JPH10123031A - Method for fixing sample to substrate - Google Patents

Method for fixing sample to substrate

Info

Publication number
JPH10123031A
JPH10123031A JP28082696A JP28082696A JPH10123031A JP H10123031 A JPH10123031 A JP H10123031A JP 28082696 A JP28082696 A JP 28082696A JP 28082696 A JP28082696 A JP 28082696A JP H10123031 A JPH10123031 A JP H10123031A
Authority
JP
Japan
Prior art keywords
sample
substrate
fixing
solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28082696A
Other languages
Japanese (ja)
Inventor
Etsuko Sugawa
悦子 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28082696A priority Critical patent/JPH10123031A/en
Publication of JPH10123031A publication Critical patent/JPH10123031A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

PROBLEM TO BE SOLVED: To fix even a thin concentration sample in an aqueous solution firmly to a substrate under a substantially natural state by employing a fixing substrate on which a single molecule film of an organic compound having a hydrophilic group and a hydrophobic group is formed previously. SOLUTION: An LB film is formed such that a hydrophilic group and a hydrophobic group or a functional group reactive to a fixing agent covers the surface of a fixing substrate 3. When the substrate 3 is immersed into a sample solution 6 containing a fixing agent, cells and microorganisms having relatively large size in a suspensible sample precipitates naturally and fixed chemically on the substrate 3. When the size or the specific gravity is low or when a trace sample is employed, a physical action is imparted. More specifically, a field is applied between the solution 6 and the substrate 3 when a positively or negatively charged material is employed as a sample and a magnet or an electromagnet is disposed under the substrate 3 when the sample is magnetized or reacts to magnetism. Consequently, even a suspensible thin sample can be fixed firmly through natural precipitation or further application of electric or magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、観察試料例えば生
体関連試料の観察のための単分子膜あるいはその累積膜
を形成した固定用基板、その固定用基板を用いて細胞、
微生物、及びその他の生体関連物質を観察のために固定
する方法に関する。この発明の具体的な利用分野として
は電子顕微鏡、あるいはSPMなどによる生体関連物質
の観察のための試料作成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixing substrate having a monomolecular film or a cumulative film formed thereon for observing an observation sample, for example, a biological sample, a cell using the fixing substrate,
The present invention relates to a method for fixing microorganisms and other biological substances for observation. A specific field of application of the present invention relates to a sample preparation method for observing a biological substance using an electron microscope or SPM.

【0002】[0002]

【従来の技術】水溶液中の試料で乾燥によるダメージの
大きい細胞、微生物、及びその他の生体関連物質あるい
は更に有機材料(例えばイオン交換樹脂、マイクロカプ
セル、合成樹脂等)を電子顕微鏡観察する場合、特に走
査型電子顕微鏡では化学固定した後、試料を完全な乾燥
状態に至るまで溶媒を頻繁に変えながら洗浄を繰り返す
必要がある。この時の一般的な方法としては洗浄の度に
遠心分離しペレットを回収する方法や、試料と親和性の
良い基板を用いて吸着させる方法、あるいはフィルター
に回収しそのまま前処理を行う方法等が取られている。
2. Description of the Related Art When observing cells, microorganisms, and other biologically-related substances or organic materials (for example, ion-exchange resins, microcapsules, synthetic resins, etc.) in a sample in an aqueous solution, which are greatly damaged by drying, particularly when observed with an electron microscope. In a scanning electron microscope, after chemical fixation, it is necessary to repeat washing while changing the solvent frequently until the sample is completely dried. Common methods at this time include a method of collecting the pellet by centrifugation each time of washing, a method of adsorbing using a substrate having a good affinity for the sample, and a method of performing pretreatment as it is collected on a filter. Has been taken.

【0003】[0003]

【発明が解決しようとしている課題】浮遊性試料の回収
に遠心分離は頻繁に用いられるが、化学固定を行った試
料を遠心分離した場合、試料は凝集しやすくダメージも
大きく、とくに微生物では鞭毛せん毛などの保存が困難
になる。基板に吸着させる方法でも、結合力が充分でな
いため度重なる洗浄でほとんど流出してしまい、観察視
野内で目的試料を捜すことが非常に困難となる場合が多
く、試料濃度の低い場合は使えない。フィルターを用い
る方法は細胞や微生物などやや大きめの試料の場合有効
であるが、0.1μm以下の試料には適用できないなど
の問題点があった。更に試料濃度が非常に低い場合はど
の方法を用いてもその観察は不可能に近く偶然を待つし
かなかった。従って、希薄な試料溶液から効率よく試料
を回収し、ダメージの少ない状態で基板に強固に固定す
る方法が求められていた。このことは空気中で観察する
STMやAFMにおいても同じことが言える。
[0007] Centrifugation is frequently used to recover a floating sample. However, when a chemically fixed sample is centrifuged, the sample is easily aggregated and the damage is large. Preservation of hair etc. becomes difficult. Even with the method of adsorbing to the substrate, it is often difficult to search for the target sample in the observation field of view because the binding force is not sufficient and it is almost impossible to find the target sample in the observation field of view, and it can not be used when the sample concentration is low . The method using a filter is effective for a slightly large sample such as a cell or a microorganism, but has a problem that it cannot be applied to a sample of 0.1 μm or less. Furthermore, when the sample concentration was very low, the observation was almost impossible and waited for chance by any method. Therefore, there has been a demand for a method of efficiently collecting a sample from a dilute sample solution and firmly fixing the sample to a substrate with little damage. The same can be said for STM and AFM observed in the air.

