し、流入
水のTOC濃度に対して、UVを過不足なく照射して、
TOCを確実に酸化分解除去すると共に、DOの増加を
防止し、低TOC,低DOの超純水を安定に製造するこ
とができる超純水製造装置を提供することを目的とす
る。[0010] The present invention solves the above-mentioned conventional problems, and irradiates the TOC concentration of the inflow water with UV without excess or shortage.
An object of the present invention is to provide an ultrapure water production apparatus capable of reliably removing TOC by oxidative decomposition, preventing an increase in DO, and stably producing ultrapure water with low TOC and low DO.
【0011】[0011]
【課題を解決するための手段】本発明の超純水製造装置
は、UV酸化装置とその後段のイオン交換塔とを備えて
なる超純水製造装置において、 イオン交換塔の出口水のDO量の測定 UV酸化装置の入口水のDO量及びイオン交換塔の
出口水のDO量の測定或いは UV酸化装置の入口水のTOC濃度の測定 を行って、この測定結果に基いてUV酸化装置のUV照
射量を制御することを特徴とする。An ultrapure water production apparatus according to the present invention is an ultrapure water production apparatus comprising a UV oxidizing apparatus and a subsequent ion exchange tower. Measurement of the DO amount of the inlet water of the UV oxidizer and the DO amount of the outlet water of the ion exchange tower or the TOC concentration of the inlet water of the UV oxidizer are measured, and based on the measurement results, the UV of the UV oxidizer is measured. It is characterized in that the irradiation amount is controlled.
【0012】UV酸化装置におけるUV照射量が一定の
場合、UV酸化装置入口水のTOC濃度が下がると図4
に示す如くTOC分解量も減少する。しかし、TOC分
解量(図4中の実線)の減少量はTOCの存在量(図4
中の点線)の減少率より低い。前述の如く、従来のUV
酸化装置では、予め設定したUV酸化装置入口水の最大
TOC設定濃度を分解できるようにUV照射量を設定し
ているので、実際のUV酸化装置入口水のTOC濃度が
最大TOC設定濃度より少なくなるとTOC存在量に対
してUV照射量は過剰になる(図中斜線の部分)。この
過剰な分だけ過酸化水素が発生し、DO成分が増加す
る。When the UV irradiation amount in the UV oxidizer is constant, when the TOC concentration of the UV oxidizer inlet water decreases, FIG.
As shown in the figure, the TOC decomposition amount also decreases. However, the amount of decrease in the TOC decomposition amount (solid line in FIG. 4) is based on the TOC abundance (FIG. 4).
(Dotted line in the middle). As mentioned above, conventional UV
In the oxidizer, the UV irradiation amount is set so as to be able to decompose the preset maximum TOC concentration of the water at the inlet of the UV oxidizer. Therefore, when the actual TOC concentration of the water at the inlet of the UV oxidizer becomes lower than the maximum TOC set concentration. The amount of UV irradiation becomes excessive with respect to the TOC abundance (hatched portion in the figure). Hydrogen peroxide is generated by the excess amount, and the DO component increases.
【0013】本発明では、このような場合において、U
V照射量を減らしてTOC分解量が図4の実線位置から
点線位置まで下がるように制御することで、UVの過剰
照射によるDOの発生を防止する。In the present invention, in such a case, U
By controlling the amount of TOC decomposition so as to decrease the TOC decomposition amount from the position indicated by the solid line to the position indicated by the dotted line in FIG. 4, generation of DO due to excessive irradiation of UV is prevented.
【0014】一般に、UV酸化装置において入口水のT
OC濃度が一定の場合、UV照射量とTOC除去量との
間には図2に示す関係がある。この関係は、下記関係式
で示される。Generally, in a UV oxidizer, T
When the OC concentration is constant, there is a relationship shown in FIG. 2 between the UV irradiation amount and the TOC removal amount. This relation is represented by the following relational expression.