【0004】また、水中AFMでは試料を乾燥させる工
程がない分前処理は単純化されるが、観察の際探針が試
料表面をなぞるため、基板との結合力が弱いと試料が動
き、良好な画像情報が得られない。従って水中AFMで
は、自然な状態を保ちながら試料を基板に強固に固定す
ることが課題であった。
In the underwater AFM, the pretreatment is simplified because there is no step of drying the sample, but the sample moves when the bonding force with the substrate is weak because the probe traces the sample surface during observation. Image information cannot be obtained. Therefore, in the underwater AFM, it has been a problem to firmly fix the sample to the substrate while maintaining a natural state.

【0005】[0005]

【課題を解決するための手段】本発明者は上記のごとき
課題を解決すべく鋭意研究した結果、水溶液中の希薄濃
度の試料でも自然に近い状態で、基板に強固に固定する
手法を考案した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has devised a method for firmly fixing a sample having a low concentration in an aqueous solution to a substrate in a state close to nature. .

【0006】すなわち、本発明は、基板の表面に分子中
に少なくとも1個以上の親水基と少なくとも1個以上の
疎水基をもつ有機化合物の単分子膜を予め形成した固定
用基板に観察試料である生体関連物質または有機材料を
固定する試料固定方法であり、この固定手段には、化学
固定と同時に物理的作用を加え、溶液中の希薄試料を基
板上に集めることを特徴とする方法がある。
That is, the present invention relates to an observation sample on a fixing substrate in which a monomolecular film of an organic compound having at least one hydrophilic group and at least one hydrophobic group in a molecule is previously formed on the surface of the substrate. This is a sample fixing method for fixing a certain bio-related substance or organic material. This fixing means includes a method characterized by applying a physical action simultaneously with chemical fixing and collecting a dilute sample in a solution on a substrate. .

【0007】次に本発明を更に詳細に説明する。Next, the present invention will be described in more detail.

【0008】水溶液中の生体関連物質を、光学顕微鏡用
や電子顕微鏡用に化学固定する手法は既に公知のものが
いくつか有り、本発明で言う化学固定はこれらの手法が
応用できる。例えば最も一般的に用いられるグルタール
アルデヒドであれば−NH2基との架橋反応が利用で
き、パラホルムアルデヒドやポリオキシメチレンを用い
れば、二重結合に反応し架橋される。またセルロースは
ホルマリンで架橋される。そのほかも四酸化オスミウム
や、過マンガン酸カリなどによる固定法が知られてい
る。固定用試薬とそれに反応する官能基についてはここ
に示した以外にも多数あり、本発明の実施に当たっては
生体試料に用いられる一般的な化学固定法を試料や観察
の目的に応じ適宜選択すれば良い。このような化学固定
により細胞であれば細胞膜を形成しているリン脂質が架
橋構造を形成し、柔らかであった試料表面が硬化し、微
細構造を保ったまま乾燥させることができる様になる。
しかしながら浮遊性の試料の場合、化学固定を行った後
乾燥に至るまでの度重なる洗浄工程でダメージや試料流
出が生じ、試料が微量である場合は支持体に強固に固定
する必要がある。
There are several known techniques for chemically fixing a biological substance in an aqueous solution for an optical microscope or an electron microscope, and these techniques can be applied to the chemical fixation referred to in the present invention. For example most commonly glue available crosslinking reaction between -NH 2 group if glutaraldehyde is used, the use of paraformaldehyde and polyoxymethylene, are reacted to crosslink double bonds. Cellulose is also crosslinked with formalin. Other known fixing methods include osmium tetroxide and potassium permanganate. There are many immobilization reagents and functional groups that react with them, other than those shown here.In the practice of the present invention, a general chemical immobilization method used for a biological sample may be appropriately selected depending on the sample and the purpose of observation. good. By such chemical fixation, if the cells are cells, the phospholipids forming the cell membrane form a crosslinked structure, the soft sample surface is hardened, and the sample can be dried while maintaining the fine structure.
However, in the case of a buoyant sample, damage and outflow of the sample occur in the repeated washing steps from the chemical fixation to the drying, and when the sample is very small, it is necessary to firmly fix the sample to the support.

【0009】本発明者は、試料を化学固定する際に試料
−基板間でも試料と同様の化学固定がなされるよう検討
を重ねた結果、基板表面に試料と架橋反応のできる構造
を予め形成しておきこれに試料を固定する方法に到っ
た。これに用いる手段は単分子膜あるいはその累積膜を
ラングミュアブロジェット(LB)法で形成することが
応用できる。この方法によれば、親水基、疎水基、ある
いはそれ以外の官能基を持つ有機化合物を用いて、固定
剤と反応する官能基が基板表面を被覆する状態で基板上
にLB膜形成して固定用基板とし、固定剤を含む試料溶
液にこの基板を浸すだけで、試料及び試料−基板間の化
学固定が行なわれる。更にこの化学固定に併せて、媒体
中の浮遊試料を固定用基板に誘引する手段を組み合わせ
ることができる。
The inventor of the present invention has repeatedly studied that the same chemical fixation as that of the sample is performed between the sample and the substrate when the sample is chemically fixed. In this case, a method for fixing a sample to the above has been reached. The means used for this can be applied by forming a monomolecular film or its cumulative film by the Langmuir-Blodgett (LB) method. According to this method, an LB film is formed on a substrate using an organic compound having a hydrophilic group, a hydrophobic group, or another functional group, and the functional group reacting with the fixing agent covers the substrate surface. By simply immersing the substrate in a sample solution containing a fixing agent as a substrate for use, chemical fixation between the sample and the sample-substrate is performed. In addition to this chemical fixation, a means for attracting a floating sample in a medium to a fixation substrate can be combined.

【0010】本発明における基板には従来からこの分野
で観察試料の載置に用いられているものが好ましく用い
られ、例えば生体関連物質や有機材料を走査電子顕微鏡
で観察する場合には導電性基板が好適に用いられるがこ
れに限られるものではない。
[0010] As the substrate in the present invention, those conventionally used for mounting an observation sample in this field are preferably used. For example, when a biological substance or an organic material is observed with a scanning electron microscope, a conductive substrate is used. Is preferably used, but is not limited thereto.

【0011】本発明で基板を被覆するLB膜の材料は、
1分子内に疎水基、親水基を持つことにより両親媒性を
有し、更に固定試薬により固定化反応を起こす構造を有
する化合物である。ここで親水基の典型的な例として
は、−COOH、−OH、−NH2 、−CN、−SO2
H、−NR2 、−SR2 、−Si(OR)3 、−Si
(OR)2 H、−Si(OR)H2 (Rはアルキル基ま
たはアリール基)、−PO 4 、及び−SOCH3 などが
ある。また、疎水基の典型的な例としては線状アルキル
基が挙げられるが、これは分岐アルキルあるいは芳香族
環、線状ポリアセチレン鎖であってもかまわない。また
アルキル基内にO、NH、S、SO2 などを有していて
もよい。
In the present invention, the material of the LB film covering the substrate is
Amphipathic by having hydrophobic group and hydrophilic group in one molecule
With a structure that causes an immobilization reaction with an immobilization reagent.
Compound. Here is a typical example of a hydrophilic group
Is -COOH, -OH, -NHTwo , -CN, -SOTwo 
H, -NRTwo , -SRTwo , -Si (OR)Three , -Si
(OR)Two H, -Si (OR) HTwo (R is an alkyl group
Or an aryl group), -PO Four , And -SOCHThree etc
is there. A typical example of a hydrophobic group is a linear alkyl.
Groups, which can be branched alkyl or aromatic
It may be a ring or linear polyacetylene chain. Also
O, NH, S, SO in the alkyl groupTwo Etc.
Is also good.

【0012】この膜形成材料(有機物)をクロロホル
ム、ベンゼン、アセトニトリルなどの溶剤に溶解させ、
水面上に展開すると、その分子は疎水基を水表面に出し
た状態で単分子配向膜を形成する。水面上の単分子膜は
2次元形の特徴を有し、分子がまばらに散開している時
は、1分子あたり面積Aと表面圧πとの間に2次元理想
気体の式 πA=kT が成り立ち、気体膜となる。ここにkはボルツマン定
数、Tは絶対温度である。Aを十分小さくすれば分子間
相互作用が強まり、2次元の固体膜になる。
This film forming material (organic substance) is dissolved in a solvent such as chloroform, benzene, acetonitrile, etc.
When developed on the water surface, the molecule forms a monomolecular alignment film with the hydrophobic group exposed on the water surface. The monomolecular film on the water surface has a two-dimensional characteristic. When the molecules are sparsely dispersed, the formula πA = kT of the two-dimensional ideal gas is obtained between the area A per one molecule and the surface pressure π. The result is a gas film. Here, k is the Boltzmann constant, and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction is strengthened and a two-dimensional solid film is obtained.

【0013】水面上に展開した気体膜から固体膜への変
化は、図1に示したような仕切り板2を設けた装置を用
い、展開面積を制限しながら、表面圧力計にて表面圧を
測定することで知ることができる。この表面圧を一定に
保ちながら、静かに基板を垂直に上下させることで水面
上の単分子膜を基板に移し取ることができる。このよう
にして移し取られた単分子膜は分子が秩序正しく配列し
た膜となる。この方法はLB法として公知の手法であ
る。本発明では、固定剤と反応する官能基が固定用基板
の表面を覆うようにLB膜を形成する。すなわち、官能
基が疎水基自体または疎水基末端に存在する場合は、図
2のように最終累積膜は水中から基板をひきあげた状態
で終了し、また、官能基が親水基自体または親水基側に
存在する場合は、図3のように基板を水中に入れた状
態、すなわち親水基が基板の外側を向く状態で膜つけを
終了し、水面上に残った単分子膜を除去した後基板を引
き上げることで親水基を表面にして被覆された固定用基
板を作成する。このようにして基板上に官能基が表面を
被覆するようにLB膜を形成して固定用基板を得た後、
固定剤を含む生体関連物質の懸濁液中に固定用基板を浸
す。固定剤は前記した様に、固定用基板表面を被覆して
いる官能基と試料側の官能基として、すでに公知である
固定剤から適宜選択して組み合せれば良い。また更に、
浮遊性の試料のうちサイズの比較的大きな、細胞、微生
物などは上記操作だけで自然沈降し基板上で化学固定さ
れるが、試料サイズが非常に小さい場合や、比重が小さ
い場合、あるいは試料が極微量である場合は基板上に試
料を集めるための何らかの操作が望ましい。
The change from the gas film developed on the water surface to the solid film is performed by using a device provided with a partition plate 2 as shown in FIG. You can know by measuring. By keeping the surface pressure constant and raising and lowering the substrate gently vertically, the monomolecular film on the water surface can be transferred to the substrate. The monomolecular film thus transferred is a film in which molecules are arranged in an orderly manner. This method is a method known as the LB method. In the present invention, the LB film is formed such that the functional group that reacts with the fixing agent covers the surface of the fixing substrate. That is, when the functional group is present at the hydrophobic group itself or at the end of the hydrophobic group, as shown in FIG. 2, the final cumulative film ends with the substrate pulled up from water, and the functional group is at the hydrophilic group itself or at the hydrophilic group side. When the substrate is immersed in water as shown in FIG. 3, that is, the film formation is completed in a state in which the hydrophilic group faces the outside of the substrate, and after removing the monomolecular film remaining on the water surface, the substrate is removed. By pulling up, a fixing substrate coated with the hydrophilic group on the surface is prepared. After forming the LB film so that the functional group covers the surface on the substrate in this way to obtain the fixing substrate,
A fixing substrate is immersed in a suspension of a biological substance containing a fixing agent. As described above, the fixing agent may be appropriately selected from known fixing agents and combined as the functional group covering the surface of the fixing substrate and the functional group on the sample side. Moreover,
Of the buoyant samples, relatively large cells, microorganisms, etc., will sediment spontaneously and be chemically fixed on the substrate only by the above operation, but if the sample size is very small, if the specific gravity is small, or if the sample is If the amount is extremely small, some operation for collecting the sample on the substrate is desirable.