【0015】Y=aX+b Y:単位消費電力量当たりTOC除去量(mg−TOC
/kW) X:TOC濃度(ppm) a,b:定数 即ち、UV酸化装置入口水のTOC濃度によって単位消
費電力量当たりのTOC除去量が計算でき、これに基い
て、TOCの除去に必要なUV照射量(UV酸化装置へ
の電力量ないし点灯するUVランプ数)を求めることが
できる。Y = aX + b Y: TOC removal amount per unit power consumption (mg-TOC)
/ KW) X: TOC concentration (ppm) a, b: constant That is, the TOC removal amount per unit power consumption can be calculated from the TOC concentration of the UV oxidizer inlet water, and based on this, the TOC removal required for TOC removal is performed. The amount of UV irradiation (the amount of power to the UV oxidation device or the number of UV lamps to be turned on) can be obtained.
【0016】従って、UV酸化装置入口水のTOC量の
測定値の増減に基いてUV酸化装置のUV照射量を制御
することで適正なUV照射を行える。Therefore, appropriate UV irradiation can be performed by controlling the amount of UV irradiation of the UV oxidizer based on the increase or decrease of the measured value of the TOC amount of the water at the inlet of the UV oxidizer.
【0017】また、UV酸化装置入口水のTOC濃度一
定の場合、UV照射量とイオン交換塔出口水のDO量と
の関係は図3に示す通りである。即ち、UV酸化装置の
UV照射量がUV酸化装置入口水のTOC濃度に対して
適正量である場合、或いは、UV照射量がUV酸化装置
入口水のTOC濃度に対して不足している場合には、U
V酸化装置入口水のDO量とイオン交換塔出口水のDO
量とはほぼ同じ値を示し、DO量の増加は殆どない。U
V酸化装置のUV照射量がUV酸化装置入口水のTOC
濃度に対して過剰量である場合には、前述の如く、UV
酸化装置入口水のDO量に対してイオン交換塔出口水の
DO量の増加が起こる。Further, when the TOC concentration of the water at the inlet of the UV oxidation apparatus is constant, the relationship between the UV irradiation amount and the DO amount of the ion exchange tower outlet water is as shown in FIG. That is, when the UV irradiation amount of the UV oxidizer is appropriate for the TOC concentration of the UV oxidizer inlet water, or when the UV irradiation amount is insufficient for the TOC concentration of the UV oxidizer inlet water. Is U
DO amount of V oxidation equipment inlet water and DO of ion exchange tower outlet water
It shows almost the same value as the amount, and there is almost no increase in the DO amount. U
V oxidizer UV irradiation dose is TOC of UV oxidizer inlet water TOC
If the amount is excessive with respect to the concentration, as described above,
An increase in the DO amount of the ion exchange tower outlet water relative to the DO amount of the oxidizer inlet water occurs.
【0018】従って、イオン交換塔出口水のDO量の測
定値が増加傾向に移行するときは、UV酸化装置におけ
るUV照射量が過剰であるから、この増加傾向への移行
点(図3の最適制御点)となるようにUV酸化装置のU
V照射量を制御することで適正なUV照射を行える。Therefore, when the measured value of the DO amount at the outlet of the ion-exchange tower shifts to an increasing tendency, the UV irradiation amount in the UV oxidizer is excessive, and the transition point to this increasing trend (optimum in FIG. 3) Control point)
Appropriate UV irradiation can be performed by controlling the amount of V irradiation.
【0019】同様に、UV酸化装置入口水のDO量の測
定値に対してイオン交換塔出口水のDO量の測定値が大
きい場合には、UV酸化装置におけるUV照射量が過剰
であるから、イオン交換塔出口水のDO量の測定値−U
V酸化装置入口水のDO量の測定値=0から、この差が
正の値に移行する点となるようにUV酸化装置のUV照
射量を制御することで適正なUV照射を行える。Similarly, when the measured value of the DO amount of the ion exchange tower outlet water is larger than the measured value of the DO amount of the UV oxidizer inlet water, the UV irradiation amount in the UV oxidizing device is excessive. Measured value of DO amount of ion exchange tower outlet water-U
Appropriate UV irradiation can be performed by controlling the amount of UV irradiation of the UV oxidizing apparatus so that the measured value of the DO amount at the inlet of the V oxidizing apparatus = 0 at which the difference shifts to a positive value.
【0020】なお、UV照射量の制御は、測定値に連動
して連続的に増減するものであっても良く、段階的に変
化させるものであっても良い。また、段階的に変化させ
る場合、2段階に限らず、3段階以上にUV照射量を制
御しても良い。Incidentally, the control of the UV irradiation amount may be continuously increased or decreased in conjunction with the measured value, or may be changed stepwise. In the case of stepwise change, the UV irradiation amount may be controlled not only in two steps but also in three or more steps.