【0014】本発明者は溶液中に浮遊する試料を基板方
向へ積極的に移動させるための物理的作用について鋭意
研究した結果、試料溶液−基板間に静電気的引力、ある
いは磁力を働かせた時に良好な結果が得られることを見
いだした。
The present inventor has conducted intensive studies on the physical action for positively moving a sample floating in a solution toward a substrate. As a result, the present inventors have found that an electrostatic attractive force or a magnetic force acts between the sample solution and the substrate. We have found that we can get great results.

【0015】すなわち、目的の試料がプラス(またはマ
イナス)にチャージした材料であれば、試料溶液と固定
用基板との間に電界をかけ、固定用基板をマイナス(あ
るいはプラス)電極側に置くことで基板上に試料を集め
ることができる。試料溶液−固定用基板間にかける電圧
は試料溶液の粘性により異なるが通常は、0.1〜2
0.0V/cmである。
That is, if the target sample is a material charged positively (or negatively), an electric field is applied between the sample solution and the fixing substrate, and the fixing substrate is placed on the negative (or positive) electrode side. Can collect the sample on the substrate. The voltage applied between the sample solution and the fixing substrate varies depending on the viscosity of the sample solution.
0.0 V / cm.

【0016】更に試料が磁気を帯びたもの、あるいは磁
気に反応するものである場合は、固定用基板の下にN
極、またはS極が作用するよう磁石あるいは電磁コイル
を設けることが非常に有効であることを見いだした。こ
れに用いる磁石の強さは試料により異なり得るが、通常
は磁石表面で0.3〜2000ガウスである。こうする
ことで、溶液中に微少量存在する試料でも試料にダメー
ジを与えることなく基板上に集めることができる。
Further, when the sample is magnetized or reacts to magnetism, N
It has been found that it is very effective to provide a magnet or an electromagnetic coil so that the pole or the south pole acts. The strength of the magnet used for this may vary from sample to sample, but is typically 0.3-2000 Gauss on the magnet surface. In this way, even a small amount of a sample existing in the solution can be collected on the substrate without damaging the sample.

【0017】本発明は、溶液中の浮遊試料を電子顕微
鏡、またはSPM等で観察する際極めて有効な手段を与
える。電子顕微鏡、SPMでは希薄溶液からダメージの
少ない状態で試料を集めることが重要で、特にSPMで
は基板にしっかり固定されていることが良質な像を得る
ためには必要不可欠の条件である。本発明によれば、基
板表面が所望の官能基で被覆されるようにLB膜を設け
て固定用基板とし、この上に従来同様の化学固定処理を
行うだけで、観察する試料にダメージをなんら与えるこ
となく強固に固定でき、更に試料の濃度、比重、サイ
ズ、試料の荷電状態、磁性などの性状に応じ適宜物理的
作用も加えることができて、従来の技術では困難であっ
た極微量の浮遊性生体関連物質、有機材料の電子顕微
鏡、及びSPM用試料前処理の問題が解決され、観察用
の安定した試料を得る事が可能となった。
The present invention provides an extremely effective means for observing a floating sample in a solution with an electron microscope or SPM. In an electron microscope and SPM, it is important to collect a sample from a dilute solution with little damage. In particular, in the SPM, firmly fixing the sample to a substrate is an indispensable condition for obtaining a high-quality image. According to the present invention, an LB film is provided so that the surface of the substrate is coated with a desired functional group to form a fixing substrate, and a chemical fixing treatment similar to the conventional one is performed thereon, thereby causing no damage to the sample to be observed. It can be firmly fixed without giving, and it can also add a physical action as appropriate according to the properties such as sample concentration, specific gravity, size, sample charge state, magnetism, etc. The problems of the electron microscope for buoyant living body-related substances and organic materials, and the sample pretreatment for SPM were solved, and it became possible to obtain a stable sample for observation.

【0018】またこのようにして固定用基板に固定され
たものは、下地が高密度な2次元結晶膜であるため、電
子顕微鏡やSPMでの観察に際し、良質のバックグラウ
ンドを与えると云うメリットも備えている。
The substrate fixed to the fixing substrate in this way has the advantage of providing a high-quality background when observed with an electron microscope or SPM because the underlying layer is a high-density two-dimensional crystal film. Have.

【0019】[0019]

【作用・効果】試料を自然沈降させるか、もしくは電界
あるいは磁界などの物理的作用を更に加えることにより
試料を固定用基板上に集積させた状態で、2次元結晶で
あるLB膜上に化学固定されるため、浮遊性の希薄試料
でもほとんど試料にダメージがない自然な状態で、強固
に基板上に固定することが可能となった。この手法で作
成した試料を、電子顕微鏡、あるいはSPMで観察する
と、ダメージの少ない良質な像を効率よく観察できる。
[Function / Effect] Chemical fixation on the LB film which is a two-dimensional crystal in a state where the sample is integrated on the fixation substrate by allowing the sample to settle naturally or by further applying a physical action such as an electric field or a magnetic field. Thus, even a floating dilute sample can be firmly fixed on a substrate in a natural state with little damage to the sample. When a sample prepared by this method is observed with an electron microscope or an SPM, a high-quality image with little damage can be efficiently observed.

【0020】[0020]

【実施例】以下に本発明を比較例との対比で実施例によ
って示す。 (比較例1)Pseudomonas cepacia
KK01株を2YT培地(Trypton 16g,
Yeast Ext 10g,NaCl 5g/H2
1l中)で6時間30℃で培養したものを試料溶液と
して用いた。この時の菌濃度は2.1×105 であっ
た。4%グルタールアルデヒド液、(0.2mol リ
ン酸buffer(pH=7.2)中)を培養液と1:
1の割合で混合し、この混合液を3mlミニシャーレに
注ぎ、図4のようにガラス基板を5mm2 に切り出した
ものをミニシャーレの底に沈め、約4℃で1時間置いて
試料の固定化反応を行なわせた。この過程で化学固定さ
れたKK01はガラス基板上に沈降する。
The present invention will be described below by way of examples in comparison with comparative examples. (Comparative Example 1) Pseudomonas cepacia
The KK01 strain was transformed into a 2YT medium (Trypton 16 g,
Yeast Ext 10g, NaCl 5g / H 2 O
(In 1 liter) for 6 hours at 30 ° C. was used as a sample solution. The bacterial concentration at this time was 2.1 × 10 5 . A 4% glutaraldehyde solution (in 0.2 mol phosphate buffer (pH = 7.2)) was mixed with the culture solution at 1:
Mix at a ratio of 1 and pour this mixture into a 3 ml mini-dish, cut out a glass substrate into 5 mm 2 as shown in FIG. 4, sink it into the bottom of the mini-dish, and place at about 4 ° C. for 1 hour to fix the sample The reaction was carried out. In this process, the chemically fixed KK01 sediments on the glass substrate.

【0021】固定処理終了後、ガラス基板を取り出し以
下の手順に従い脱水処理を行なった。即ち次の各溶液3
mlを入れたシャーレを用意し、試料の乗ったガラス基
板を順次浸しこれを移し替えて行くことで脱水を行なっ
た。
After the fixing process, the glass substrate was taken out and subjected to a dehydration process according to the following procedure. That is, each of the following solutions 3
A Petri dish containing ml was prepared, a glass substrate on which a sample was placed was sequentially immersed, and this was transferred to perform dehydration.

【0022】 100% 水 5分 3回 50% エタノール/水 5分 3回 70% 〃 5分 3回 80% 〃 5分 3回 90% 〃 15分 2回 95% 〃 30分 2回 100% エタノール 30分 2回 脱水処理終了後100%t−ブチルアルコール液に15
分間浸した後、液を新しくし、再に15分間浸した後、
0℃以下まで冷却してt−ブチルアルコールを固化さ
せ、凍結乾燥機により乾燥した。乾燥した試料をイオン
コーターにより80Åの厚さに金をコートし、SEM観
察した。
100% water 5 minutes 3 times 50% ethanol / water 5 minutes 3 times 70% 5 5 minutes 3 times 80% 〃 5 minutes 3 times 90% 15 15 minutes 2 times 95% 30 30 minutes 2 times 100% ethanol Twice for 30 minutes After the dehydration treatment, 15% in 100% t-butyl alcohol solution
After soaking for 15 minutes, renew the solution and soak again for 15 minutes,
The solution was cooled to 0 ° C. or lower to solidify t-butyl alcohol, and dried by a freeze dryer. The dried sample was coated with gold to a thickness of 80 ° using an ion coater and observed by SEM.

【0023】基板上に固定された菌数については、観察
倍率1000倍で80μm×100μmの範囲に観察さ
れる菌数を10視野についてカウントし、その平均値を
求めた。その結果、上記方法によりガラス基板上に固定
された菌数は0であった。 (実施例1)薄膜形成用の有機化合物としてステアリル
アミンをベンゼンに1mg/mlの濃度で溶解した。図
1に示した装置の水槽に水を満たし、水温18℃に設定
した。ガラス基板を水面に対し垂直な方向に上下できる
よう取り付け、その後水面下に下げて準備した。次に前
記のステアリルアミンのベンゼン溶液を300μl水面
上に滴下した。ベンゼンが展開剤として働きステアリル
アミンが水面上に広がる。ベンゼンが蒸発した後、表面
圧を15mN/mまで高め、単分子膜を形成した。表面
圧を一定に保ちながら水面下にあったガラス基板を3m
m/minの速さでゆっくりと引き上げ、ガラス基板が
水面上に完全に出た後再び同じ速度で水面下まで降ろ
し、この状態で水面上に残ったステアリルアミンを取り
除いた後、基板を引き上げ乾燥させた。ガラス基板上に
単分子2層膜を形成した。これによりアミノ基が基板表
面を覆う状態で2分子膜をガラス基板にうつしとること
ができ、固定用基板が作成された。
With respect to the number of bacteria fixed on the substrate, the number of bacteria observed in a range of 80 μm × 100 μm at an observation magnification of 1000 was counted for 10 visual fields, and the average value was obtained. As a result, the number of bacteria fixed on the glass substrate by the above method was 0. Example 1 Stearylamine as an organic compound for forming a thin film was dissolved in benzene at a concentration of 1 mg / ml. The water tank of the apparatus shown in FIG. 1 was filled with water, and the water temperature was set at 18 ° C. The glass substrate was mounted so that it could be moved up and down in a direction perpendicular to the water surface, and then lowered below the water surface to prepare. Next, the above benzene solution of stearylamine was dropped on 300 μl of water. Benzene acts as a spreading agent and stearylamine spreads on the water surface. After the benzene was evaporated, the surface pressure was increased to 15 mN / m to form a monomolecular film. While maintaining the surface pressure constant, 3 m
After slowly pulling out the glass substrate completely above the water surface, lowering it again at the same speed below the water surface, removing the stearylamine remaining on the water surface in this state, and then lifting the substrate and drying it. I let it. A monolayer film was formed on a glass substrate. Thus, the bilayer film could be transferred to the glass substrate with the amino group covering the substrate surface, and the fixing substrate was formed.