【0021】また、本発明において、UV照射量の制御
はUV酸化装置入口水のTOC濃度とイオン交換塔出口
水のDO量との両測定値に基いて制御しても良い。In the present invention, the amount of UV irradiation may be controlled based on both the measured values of the TOC concentration of the inlet water of the UV oxidizer and the DO amount of the outlet water of the ion exchange tower.
【0022】[0022]
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0023】図1(a)は請求項1の超純水製造装置の
実施の形態を示す系統図であり、UV酸化装置1にUV
照射量の制御器3を設け、UV酸化装置1の後段のイオ
ン交換塔2の出口水のDO量をDO計4で測定し、この
測定値に基いてUV酸化装置1のUV照射量を制御する
ようにしたものである。FIG. 1A is a system diagram showing an embodiment of the ultrapure water production apparatus according to the present invention.
The irradiation amount controller 3 is provided, and the DO amount of the outlet water of the ion exchange tower 2 downstream of the UV oxidizing device 1 is measured by the DO meter 4, and the UV irradiation amount of the UV oxidizing device 1 is controlled based on the measured value. It is something to do.
【0024】図1(b)は請求項2の超純水製造装置の
実施の形態を示す系統図であり、UV酸化装置1にUV
照射量の制御器3を設け、UV酸化装置1の入口水のD
O量をDO計5で測定すると共に、後段のイオン交換塔
2の出口水のDO量をDO計4で測定し、これらの測定
値に基いてUV酸化装置1のUV照射量を制御するよう
にしたものである。FIG. 1B is a system diagram showing an embodiment of the ultrapure water production apparatus according to the second aspect.
The irradiation amount controller 3 is provided, and the inlet water D of the UV oxidizing apparatus 1 is
The amount of O is measured by the DO meter 5, and the DO amount of the outlet water of the subsequent ion exchange tower 2 is measured by the DO meter 4, and the UV irradiation amount of the UV oxidizing apparatus 1 is controlled based on these measured values. It was made.
【0025】図1(c)は請求項3の超純水製造装置の
実施の形態を示す系統図であり、UV酸化装置1にUV
照射量の制御器3を設け、UV酸化装置1の入口水のT
OC濃度をTOC計6で測定し、この測定値に基いてU
V酸化装置1のUV照射量を制御するようにしたもので
ある。FIG. 1 (c) is a system diagram showing an embodiment of the ultrapure water production apparatus according to the third aspect.
An irradiation amount controller 3 is provided, and T of the inlet water of the UV oxidizer 1
The OC concentration was measured with a TOC meter 6, and based on this measurement, U
This is to control the amount of UV irradiation of the V oxidation device 1.
【0026】図1(a)〜(c)において、制御器3で
は、入力されたDO量の測定値又はTOC濃度の測定値
に基いて適正なUV照射量を演算し、この演算結果に基
いてUV酸化装置1のUV照射量を制御する。1 (a) to 1 (c), the controller 3 calculates an appropriate UV irradiation amount based on the input DO amount measurement value or TOC concentration measurement value, and based on the calculation result. To control the amount of UV irradiation of the UV oxidizer 1.
【0027】即ち、例えば、図1(a)では、DO計4
から入力されたイオン交換塔2の出口水のDO量の測定
値に基き、この測定値が増加傾向となるまでUV照射量
を増やし、この測定値が増加に転じる直前(図4の最適
制御点)のUV照射となるようにUV酸化装置1のUV
照射量を制御する。That is, for example, in FIG.
Based on the measured value of the DO amount of the outlet water of the ion exchange tower 2 input from the above, the UV irradiation amount is increased until the measured value tends to increase, and immediately before the measured value starts to increase (the optimal control point in FIG. 4). ) UV irradiation of the UV oxidizing apparatus 1
Control the dose.
【0028】或いは、予めイオン交換塔2の出口水のD
O量の基準値を定めておき、測定値がこの基準値を超え
る場合には、UV酸化装置1のUV照射量を減らし、測
定値がこの基準値より低い場合にはUV酸化装置1のU
V照射量を増す。Alternatively, the outlet water D of the ion exchange
A reference value of the O amount is set in advance, and when the measured value exceeds the reference value, the UV irradiation amount of the UV oxidizing device 1 is reduced, and when the measured value is lower than the reference value, the UV irradiation amount of the UV oxidizing device 1 is reduced.