【0024】観察用試料としては、比較例1で用いたも
のと同様に培養したPseudomonas cepa
cia KK01培養液の4%グルタールアルデヒド液
との等量混合液を使用した。この混合液を3mlミニシ
ャーレに取り、前記したステアリルアミンの単分子膜を
形成したガラス基板を5mm2 に切り出したものをミニ
シャーレ底に沈め、約4℃で1時間固定化反応を行なっ
た。これによりKK01は化学固定されながら基板上に
沈降し、これと同時にステアリルアミン単分子膜とKK
01の間で架橋反応が起こり固定される。
As an observation sample, Pseudomonas cepa cultured in the same manner as that used in Comparative Example 1 was used.
An equal volume mixture of Cia KK01 culture solution and 4% glutaraldehyde solution was used. This mixed solution was placed in a 3 ml mini-dish, and a glass substrate on which the above-mentioned stearylamine monomolecular film was formed was cut into 5 mm 2, which was sunk on the bottom of the mini-dish, and subjected to an immobilization reaction at about 4 ° C. for 1 hour. As a result, KK01 precipitates on the substrate while being chemically fixed, and at the same time, stearylamine monomolecular film and KK01
A cross-linking reaction takes place during the period of 01 and is fixed.

【0025】次に、これをSEM観察用試料とするため
比較例1と同様に、脱水、凍結乾燥、金蒸着処理を行な
った。
Next, dehydration, freeze-drying and gold vapor deposition were performed in the same manner as in Comparative Example 1 in order to use this as a sample for SEM observation.

【0026】でき上がった試料をSEM観察したとこ
ろ、KK01は鞭毛など非常に良く保存された状態で観
察された。基板上に固定された菌数は比較例1と同じ条
件でカウントし、その平均値を求めたところ、上記方法
によりガラス基板上に固定された菌数は58であった。 (実施例2)図5に示したような電極を備えたミニシャ
ーレを用意した。
When the resulting sample was observed by SEM, KK01 was observed in a very well-preserved state such as flagella. The number of bacteria fixed on the substrate was counted under the same conditions as in Comparative Example 1, and the average value was determined. As a result, the number of bacteria fixed on the glass substrate by the above method was 58. (Example 2) A mini dish having electrodes as shown in FIG. 5 was prepared.

【0027】実施例1と同様の方法でガラス基板にステ
アリルアミン2層膜を形成して固定用基板とし、ミニシ
ャーレのマイナス電極上にセットした。電極は図6に示
した様な約1cm2 の金属メッシュを使用した。実施例
1と同じ観察用試料(等量混合液)の3mlをミニシャ
ーレに静かに入れた。プラス電極を試料液の上方で電極
間の距離が1cmとなるように設置し、電源として乾電
池を用い1.5Vの電圧をかけながら、4℃で1時間固
定処理を行なった後、脱水処理及び凍結乾燥、金コート
は比較例1と同様に行なった。
A stearylamine two-layer film was formed on a glass substrate in the same manner as in Example 1 to form a fixing substrate, which was set on a minus electrode of a mini dish. The electrode used was a metal mesh of about 1 cm 2 as shown in FIG. 3 ml of the same observation sample (equivalent mixture) as in Example 1 was gently placed in a mini dish. A positive electrode was placed above the sample solution so that the distance between the electrodes was 1 cm. Using a dry cell as a power source and applying a voltage of 1.5 V, performing a fixing treatment at 4 ° C. for 1 hour, followed by dehydration treatment and Lyophilization and gold coating were performed in the same manner as in Comparative Example 1.

【0028】比較例1と同じ条件でSEM観察により、
菌数をカウントしその平均を求めたところ、348であ
った。また観察されたKK01は、実施例1と同様鞭毛
など非常に良く保存されたものであった。 (実施例3)固定用基板には、実施例1で作成したステ
アリルアミンが2層累積したガラス基板を5mm2 に切
り出したものを使用した。観察用試料としては次のリポ
ソーム溶液を用いリポソーム径が0.01〜0.1μ
m、脂質はホスファチジルエタノールアミン、溶媒は1
0mmol KCl、pHは10にNaOHで調整、濃
度は5×106 個/mlである。このリポソーム溶液に
グルタールアルデヒドを2%となるように加え、ミニシ
ャーレに3ml注ぎ、前記の固定用基板を静かに浸し
た。4℃で1時間固定処理した後、脱水、乾燥、金蒸着
を比較例1と同様に行ないSEM観察した。
By SEM observation under the same conditions as in Comparative Example 1,
The number of bacteria was counted and the average was found to be 348. The observed KK01 was very well preserved, such as flagella, as in Example 1. The (Example 3) fixing the substrate, was used to cut the glass substrate stearylamine has accumulated two layers produced in Example 1 to 5 mm 2. The following liposome solution was used as the observation sample, and the liposome diameter was 0.01 to 0.1 μm.
m, lipid is phosphatidylethanolamine, solvent is 1
0 mmol KCl, pH is adjusted to 10 with NaOH, and the concentration is 5 × 10 6 / ml. Glutaraldehyde was added to the liposome solution to a concentration of 2%, and 3 ml of the mixture was poured into a mini-dish and the substrate for fixation was gently immersed. After fixing treatment at 4 ° C. for 1 hour, dehydration, drying, and gold deposition were performed in the same manner as in Comparative Example 1, and SEM observation was performed.