Increase V dose.
【0029】また、図1(b)では、DO計5から入力
されたUV酸化装置1の入口水のDO量の測定値(以下
「DO1 」)とDO計4から入力されたイオン交換塔2
の出口水のDO量の測定値(以下「DO2 」)とを比較
し、DO2 がDO1 よりも大きくなるまでUV照射量を
増やし、DO2 >DO1 となる直前のUV照射量となる
ようにUV酸化装置1のUV照射を制御する。In FIG. 1B, the measured value (hereinafter referred to as “DO 1 ”) of the DO amount of the inlet water of the UV oxidizer 1 input from the DO meter 5 and the ion exchange tower input from the DO meter 4 are shown. 2
Compared to DO of the measured values of the outlet water (hereinafter "DO 2"), increasing the UV dose until DO 2 is greater than DO 1, the UV irradiation amount immediately before the DO 2> DO 1 The UV irradiation of the UV oxidizing apparatus 1 is controlled so as to be as follows.
【0030】或いは、予めイオン交換塔2の出口水のD
O量とUV酸化装置1の入口水のDO量との差の基準値
を定めておき、DO2 −DO1 がこの基準値を超える場
合には、UV酸化装置1のUV照射量を減らし、測定値
がこの基準値より低い場合にはUV酸化装置1のUV照
射量を増す。Alternatively, the water D at the outlet of the ion exchange
A reference value for the difference between the O amount and the DO amount of the inlet water of the UV oxidizing device 1 is defined, and when DO 2 -DO 1 exceeds this reference value, the UV irradiation amount of the UV oxidizing device 1 is reduced, When the measured value is lower than the reference value, the UV irradiation amount of the UV oxidizing apparatus 1 is increased.
【0031】また、図1(c)では、TOC計6から入
力されたUV酸化装置1の入口水のTOC濃度から、こ
のTOC量の酸化分解に必要なUV照射量を演算し、こ
の演算されたUV照射量となるようにUV酸化装置1の
UV照射量を制御する。In FIG. 1C, the UV irradiation amount necessary for the oxidative decomposition of the TOC amount is calculated from the TOC concentration of the inlet water of the UV oxidizing device 1 input from the TOC meter 6, and the calculated value is calculated. The UV irradiation amount of the UV oxidizing apparatus 1 is controlled so as to obtain the UV irradiation amount.
【0032】或いは、予めUV酸化装置1の入口水のT
OC濃度に対するUV照射量を定めておき、測定値に応
じてこの設定値となるようにUV酸化装置1のUV照射
量を増減する。Alternatively, the T of the inlet water of the UV oxidizer 1
The amount of UV irradiation with respect to the OC concentration is determined, and the amount of UV irradiation of the UV oxidizing apparatus 1 is increased or decreased so as to reach this set value according to the measured value.
【0033】本発明におけるUV酸化装置のUV照射量
の制御方法としては、例えば、次のような方法が挙げら
れる。As a method of controlling the amount of UV irradiation of the UV oxidizer in the present invention, for example, the following method can be mentioned.
【0034】(1) 制御器としてUVランプ点灯数制
御器を用い、UVランプの点灯数を望ましいUV照射量
に応じて制御する。例えば、1シリンダー当り、任意の
複数(例えば10本)のUVランプを設置したシリンダ
ーを複数個備えたUV酸化装置であれば、点灯するシリ
ンダー数を制御する。(1) A UV lamp lighting number controller is used as a controller, and the lighting number of the UV lamp is controlled according to a desired UV irradiation amount. For example, in the case of a UV oxidizing apparatus provided with a plurality of cylinders provided with an arbitrary plurality (for example, 10) of UV lamps per cylinder, the number of lit cylinders is controlled.
【0035】(2) 制御器としてUVランプ電流制御
器を用い、UVランプの電流値を望ましいUV照射量に
応じて制御する。例えば、特定のいくつかのシリンダー
或いはすべてのシリンダーについて電流値を制御する。(2) A UV lamp current controller is used as a controller, and the current value of the UV lamp is controlled according to a desired UV irradiation amount. For example, the current value is controlled for some specific cylinders or all cylinders.
【0036】(3) 制御器としてUVランプ点灯数制
御器とUVランプ電流制御器とを用い、上記(1)と
(2)とを組み合せて望ましいUV照射量に応じて制御
する。例えば、あるシリンダーについては定常電流値で
点灯又は消灯し、他のシリンダーは電流値を増減する。(3) A UV lamp lighting number controller and a UV lamp current controller are used as controllers, and the above (1) and (2) are combined to control according to a desired UV irradiation amount. For example, a certain cylinder is turned on or off at a steady current value, and another cylinder increases or decreases the current value.
【0037】このような本発明の超純水製造装置は、超
純水製造システムの一次純水製造工程、二次純水製造工
程のいずれにも適用可能であるが、特に、二次純水製造
工程への適用に好適であり、従来の最大TOC設定濃度
対応UV照射による最終処理水の超純水のDO増加を抑
制し、高純度の超純水を安定に製造することが可能とな
る。The apparatus for producing ultrapure water of the present invention can be applied to both the primary pure water production step and the secondary pure water production step of the ultrapure water production system. It is suitable for application to the manufacturing process, and it is possible to suppress the increase in DO of ultrapure water of the final treated water by conventional UV irradiation corresponding to the maximum TOC set concentration, and to stably produce ultrapure water of high purity. .
【0038】[0038]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0039】説明の便宜上、まず、比較例を挙げる。First, a comparative example will be described for convenience of explanation.
【0040】比較例1 下記仕様のUV酸化装置及びイオン交換塔を備え、80
m3 /Hrの流量で超純水の製造を行っている超純水製
造装置において、UV酸化装置入口水のDO及びTOC
濃度とイオン交換塔出口水のDO及びTOC濃度は表1
に示す通りであり、UV酸化装置入口水のTOCが5p
pbのときには、イオン交換塔出口水のDOの大きな増
加はないものの、UV酸化装置入口水のTOCが2pp
bと低いときには、イオン交換塔出口水のTOCもそれ
に応じて低くなる反面、DOは5ppbと4倍以上に増
加していた。Comparative Example 1 A UV oxidizer having the following specifications and an ion exchange tower were provided.
In an ultrapure water production apparatus which produces ultrapure water at a flow rate of m 3 / Hr, DO and TOC of UV oxidizer inlet water are used.
Table 1 shows the concentration and the DO and TOC concentrations of the ion exchange tower outlet water.
The TOC of the UV oxidizer inlet water is 5p
In the case of pb, although the DO of the ion exchange tower outlet water does not increase significantly, the TOC of the UV oxidizer inlet water is 2 pp.
When b was low, TOC at the outlet of the ion exchange tower was correspondingly low, while DO was 5 ppb, which was more than four times higher.
【0041】UV酸化装置 消費電力6.26kWの低圧紫外線酸化装置(ランプ本
数68本)。日本フォトサイエンス社製;4台イオン交換塔 カチオン交換樹脂:アニオン交換樹脂=1:1.6(体
積比)の混床式イオン交換塔 UV oxidizer A low-pressure ultraviolet oxidizer with a power consumption of 6.26 kW (68 lamps). Japan PhotoScience Co., Ltd .; 4 ion exchange towers Cation exchange resin: anion exchange resin = 1: 1.6 (volume ratio) mixed bed type ion exchange tower
【0042】[0042]
【表1】 [Table 1]
【0043】実施例1 比較例1において、イオン交換塔出口水のDOを測定す
るDO計と、この測定値に基いてUV酸化装置のUV照
射量を制御する制御器とを設け、イオン交換塔出口水の
DOが4.5ppbを超える場合にはUV酸化装置のU
Vランプの点灯数を半分にしてUV照射量を0.15k
W/m3 −水にしたこと(イオン交換塔出口水のDOが
4.5ppb以下のときはUV照射量0.3kW/m3
−水)以外は同様にして運転を行ったところ、表2に示
す通り、低TOC水が流入する場合でも、DOの大きな
増加は認められなかった。Example 1 In Comparative Example 1, a DO meter for measuring the DO of the water at the outlet of the ion exchange tower, and a controller for controlling the UV irradiation amount of the UV oxidizer based on the measured value were provided. If the DO of the outlet water exceeds 4.5 ppb, U
Halves the number of V lamps and reduces the UV irradiation to 0.15k
W / m 3 -water (when the DO of the ion exchange tower outlet water is 4.5 ppb or less, the UV irradiation amount is 0.3 kW / m 3.