【0029】観察条件も比較例1と同じとして(但し観
察倍率は10000倍)リポソーム数をカウントしその
平均を求めたところ、42個であった。 (実施例4)固定用基板、観察用試料は実施例3と同様
のものを用意した。実施例2と同様の電極付きミニシャ
ーレを用いシャーレ底にプラス電極をセットし、この上
にガラス基板を載せ、グルタールアルデヒドが2%とな
るように調整した試料溶液を静かにミニシャーレに3m
l注いだ。電極間の距離を1cmとし、1.5Vの電圧
をかけ、4℃で1時間固定処理した後、脱水、凍結乾
燥、金蒸着処理を施しSEM観察を行なった。観察条件
は実施例3と同様にしてリポソーム数をカウントしその
平均を求めたところ、891個であった。 (実施例5)薄膜形成用有機化合物としてアラキン酸ア
ミド(又はアラキドアミド)をベンゼンに溶解し、1×
10-3M溶液として用いた外は実施例1と同様にして固
定用基板を作成した。この場合表面圧は10mN/mま
で高めて行なった。
The observation conditions were the same as in Comparative Example 1 (observation magnification was 10,000 times). The number of liposomes was counted, and the average was obtained. (Example 4) The same fixing substrate and observation sample as in Example 3 were prepared. Using a mini-dish with the same electrode as in Example 2, a plus electrode was set at the bottom of the Petri dish, a glass substrate was placed thereon, and a sample solution adjusted so that glutaraldehyde became 2% was gently placed on the mini-dish at 3 m.
I poured. The distance between the electrodes was set to 1 cm, a voltage of 1.5 V was applied, and a fixing treatment was performed at 4 ° C. for 1 hour, followed by dehydration, freeze-drying, and gold vapor deposition treatment, followed by SEM observation. The number of liposomes was counted under the same observation conditions as in Example 3, and the average thereof was found to be 891. Example 5 An arachidic amide (or arachidamide) as an organic compound for forming a thin film was dissolved in benzene, and 1 ×
A fixing substrate was prepared in the same manner as in Example 1 except that a 10 -3 M solution was used. In this case, the surface pressure was increased to 10 mN / m.

【0030】観察用試料として、走磁性細菌(Magn
etotactic spirillum strai
n MS−1)(培地:0.1%グルタメート/M9;
20℃72時間培養;菌数:2×104 /ml)を用意
し、これに2%濃度となるようにグルタールアルデヒド
を加えた。比較例1と同様のミニシャーレに3mlの試
料溶液を注ぎ、5mm2 に切り出したアラキン酸アミド
(又はアラキドアミド)付きガラス基板を静かに浸し、
4℃で1時間固定処理を行なった。脱水、凍結乾燥、金
蒸着処理を施しSEM観察を行なった。観察条件は実施
例1に同じにして菌数をカウントしその平均を求めたと
ころ、0であった。 (実施例6)実施例5で作成した固定用基板(5mm
2 )をミニシャーレ内に置き、図7の様に基板の真下に
磁石(磁石表面での磁力:約1000ガウス)を基板側
にN極を向けてセットした。実施例5と同様のグルター
ルアルデヒドを加えた試料溶液をミニシャーレに3ml
静かに流し込み、4℃で1時間固定処理を行なった。脱
水、凍結乾燥、金蒸着処理を施しSEM観察を行ない、
観察条件は実施例1と同じにして菌数をカウントしその
平均を求めたところ、24であった。
As observation samples, magnetotactic bacteria (Magn) were used.
etotic spirillum strai
n MS-1) (medium: 0.1% glutamate / M9;
(Bacterial count: 2 × 10 4 / ml) was prepared, and glutaraldehyde was added thereto to a concentration of 2%. 3 ml of the sample solution was poured into the same mini-dish as in Comparative Example 1, and a glass substrate with arachidic amide (or arachidamide) cut into 5 mm 2 was gently immersed.
The fixing treatment was performed at 4 ° C. for 1 hour. Dehydration, freeze-drying, and gold vapor deposition were performed, and SEM observation was performed. The observation conditions were the same as in Example 1, the number of bacteria was counted, and the average was obtained. (Example 6) The fixing substrate (5 mm
2 ) was placed in a mini dish, and a magnet (magnetic force on the magnet surface: about 1000 gauss) was set directly below the substrate with the N pole facing the substrate as shown in FIG. 3 ml of the sample solution containing the same glutaraldehyde as in Example 5 was placed in a mini-dish.
The mixture was poured gently and fixed at 4 ° C. for 1 hour. Dehydration, freeze-drying, gold deposition treatment and SEM observation,
The observation conditions were the same as in Example 1, the number of bacteria was counted, and the average was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】LB膜成膜装置の図。FIG. 1 is a diagram of an LB film forming apparatus.

【図2】疎水基で被覆された固定用基板の作成を示す
図。
FIG. 2 is a diagram showing the preparation of a fixing substrate coated with a hydrophobic group.

【図3】親水基で被覆された固定用基板の作成を示す
図。
FIG. 3 is a diagram showing the preparation of a fixing substrate coated with a hydrophilic group.

【図4】実施例1における実施形態の説明図。FIG. 4 is an explanatory diagram of an embodiment in Example 1.

【図5】試料溶液−基板間に電圧をかける場合の説明
図。
FIG. 5 is an explanatory diagram when a voltage is applied between a sample solution and a substrate.

【図6】電極を示す図。FIG. 6 is a diagram showing electrodes.

【図7】固定用基板に磁石を設置した場合の説明図。FIG. 7 is an explanatory view when a magnet is provided on a fixing substrate.