(Water), the operation was performed in the same manner. As shown in Table 2, no significant increase in DO was observed even when low TOC water flowed.
【0044】[0044]
【表2】 [Table 2]
【0045】実施例2 比較例1において、UV酸化装置入口水及びイオン交換
塔出口水のDOを測定するDO計と、この測定値に基い
てUV酸化装置のUV照射量を制御する制御器とを設
け、UV酸化装置入口水のDOよりもイオン交換塔出口
水のDOが2.0ppb以上増加した場合にはUV酸化
装置のUVランプの点灯数を半分にしてUV照射量を
0.15kW/m3 −水にしたこと(イオン交換塔出口
水のDO−UV酸化装置入口水のDO≦2.0ppbの
ときはUV照射量0.3kW/m3 −水)以外は同様に
して運転を行ったところ、表3に示す通り、低TOC水
が流入する場合でも、DOの大きな増加は認められなか
った。Example 2 In Comparative Example 1, a DO meter for measuring DO of water at the inlet of the UV oxidizer and water at the outlet of the ion exchange tower, and a controller for controlling the UV irradiation amount of the UV oxidizer based on the measured values When the DO of the ion exchange tower outlet water is increased by 2.0 ppb or more from the DO of the UV oxidizer inlet water, the number of lighting of the UV lamp of the UV oxidizer is halved and the UV irradiation amount is 0.15 kW / m 3 - that the water (UV dose 0.3 kW / m 3 when the DO ≦ 2.0ppb of DO-UV oxidation apparatus inlet water of the ion exchange column outlet water - water) except performing operation in the same manner However, as shown in Table 3, even when low-TOC water flows, a large increase in DO was not observed.
【0046】[0046]
【表3】 [Table 3]
【0047】実施例3 比較例1において、UV酸化装置入口水のTOC濃度を
測定するTOC計と、この測定値に基いてUV酸化装置
のUV照射量を制御する制御器とを設け、UV酸化装置
入口水のTOCが3ppb以下の場合にはUV酸化装置
のUVランプの点灯数を半分にしてUV照射量を0.1
5kW/m3 −水にしたこと(UV酸化装置入口水のT
OCが3ppbを超えるときはUV照射量0.3kW/
m3 −水)以外は同様にして運転を行ったところ、表4
に示す通り、低TOC水が流入する場合でも、DOの大
きな増加は認められなかった。Example 3 In Comparative Example 1, a TOC meter for measuring the TOC concentration of the water at the inlet of the UV oxidizer and a controller for controlling the UV irradiation amount of the UV oxidizer based on the measured value were provided. When the TOC of the apparatus inlet water is 3 ppb or less, the number of lighting of the UV lamp of the UV oxidizing apparatus is reduced to half and the UV irradiation amount is set to 0.1.
5 kW / m 3 -water (UV oxidizer inlet water T
When OC exceeds 3 ppb, UV irradiation dose 0.3 kW /
m 3 -water).
As shown in the figure, even when low TOC water flows, a large increase in DO was not observed.
【0048】[0048]
【表4】 [Table 4]
【0049】[0049]
【発明の効果】以上詳述した通り、本発明の超純水製造
装置によれば、流入水のTOC濃度の変動に応じて適正
量のUV照射を行えるため、UVの過少照射によるTO
Cの残留、或いは、UVの過剰照射によるDOの増加を
防止して、低TOC,低DOで高純度の超純水を安定か
つ効率的に製造することができる。As described above in detail, according to the ultrapure water production apparatus of the present invention, an appropriate amount of UV irradiation can be performed according to the fluctuation of the TOC concentration of the inflow water.
It is possible to stably and efficiently produce ultrapure water with low TOC, low DO, and high purity by preventing C from remaining or increasing DO due to excessive UV irradiation.
【図1】本発明の超純水製造装置の実施の形態を示す系
統図である。FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus according to the present invention.
【図2】UV照射量とTOC除去量との関係を示すグラ
フである。FIG. 2 is a graph showing a relationship between a UV irradiation amount and a TOC removal amount.
【図3】UV照射量とイオン交換塔出口水DO量との関
係を示すグラフである。FIG. 3 is a graph showing a relationship between a UV irradiation amount and an ion exchange tower outlet water DO amount.
【図4】TOC濃度とTOC量との関係を示すグラフで
ある。FIG. 4 is a graph showing the relationship between TOC concentration and TOC amount.
1 UV酸化装置 2 イオン交換塔 3 制御器 4,5 DO計 6 TOC計 DESCRIPTION OF SYMBOLS 1 UV oxidation apparatus 2 Ion exchange tower 3 Controller 4, 5 DO meter 6 TOC meter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 正義 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masayoshi Ito 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Industry Co., Ltd.
Claims (3)
塔とを備えてなる超純水製造装置において、該イオン交
換塔の出口水の溶存酸素量を測定し、この測定結果に基
いて該紫外線酸化装置の紫外線照射量を制御することを
特徴とする超純水製造装置。In an ultrapure water producing apparatus comprising an ultraviolet oxidizing apparatus and an ion exchange tower at a subsequent stage, the amount of dissolved oxygen in the outlet water of the ion exchange tower is measured. An ultrapure water production apparatus characterized by controlling the amount of ultraviolet irradiation of an oxidizing apparatus.
塔とを備えてなる超純水製造装置において、該紫外線酸
化装置の入口水の溶存酸素量と該イオン交換塔の出口水
の溶存酸素量を測定し、これらの測定結果に基いて該紫
外線酸化装置の紫外線照射量を制御することを特徴とす
る超純水製造装置。2. An ultrapure water production system comprising an ultraviolet oxidizer and a subsequent ion exchange tower, wherein the amount of dissolved oxygen at the inlet water of the ultraviolet oxidizer and the amount of dissolved oxygen at the outlet water of the ion exchanger are provided. The ultrapure water production apparatus characterized in that the ultraviolet irradiation amount of the ultraviolet oxidation apparatus is controlled based on the measurement results.
塔とを備えてなる超純水製造装置において、該紫外線酸
化装置の入口水のTOC濃度を測定し、この測定結果に
基いて該紫外線酸化装置の紫外線照射量を制御すること
を特徴とする超純水製造装置。3. An ultrapure water producing apparatus comprising an ultraviolet oxidizing apparatus and a subsequent ion exchange tower, measuring the TOC concentration of inlet water of the ultraviolet oxidizing apparatus, and based on the measurement result, measuring the TOC concentration of the ultraviolet oxidizing apparatus. An ultrapure water production apparatus characterized by controlling the amount of ultraviolet irradiation of the apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27943496A JP3941139B2 (en) | 1996-10-22 | 1996-10-22 | Ultrapure water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27943496A JP3941139B2 (en) | 1996-10-22 | 1996-10-22 | Ultrapure water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10123118A true JPH10123118A (en) | 1998-05-15 |
JP3941139B2 JP3941139B2 (en) | 2007-07-04 |
Family
ID=17611021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27943496A Expired - Fee Related JP3941139B2 (en) | 1996-10-22 | 1996-10-22 | Ultrapure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941139B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000302413A (en) * | 1999-04-20 | 2000-10-31 | Kurita Water Ind Ltd | Apparatus for producing ozonous water |
JP2002205063A (en) * | 2001-01-10 | 2002-07-23 | Nippon Steel Corp | Method for inactivating protozoa |
US6733661B2 (en) | 2001-03-26 | 2004-05-11 | Renesas Technology Corp. | Ultrapure water producing apparatus |
JP2006276005A (en) * | 2005-02-22 | 2006-10-12 | Asml Netherlands Bv | Fluid filtration method, fluid filtered by the same, lithographic system, and element-manufacturing method |
JP2008190753A (en) * | 2007-02-02 | 2008-08-21 | Techno Ryowa Ltd | Air conditioner and pure water production system |
WO2009122884A1 (en) * | 2008-03-31 | 2009-10-08 | 栗田工業株式会社 | Method for producing pure water and pure water production system |
WO2016199435A1 (en) * | 2015-06-11 | 2016-12-15 | 野村マイクロ・サイエンス株式会社 | Ultrapure water manufacturing system and ultrapure water manufacturing method |
JP2021058845A (en) * | 2019-10-07 | 2021-04-15 | 栗田工業株式会社 | Toc treatment device and treatment method |
-
1996