【符号の説明】[Explanation of symbols]

1 水槽 2 仕切り板 3 基板 4 水面上の単分子膜 5 ミニシャーレ 6 固定剤を含む試料溶液 7、8 電極 9 直流電源 10 磁石 DESCRIPTION OF SYMBOLS 1 Water tank 2 Partition plate 3 Substrate 4 Monomolecular film on water surface 5 Mini dish 6 Sample solution containing fixing agent 7, 8 Electrode 9 DC power supply 10 Magnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、1分子中に少なくとも1個以
上の疎水基と、少なくとも1個以上の親水基を有する有
機化合物の単分子膜あるいはその累積膜を設けたことを
特徴とする観察用生体関連物質の固定用基板の表面を形
成する分子の疎水基、親水基、あるいはその他の官能基
と親和性を有する物質の共存下で有機材料または生体関
連物質を固定化反応により化学結合を形成させて固定用
基板に固定させることを特徴とする観察試料の固定方
法。
An observation characterized in that a monomolecular film of an organic compound having at least one or more hydrophobic groups and at least one or more hydrophilic groups in one molecule or a cumulative film thereof is provided on a substrate. Immobilization of organic materials or biological substances in the presence of substances having an affinity for the hydrophobic, hydrophilic, or other functional groups of the molecules forming the surface of the substrate for immobilizing biological substances A method for fixing an observation sample, comprising forming the sample and fixing the sample on a fixing substrate.
【請求項2】 化学結合の形成と同時に物理的作用を作
用させて試料を基板上に集積させることを特徴とする請
求項1に記載の方法。
2. The method according to claim 1, wherein the sample is integrated on the substrate by applying a physical action simultaneously with the formation of the chemical bond.
【請求項3】 物理的作用が静電気的引力であることを
特徴とする請求項2に記載の方法。
3. The method according to claim 2, wherein the physical effect is an electrostatic attraction.
【請求項4】 物理的作用が磁気力であることを特徴と
する請求項2に記載の方法。
4. The method according to claim 2, wherein the physical effect is a magnetic force.
JP28082696A 1996-10-23 1996-10-23 Method for fixing sample to substrate Pending JPH10123031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28082696A JPH10123031A (en) 1996-10-23 1996-10-23 Method for fixing sample to substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28082696A JPH10123031A (en) 1996-10-23 1996-10-23 Method for fixing sample to substrate

Publications (1)

Publication Number Publication Date
JPH10123031A true JPH10123031A (en) 1998-05-15

Family

ID=17630531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28082696A Pending JPH10123031A (en) 1996-10-23 1996-10-23 Method for fixing sample to substrate

Country Status (1)

Country Link
JP (1) JPH10123031A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057011A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Apparatus and method for depositing film
JP2008275481A (en) * 2007-04-27 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Device and method for analyzing biomolecule function structure
JP2008286591A (en) * 2007-05-16 2008-11-27 Kao Corp Treatment method of sem microbial sample
JP2009041931A (en) * 2007-08-06 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Protein function analyzer
JP2010054214A (en) * 2008-08-26 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> Substrate for analysis of biomolecular function, sample for analysis of biomolecular function and method of analyzing biomolecular function
JP2016085119A (en) * 2014-10-27 2016-05-19 国立大学法人山口大学 Preparation method for electron microscope observation sample
CN112687605A (en) * 2020-12-28 2021-04-20 华东师范大学 Method for reducing chip electron radiation damage and chip with less electron radiation damage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057011A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Apparatus and method for depositing film
JP2008275481A (en) * 2007-04-27 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Device and method for analyzing biomolecule function structure
JP2008286591A (en) * 2007-05-16 2008-11-27 Kao Corp Treatment method of sem microbial sample
JP2009041931A (en) * 2007-08-06 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Protein function analyzer
JP2010054214A (en) * 2008-08-26 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> Substrate for analysis of biomolecular function, sample for analysis of biomolecular function and method of analyzing biomolecular function
JP2016085119A (en) * 2014-10-27 2016-05-19 国立大学法人山口大学 Preparation method for electron microscope observation sample
CN112687605A (en) * 2020-12-28 2021-04-20 华东师范大学 Method for reducing chip electron radiation damage and chip with less electron radiation damage
CN112687605B (en) * 2020-12-28 2022-07-29 华东师范大学 Method and chip for reducing electron radiation damage

Similar Documents

Publication Publication Date Title
Bottomley et al. Scanning probe microscopy
US20160067738A1 (en) Functionalized carbon membranes
CA2182905C (en) Method for ordering macromolecules by means of a moving meniscus, and uses thereof
US20070256480A1 (en) Scanning probe microscopy tips composed of nanoparticles and methods to form same
Suzuki et al. Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces
JP3670019B2 (en) Apparatus for aligning macromolecules in parallel and use thereof
Vaughan et al. Sulfur based self-assembled monolayers (SAM’s) on piezoelectric crystals for immunosensor development
Müller et al. Preparation techniques for the observation of native biological systems with the atomic force microscope
Totaro et al. Tetrairon (III) single-molecule magnet monolayers on gold: insights from ToF-SIMS and Isotopic Labeling
Schuster et al. Nanotechnology with S-layer proteins
JPH10123031A (en) Method for fixing sample to substrate
Schuster et al. Nanotechnology with S-layer proteins
US20060003401A1 (en) Method for preparing a water-soluble carbon nanotube wrapped with self-assembly materials
JP4178107B2 (en) Preparation of polymer particles
KR100736358B1 (en) Method to assemble nanostructures at the end of scanning probe microscope&#39;s probe and scanning probe microscope with the probe
Chuang et al. Enhancing of intensity of fluorescence by DEP manipulations of polyaniline-coated Al2O3 nanoparticles for immunosensing
Padeste et al. Fabrication and characterization of nanostructured gold electrodes for electrochemical biosensors
RU2317100C2 (en) Method for protein film formation on solid substrates
Andersen et al. Covalently immobilised cytochrome c imaged by in situ scanning tunnelling microscopy
Alves et al. Biosensors based on biological nanostructures
US20080093550A1 (en) Method For Adhering Nanostructures to End of Probe of Microscope and Microscope Having Probe Made By the Same Method
Besleaga et al. Atomic force spectroscopy with magainin 1 functionalized tips and biomimetic supported lipid membranes
Bayburt et al. Structure, behavior, and manipulation of nanoscale biological assemblies
KR20230042355A (en) Methods for detecting microstructures and molecules
Brennan et al. Hydronium ion sensitivity of surface stabilized stearic acid membranes prepared by Langmuir-Blodgett monolayer transfer