- 1996-10-22 JP JP27943496A patent/JP3941139B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000302413A (en) * | 1999-04-20 | 2000-10-31 | Kurita Water Ind Ltd | Apparatus for producing ozonous water |
JP2002205063A (en) * | 2001-01-10 | 2002-07-23 | Nippon Steel Corp | Method for inactivating protozoa |
US6733661B2 (en) | 2001-03-26 | 2004-05-11 | Renesas Technology Corp. | Ultrapure water producing apparatus |
JP4584847B2 (en) * | 2005-02-22 | 2010-11-24 | エーエスエムエル ネザーランズ ビー.ブイ. | Fluid filtration method, fluid filtered thereby, lithographic apparatus, and device manufacturing method |
JP2006276005A (en) * | 2005-02-22 | 2006-10-12 | Asml Netherlands Bv | Fluid filtration method, fluid filtered by the same, lithographic system, and element-manufacturing method |
JP2008190753A (en) * | 2007-02-02 | 2008-08-21 | Techno Ryowa Ltd | Air conditioner and pure water production system |
WO2009122884A1 (en) * | 2008-03-31 | 2009-10-08 | 栗田工業株式会社 | Method for producing pure water and pure water production system |
US8480906B2 (en) | 2008-03-31 | 2013-07-09 | Kurita Water Industries Ltd. | Pure water manufacturing method and pure water manufacturing apparatus |
JP5454468B2 (en) * | 2008-03-31 | 2014-03-26 | 栗田工業株式会社 | Pure water production method and pure water production apparatus |
KR101390441B1 (en) * | 2008-03-31 | 2014-04-30 | 쿠리타 고교 가부시키가이샤 | Method for producing pure water and pure water production system |
WO2016199435A1 (en) * | 2015-06-11 | 2016-12-15 | 野村マイクロ・サイエンス株式会社 | Ultrapure water manufacturing system and ultrapure water manufacturing method |
JP2017000970A (en) * | 2015-06-11 | 2017-01-05 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production system, and ultrapure water production method |
JP2021058845A (en) * | 2019-10-07 | 2021-04-15 | 栗田工業株式会社 | Toc treatment device and treatment method |
WO2021070573A1 (en) * | 2019-10-07 | 2021-04-15 | 栗田工業株式会社 | Toc treatment apparatus and treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP3941139B2 (en) | 2007-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI460136B (en) | Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water | |
JP2793100B2 (en) | Pure water production method | |
JP4932757B2 (en) | Ultrapure water production method and ultrapure water production apparatus | |
US6991733B2 (en) | Process for removing organics from ultrapure water | |
WO2021070573A1 (en) | Toc treatment apparatus and treatment method | |
JP5280038B2 (en) | Ultrapure water production equipment | |
KR100200535B1 (en) | Process and apparatus for ultraviolet decomposition of waste water containing organic substances | |
JP3941139B2 (en) | Ultrapure water production equipment | |
US5523001A (en) | Treatment of electroless plating waste streams | |
JP5211414B2 (en) | Ultrapure water production equipment | |
JP4635827B2 (en) | Ultrapure water production method and apparatus | |
JP4978275B2 (en) | Primary pure water production process water treatment method and apparatus | |
JP2016005829A (en) | Method and apparatus for producing ultrapure water | |
JP3110034B2 (en) | Method to remove organic matter and dissolved oxygen simultaneously | |
JP7513213B2 (en) | Ultrapure water production apparatus and method for operating the ultrapure water production apparatus | |
JPH0889976A (en) | Method for removing organic matter in water | |
WO2024057697A1 (en) | Water treatment system and water treatment method | |
JPH09253639A (en) | Ultrapure water making apparatus | |
JP7383141B2 (en) | TOC removal device and TOC removal method | |
WO2022239314A1 (en) | Pure water production apparatus and pure water production method | |
WO2024080079A1 (en) | Apparatus for producing pure water | |
JPH0639366A (en) | Method and equipment for producing ultrapure water | |
JP2023172164A (en) | water treatment equipment | |
JPH1094785A (en) | Ultrapure water producing method and device therefor | |
JP3580648B2 (en) | Ultrapure water production equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |