JPH10122839A - Three-dimensional shape measuring device by optically synchronous detection - Google Patents

Three-dimensional shape measuring device by optically synchronous detection

Info

Publication number
JPH10122839A
JPH10122839A JP27314196A JP27314196A JPH10122839A JP H10122839 A JPH10122839 A JP H10122839A JP 27314196 A JP27314196 A JP 27314196A JP 27314196 A JP27314196 A JP 27314196A JP H10122839 A JPH10122839 A JP H10122839A
Authority
JP
Japan
Prior art keywords
light
signal light
dimensional shape
grating
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27314196A
Other languages
Japanese (ja)
Inventor
Masami Yamamoto
正美 山本
Yasunori Okamoto
恭典 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP27314196A priority Critical patent/JPH10122839A/en
Publication of JPH10122839A publication Critical patent/JPH10122839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a highly sensitive three-dimensional shape measurement even under an environment where a disturbance light is mixed by individually performing the phase modulation of output light from a laser light source that is branched into a plurality of systems by a branch means so that they are related constantly one another. SOLUTION: When a reflection signal light 14 and a reference light 13 enter a optically synchronous detection means 6 with a constant phase difference, interference fringes are formed and a phase grating G with a refractive index distribution corresponding to the interference fringes is formed at the detection means 6 after a constant response time which is determined by the material of the incidence detection means 6. By adjusting the phase modulation using a phase modulation means 3, the position and the grating interval of the grating G formed by the detection means 6 can be adjusted properly. After an effective grating G has been formed in the detection means 6, only the signal light 14 with a constant phase difference to the reference light 13 is diffracted by the formed grating G out of input light 16 where a disturbance light 15 has been mixed in the signal light 14 that enters the detection means 6, and is outputted as a synchronous detection light 17 by the interference with the reference light 13. As the result, only the signal light 14 is converted into an electrical signal 18 by a light receiving means 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フォトリフラクテ
ィブ効果の光情報処理への応用に関し、更に詳しくは、
フォトリフラクティブ材料を用いた光学的同期検出によ
る3次元形状計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the application of photorefractive effects to optical information processing.
The present invention relates to a three-dimensional shape measuring apparatus using optical synchronous detection using a photorefractive material.

【0002】[0002]

【従来の技術】近年、コンピュータ画像処理技術、及
び、半導体技術の飛躍的な進歩により、電気的な画像処
理技術が主流であったが、並列/直列変換による律速や
LSI(大規模集積回路)の配線遅延等による帯域制限
のため、電気的な画像処理技術だけによる高速化に限界
が見え始め、光本来の超並列性を生かし、新しい非線形
光学現象等を積極的に取り入れた新しい光情報処理に関
する研究が活発である。中でも、フォトリフラクティブ
効果に起因する光波の干渉現象である2光波混合、4光
波混合による位相共役波の発生を応用した光信号の光学
的同期検出の可能性についての有意義な示唆がなされて
いる。光学的同期検出の動作原理については、例えば、
「BSO単結晶中における異方性自己回折を用いた光学
的ロックイン検出」(光学 第24巻第7号 1995
年7月)、または、「Photorefractive
optical lock−in detecto
r」(Optics Letters/Vol.16,
No.18/Sep.15,1991)に記載がある。
2. Description of the Related Art In recent years, electrical image processing technology has become mainstream due to the dramatic progress of computer image processing technology and semiconductor technology. However, rate limiting by parallel / serial conversion and LSI (Large Scale Integrated Circuit) Due to bandwidth limitations due to wiring delays, etc., the limit to speeding up with only electrical image processing technology is beginning to appear, and new optical information processing that actively takes advantage of new nonlinear optical phenomena, taking advantage of the massive parallelism inherent in light Research on is active. Above all, a significant suggestion has been made regarding the possibility of optically synchronous detection of an optical signal using generation of a phase conjugate wave by two-wave mixing and four-wave mixing, which is an interference phenomenon of light waves caused by the photorefractive effect. For the operation principle of optical synchronization detection, for example,
"Optical Lock-in Detection Using Anisotropic Self-Diffraction in BSO Single Crystal" (Optics Vol. 24, No. 7, 1995)
July) or “Photorefractive
optical lock-in detecto
r "(Optics Letters / Vol.16,
No. 18 / Sep. 15, 1991).

【0003】一方、物体の3次元形状計測に関しては、
ステレオペア画像からの3次元形状計測や、モアレ縞画
像からの3次元形状計測等が上述のコンピュータ画像処
理技術を用いて実用化されている。尚、モアレ縞とは、
二つ以上の規則的な模様を重ねたり、規則的な模様を規
則的に標本化したときに観察できる元の模様とは異なっ
た縞模様をいう。例えば、直線格子の影を対象物体に投
影すると、格子線の影は物体の形状に応じて変形され
る。この変形された格子線の影(変形格子像)と元の直
線格子とを重ね合わせると、変形格子像の格子のピッチ
或いは方向の僅かのずれがモアレ縞として観察される。
On the other hand, regarding the three-dimensional shape measurement of an object,
Measurement of a three-dimensional shape from a stereo pair image, measurement of a three-dimensional shape from a moire fringe image, and the like have been put to practical use using the above-described computer image processing technology. The moire fringe is
A stripe pattern different from the original pattern that can be observed when two or more regular patterns are overlapped or a regular pattern is regularly sampled. For example, when a shadow of a straight grid is projected on a target object, the shadow of the grid line is deformed according to the shape of the object. When the shadow of the deformed grid line (the deformed grid image) is superimposed on the original straight grid, a slight shift in the pitch or direction of the grid of the deformed grid image is observed as moire fringes.

【0004】[0004]

【発明が解決しようとする課題】上述の従来の3次元形
状計測では、光源として自然光等のインコヒーレントな
一般光を使用して計測可能であるが、太陽光等の外乱光
が観察光に重畳された場合、観察光における変形格子像
等の情報信号のSN比が極度に低下し、変形格子像等の
画像情報に基づく3次元形状計測ができなくなるという
問題があった。また、単色光を用いたり、コヒーレント
な偏光特性を有するレーザ光を光源として単純に用いる
だけでは、高輝度の外乱光に対しては十分な雑音成分の
除去ができなかった。本発明の目的は、フォトリフラク
ティブ効果を応用し、光本来の超並列性を生かした高速
の光学的同期検出による光信号雑音除去を行い、上述の
従来の3次元形状計測が有する問題点を解消し、外乱光
が混入する環境下でも高感度の3次元形状計測が可能な
3次元形状計測装置を提供する点にある。
In the above-described conventional three-dimensional shape measurement, measurement can be performed using incoherent general light such as natural light as a light source, but disturbance light such as sunlight is superimposed on observation light. In such a case, there is a problem that the SN ratio of an information signal such as a deformed grating image in the observation light is extremely reduced, and three-dimensional shape measurement based on image information such as the deformed grating image cannot be performed. Further, by using monochromatic light or simply using laser light having coherent polarization characteristics as a light source, it was not possible to sufficiently remove noise components from high-luminance disturbance light. An object of the present invention is to apply the photorefractive effect and remove optical signal noise by high-speed optical synchronization detection utilizing the superparallelism inherent in light, thereby solving the above-mentioned problems of the conventional three-dimensional shape measurement. It is another object of the present invention to provide a three-dimensional shape measuring apparatus capable of performing highly sensitive three-dimensional shape measurement even in an environment where disturbance light is mixed.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明による光学的同期検出による3次元形状計測装
置の第一の特徴構成は、特許請求の範囲の欄の請求項1
に記載した通り、レーザ光源と、前記レーザ光源からの
出力光を2系統に分岐する分岐手段と、前記分岐手段で
分岐した前記出力光を相互に一定の関係を有するように
各別に位相変調を施し、一方が信号光を出力し、他方が
参照光を出力する二つの位相変調手段と、前記信号光に
空間的変調を施す空間変調手段と、前記空間変調手段で
変調された空間変調信号光を被計測物体に照射して得ら
れる反射信号光に外乱光が混入した入力光と前記参照光
を入力して、前記入力光の中から前記参照光と一定の関
係を有する前記反射信号光を選択的に同期検出し同期検
出光として出力するフォトリフラクティブ効果を有する
光同期検出手段と、前記同期検出光を受光して電気信号
に変換する受光手段と、前記受光手段で変換された電気
信号に基づいて所定の物体計測処理を実行する計測処理
手段を備えてなり、前記同期検出され前記電気信号に変
換された前記反射信号光の空間変調情報と前記空間変調
信号光の空間変調情報に基づいて前記被計測物体の3次
元形状の計測を行う点にある。
The first characteristic configuration of the three-dimensional shape measuring apparatus by optical synchronization detection according to the present invention for achieving this object is described in claim 1.
As described in the above, a laser light source, a branching means for branching the output light from the laser light source into two systems, and separately phase-modulating the output light branched by the branching means so as to have a constant relationship to each other. Two phase modulators, one outputting a signal light and the other outputting a reference light, a spatial modulator for spatially modulating the signal light, and a spatially modulated signal light modulated by the spatial modulator. Input the reference light and the input light mixed with disturbance light to the reflected signal light obtained by irradiating the object to be measured, the reflected signal light having a certain relationship with the reference light from the input light Optical synchronization detecting means having a photorefractive effect for selectively detecting synchronization and outputting as synchronization detection light, light receiving means for receiving the synchronization detection light and converting it to an electric signal, and converting the electric signal converted by the light receiving means into an electric signal. Place based on Measurement processing means for executing the object measurement process of the object, and the measured object is measured based on the spatial modulation information of the reflected signal light and the spatial modulation information of the spatially modulated signal light, which are synchronously detected and converted into the electric signal. The point is that the three-dimensional shape of the object is measured.

【0006】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した通り、上述の第一の特徴構成に加
えて、前記光同期検出手段が量子井戸構造を有する化合
物半導体である点にある。
According to a second feature of the present invention, as described in claim 2 of the claims, in addition to the above-mentioned first feature, the compound semiconductor in which the optical synchronization detecting means has a quantum well structure is provided. It is in the point that is.

【0007】以下に作用を説明する。第一の特徴構成に
よれば、前記分岐手段で2系統に分岐した前記レーザ光
源からの出力光を相互に一定の関係を有するように各別
に位相変調を施すことで、前記信号光と前記参照光の相
互に一定の位相差が発生し、更に、前記信号光を前記空
間変調手段で変調した後に被計測物体に照射して得られ
る前記反射信号光と前記参照光も同様の位相差が発生
し、前記参照光と前記反射信号光を前記光同期検出手段
上で干渉縞が発生するように入射させると、所定の応答
時間経過後にフォトリフラクティブ効果を有する前記光
同期検出手段は前記干渉縞に相応する屈折率分布を有す
る位相格子を内部に形成する。尚、前記位相変調手段に
よる位相変調を適当に調整することで、前記光同期検出
手段に形成される位相格子の位置並びに格子間隔を適切
に調整できる。上記のように前記光同期検出手段に一旦
有効な位相格子が形成された後は、前記光同期検出手段
に入射する前記反射信号光に外乱光が混入した前記入力
光の内、前記参照光と一定の位相差を有する前記反射信
号光のみが前記形成された位相格子により回折し前記参
照光との干渉により強調されて同期検出光として出力す
る。この結果、前記光同期検出手段において、他の外乱
光は除去されるため、外乱光の混入にかかわらず、所望
の前記反射信号光だけが次段の前記受光手段で電気信号
に変換されて所定の処理が施される。
The operation will be described below. According to the first characteristic configuration, the output light from the laser light source branched into two systems by the branching unit is separately subjected to phase modulation so as to have a fixed relationship to each other, so that the signal light and the reference light are referred to. A constant phase difference occurs between the light beams, and further, the same phase difference occurs between the reflected signal light and the reference light obtained by irradiating the object to be measured after modulating the signal light with the spatial modulation means. Then, when the reference light and the reflected signal light are incident on the optical synchronization detecting means so that interference fringes are generated, the optical synchronization detecting means having a photorefractive effect after a predetermined response time elapses is applied to the interference fringes. A phase grating having a corresponding refractive index distribution is formed therein. By appropriately adjusting the phase modulation by the phase modulation means, the position and the interval of the phase grating formed in the optical synchronization detection means can be appropriately adjusted. Once an effective phase grating is formed in the optical synchronization detecting means as described above, the reference light and the input light in which disturbance light is mixed into the reflected signal light incident on the optical synchronization detecting means. Only the reflected signal light having a certain phase difference is diffracted by the formed phase grating, emphasized by interference with the reference light, and output as synchronous detection light. As a result, other disturbance light is removed by the optical synchronization detecting means, so that only the desired reflected signal light is converted into an electric signal by the light receiving means at the next stage and the predetermined Is performed.

【0008】更に、被計測物体に照射する空間変調信号
光及び前記参照光は、前記分岐手段の前後で、例えば、
ビーム径を拡大した大径ビーム、または、一本のビーム
を複数本のビーム束に2次元的に拡張したビーム束に変
換され、前記空間変調手段で、前記大径ビームまたは前
記ビーム束が2次元的に規則的な格子模様となるように
空間的変調を施される。また、別の空間的変調の方法と
して、上記のように大径ビームまたはビーム束に変換せ
ずに、一本のビームを被計測物体表面上を走査しながら
照射する際に、走査方向に応じて強度変調を施すことで
空間的変調を行い、実質的に前記被計測物体に規則的な
格子模様を投影することも可能である。このように、前
記空間変調手段で空間変調された前記規則的な格子模様
を前記被計測物体に投影して別方向から観測すると、前
記規則的な格子模様は前記被計測物体の表面形状に応じ
た変形格子模様を形成する。
Further, the spatially modulated signal light and the reference light that irradiate the object to be measured are, for example, before and after the branching means.
The large-diameter beam whose beam diameter is expanded or a single beam is converted into a two-dimensionally expanded beam bundle into a plurality of beam bundles. The spatial modulation is performed so as to form a dimensional regular lattice pattern. As another spatial modulation method, when a single beam is irradiated while scanning over the surface of the object to be measured without being converted into a large-diameter beam or a beam bundle as described above, it is determined according to the scanning direction. It is also possible to perform spatial modulation by applying intensity modulation to project a regular lattice pattern on the measured object. In this way, when the regular lattice pattern spatially modulated by the spatial modulation means is projected on the object to be measured and observed from another direction, the regular lattice pattern is in accordance with the surface shape of the object to be measured. A deformed lattice pattern is formed.

【0009】以上の結果として、前記変形された格子模
様が、前記光同期検出手段において高感度で抽出できる
ために、前記格子模様の変形状況を前記計測処理手段が
解析することで前記被計測物体の高精度な3次元形状計
測が可能となるのである。
As a result, since the deformed lattice pattern can be extracted with high sensitivity by the optical synchronization detecting means, the measurement processing means analyzes the deformation state of the lattice pattern, and thereby the object to be measured is analyzed. It is possible to measure the three-dimensional shape with high accuracy.

【0010】第二の特徴構成によれば、前記参照光と前
記反射信号光が前記光同期検出手段上で干渉縞を形成し
てから、前記光同期検出手段が前記干渉縞に相応する屈
折率分布を有する位相格子を内部に形成するまでの応答
時間を大幅に短縮できるのである。前記空間変調手段に
よる空間変調が一本のビームを被計測物体表面上を走査
しながら照射して行う場合は、走査位置によって前記光
同期検出手段に形成される位相格子が異なるため、走査
速度が高速な場合、位相格子の生成が遅れて正確な前記
反射信号光の光同期検出ができなくなるおそれが生じた
り、また、前記計測処理手段からの制御によって前記被
計測物体を回転または移動させて、変形格子模様からの
情報抽出量を増加させることでより高度な3次元形状計
測を試みる場合など、前記被計測物体を回転または移動
させて情報抽出するサンプリング速度が前記応答時間で
律速されるという問題が、処理速度の高速化に伴い顕在
化するおそれがある。本特徴構成によれば、現在、フォ
トリフラクティブ効果を有する常誘電体や化合物半導体
材料で得られている最小応答時間が、常誘電体のBSO
(Bi12SiO20)でミリ秒オーダー、GaAs化合物
半導体で10マイクロ秒オーダーであるのに対して、化
合物半導体に量子井戸構造を採用することで、マイクロ
秒オーダー以下まで高速化できる可能性があり、マイク
ロ秒オーダーの応答時間を実現することで、実時間処理
に適した超高速で、且つ、高感度、高精度の3次元形状
計測が可能となるのである。
According to a second characteristic configuration, after the reference light and the reflected signal light form interference fringes on the optical synchronization detecting means, the optical synchronization detecting means sets a refractive index corresponding to the interference fringes. The response time required to form a phase grating having a distribution therein can be greatly reduced. When the spatial modulation by the spatial modulation unit is performed by irradiating a single beam while scanning the surface of the object to be measured, the scanning speed is low because the phase grating formed on the optical synchronization detection unit differs depending on the scanning position. In the case of high speed, there is a possibility that the generation of the phase grating is delayed and the optical synchronization of the reflected signal light cannot be accurately detected, or the object to be measured is rotated or moved by control from the measurement processing means, The problem is that the sampling speed for extracting information by rotating or moving the object to be measured is limited by the response time, for example, when trying to measure a more advanced three-dimensional shape by increasing the amount of information extraction from the deformed lattice pattern. However, there is a possibility that this will become apparent as the processing speed increases. According to this characteristic configuration, the minimum response time currently obtained with a paraelectric or compound semiconductor material having a photorefractive effect is the BSO of the paraelectric.
In contrast to the millisecond order of (Bi 12 SiO 20 ) and the order of 10 microseconds for a GaAs compound semiconductor, there is a possibility that the speed can be reduced to the order of microseconds or less by employing a quantum well structure in the compound semiconductor. By realizing a response time on the order of microseconds, it is possible to measure an ultra-high-speed, high-sensitivity, high-accuracy three-dimensional shape suitable for real-time processing.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の一実施形態である光学的
同期検出による3次元形状計測装置の概略構成図であ
る。図1に示すように、前記3次元形状計測装置は、レ
ーザ光源1と、前記レーザ光源1からの出力光10を2
系統に分岐する分岐手段2と、前記分岐手段2で分岐し
た前記出力光10a、10bを相互に一定の関係を有す
るように各別に位相変調を施し、一方が信号光11を出
力し、他方が参照光13を出力する二つの位相変調手段
3、4と、前記信号光11に空間的変調を施す空間変調
手段9と、前記空間変調手段9で変調された空間変調信
号光12を被計測物体5に照射して得られる反射信号光
14に外乱光15が混入した入力光16と前記参照光1
3を入力して、前記入力光16の中から前記参照光13
と一定の関係を有する前記反射信号光14を選択的に同
期検出し同期検出光17として出力するフォトリフラク
ティブ効果を有する光同期検出手段6と、前記同期検出
光17を受光して電気信号18に変換する受光手段7
と、前記受光手段7で変換された電気信号18に基づい
て所定の物体計測処理を実行する計測処理手段8より構
成されている。
FIG. 1 is a schematic configuration diagram of a three-dimensional shape measuring apparatus using optical synchronization detection according to an embodiment of the present invention. As shown in FIG. 1, the three-dimensional shape measuring apparatus converts a laser light source 1 and an output light 10 from the laser light source 1 into two.
The branching means 2 for branching into a system and the output lights 10a and 10b branched by the branching means 2 are respectively subjected to phase modulation so as to have a fixed relationship with each other. Two phase modulating means 3 and 4 for outputting a reference light 13, a spatial modulating means 9 for spatially modulating the signal light 11, and a spatially modulated signal light 12 modulated by the spatial modulating means 9 to an object to be measured. 5, the input light 16 in which disturbance light 15 is mixed with the reflected signal light 14 obtained by irradiating the reference light 1
3 to input the reference light 13 from the input light 16.
A synchronous detection means 6 having a photorefractive effect for selectively detecting the reflected signal light 14 having a fixed relationship with the reflected signal light 14 and outputting the same as a synchronized detection light 17; Light receiving means 7 for conversion
And measurement processing means 8 for executing predetermined object measurement processing based on the electric signal 18 converted by the light receiving means 7.

【0013】前記レーザ光源1の発振波長は前記光同期
検出手段6の感度域に合わせて決定される。前記発振波
長範囲は、前記光同期検出手段6がBSOを用いて構成
されている場合は、400nmから700nmで、Ga
Asの場合では、900nmから1500nmである。
本実施形態では、前記光同期検出手段6として、BS
O、GaAs、または、AlGaAs/GaAs量子井
戸構造化合物半導体を使用する。
The oscillation wavelength of the laser light source 1 is determined according to the sensitivity range of the optical synchronization detecting means 6. The oscillation wavelength range is from 400 nm to 700 nm when the optical synchronization detecting means 6 is configured using BSO,
In the case of As, it is 900 nm to 1500 nm.
In the present embodiment, as the optical synchronization detecting means 6, BS
O, GaAs, or AlGaAs / GaAs quantum well structure compound semiconductor is used.

【0014】前記分岐手段2はレーザ光学で通常に一般
に使用されるビームスプリッタである。前記位相変調手
段3、4はEOM(電気光学効果を利用した光変調器)
またはAOM(音響光学効果を利用した光変調器)で構
成され、前記位相変調手段3、4に各別に異なる変調指
数μ1 、μ2 と異なる変調角周波数ω1 、ω2 の変調信
号19、20が入力される。
The branching means 2 is a beam splitter generally used in laser optics. The phase modulating means 3 and 4 are EOM (optical modulator utilizing electro-optic effect)
Alternatively, the phase modulators 3 and 4 are composed of AOMs (optical modulators utilizing an acousto-optic effect), and the phase modulators 3 and 4 respectively have different modulation indices μ 1 and μ 2 and modulation signals 19 with different modulation angular frequencies ω 1 and ω 2 , 20 is input.

【0015】前記空間変調手段9は表面に規則的な2次
元状の格子模様Aが形成された、前記参照光13を前記
格子模様に応じて透過可能な光学ガラス平板である。ま
た、前記格子模様Aを自在に変更できるように、液晶を
錫をドープしたインジウム酸化物等からなる導電性薄膜
を光学ガラス平板表面に形成した透明電極で両側から挟
んで構成される液晶表示板でも構わない。
The spatial modulation means 9 is an optical glass flat plate having a regular two-dimensional lattice pattern A formed on its surface and capable of transmitting the reference light 13 according to the lattice pattern. Also, a liquid crystal display panel comprising a conductive thin film made of tin-doped indium oxide or the like sandwiched between transparent electrodes formed on the surface of an optical glass flat plate from both sides so that the lattice pattern A can be freely changed. But it doesn't matter.

【0016】前記光同期検出手段6に前記反射信号光1
4と前記参照光13が一定の位相差で入射すると干渉縞
が形成され、入射後、前記光同期検出手段6の材料で決
定される一定の応答時間後に前記干渉縞に相応する屈折
率分布を有する位相格子Gが前記光同期検出手段6に形
成される。前記位相変調手段3による位相変調を適当に
調整することで、前記光同期検出手段6に形成される位
相格子Gの位置並びに格子間隔を適切に調整できる。上
記のように前記光同期検出手段6に一旦有効な位相格子
Gが形成された後は、前記光同期検出手段6に入射する
前記反射信号光14に外乱光15が混入した前記入力光
16の内、前記参照光13と一定の位相差を有する前記
反射信号光14のみが前記形成された位相格子Gにより
回折し前記参照光13との干渉により強調されて同期検
出光17として出力する。この結果、前記光同期検出手
段6において、他の外乱光15は除去されるため、外乱
光15の混入にかかわらず、所望の前記反射信号光14
だけが次段の前記受光手段7で電気信号18に変換され
て所定の処理が施される。
The reflected signal light 1 is supplied to the optical synchronization detecting means 6.
When the light 4 and the reference light 13 enter with a certain phase difference, interference fringes are formed. After the incidence, after a certain response time determined by the material of the light synchronization detecting means 6, a refractive index distribution corresponding to the interference fringes is formed. A phase grating G is formed on the optical synchronization detecting means 6. By appropriately adjusting the phase modulation by the phase modulating means 3, the position and the grating interval of the phase grating G formed in the optical synchronization detecting means 6 can be appropriately adjusted. After the effective phase grating G is once formed in the optical synchronization detecting means 6 as described above, the input light 16 in which disturbance light 15 is mixed with the reflected signal light 14 incident on the optical synchronization detecting means 6 is used. Among them, only the reflected signal light 14 having a certain phase difference from the reference light 13 is diffracted by the formed phase grating G, is enhanced by interference with the reference light 13, and is output as the synchronization detection light 17. As a result, since the other disturbance light 15 is removed by the optical synchronization detecting means 6, the desired reflected signal light 14 can be obtained regardless of the mixing of the disturbance light 15.
Is converted into an electric signal 18 by the light receiving means 7 at the next stage, and a predetermined process is performed.

【0017】前記受光手段7はCCD等の2次元受光素
子で構成される。また、前記計測処理手段8は高速ディ
ジタル信号処理に適したコンピュータで構成される。
The light receiving means 7 comprises a two-dimensional light receiving element such as a CCD. The measurement processing means 8 is constituted by a computer suitable for high-speed digital signal processing.

【0018】前記同期検出され前記電気信号18に変換
された前記反射信号光14の空間変調情報である変形格
子模様Bと前記空間変調信号光12の空間変調情報であ
る前記格子模様Aとの間の相関関係に基づいて前記計測
処理手段8が画像処理プログラムを実行して前記被計測
物体5の3次元形状の計測を行う。
Between the deformed lattice pattern B, which is the spatial modulation information of the reflected signal light 14 which has been synchronously detected and converted into the electric signal 18, and the lattice pattern A, which is the spatial modulation information of the spatially modulated signal light 12. The measurement processing means 8 executes an image processing program to measure the three-dimensional shape of the measured object 5 based on the correlation.

【0019】以下に、別実施形態を説明する。前記被計
測物体5は回転、垂直水平方向に移動可能な光学可動台
上に設置され、前記計測処理手段8によって、前記被計
測物体5の姿勢、位置の変更と前記空間変調手段9と空
間変調を同期させるのも好ましい実施の形態である。こ
れにより、前記空間変調信号光12が実質的に前記被計
測物体5の表面上を走査しながら照射するのと同様の効
果が得られる。
Hereinafter, another embodiment will be described. The object to be measured 5 is installed on an optical movable table that can rotate, move vertically and horizontally, and the measurement processing unit 8 changes the attitude and position of the object to be measured 5 and the spatial modulation unit 9 and spatial modulation. Is also a preferred embodiment. Accordingly, an effect similar to that of irradiating the spatially modulated signal light 12 while substantially scanning the surface of the measured object 5 can be obtained.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
フォトリフラクティブ効果を応用し、光本来の超並列性
を生かした高速の光学的同期検出による光信号雑音除去
を実行することで、外乱光が混入する環境下でも高感度
で高速の3次元形状計測が可能になった。
As described above, according to the present invention,
By applying the photorefractive effect and removing optical signal noise by high-speed optical synchronization detection taking advantage of the superparallelism inherent in light, high-sensitivity and high-speed three-dimensional shape measurement even in an environment where disturbance light is mixed Is now possible.

【0021】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる光学的同期検出による3次元形
状計測装置の概略構成図
FIG. 1 is a schematic configuration diagram of a three-dimensional shape measuring apparatus based on optical synchronization detection according to the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 分岐手段 3、4 位相変調手段 5 被計測物体 6 光同期検出手段 7 受光手段 8 計測処理手段 9 空間変調手段 10、10a、10b 出力光 11 信号光 12 空間変調信号光 13 参照光 14 反射信号光 15 外乱光 16 入力光 17 同期検出光 18 電気信号 DESCRIPTION OF SYMBOLS 1 Laser light source 2 Branching means 3, 4 Phase modulation means 5 Object to be measured 6 Optical synchronization detection means 7 Light receiving means 8 Measurement processing means 9 Spatial modulation means 10, 10a, 10b Output light 11 Signal light 12 Spatial modulation signal light 13 Reference light 14 reflected signal light 15 disturbance light 16 input light 17 synchronization detection light 18 electric signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源(1)と、前記レーザ光源
(1)からの出力光(10)を2系統に分岐する分岐手
段(2)と、前記分岐手段(2)で分岐した前記出力光
(10a)(10b)を相互に一定の関係を有するよう
に各別に位相変調を施し、一方が信号光(11)を出力
し、他方が参照光(13)を出力する二つの位相変調手
段(3)(4)と、前記信号光(11)に空間的変調を
施す空間変調手段(9)と、前記空間変調手段(9)で
変調された空間変調信号光(12)を被計測物体(5)
に照射して得られる反射信号光(14)に外乱光(1
5)が混入した入力光(16)と前記参照光(13)を
入力して、前記入力光(16)の中から前記参照光(1
3)と一定の関係を有する前記反射信号光(14)を選
択的に同期検出し同期検出光(17)として出力するフ
ォトリフラクティブ効果を有する光同期検出手段(6)
と、前記同期検出光(17)を受光して電気信号(1
8)に変換する受光手段(7)と、前記受光手段(7)
で変換された電気信号(18)に基づいて所定の物体計
測処理を実行する計測処理手段(8)を備えてなり、 前記同期検出され前記電気信号(18)に変換された前
記反射信号光(14)の空間変調情報と前記空間変調信
号光(12)の空間変調情報に基づいて前記被計測物体
(5)の3次元形状の計測を行うことを特徴とする光学
的同期検出による3次元形状計測装置。
1. A laser light source (1), branching means (2) for branching output light (10) from the laser light source (1) into two systems, and the output light branched by the branching means (2) (10a) and (10b) are separately subjected to phase modulation so as to have a fixed relationship with each other, and one outputs a signal light (11) and the other outputs a reference light (13). 3) (4), a spatial modulating means (9) for spatially modulating the signal light (11), and a spatially modulated signal light (12) modulated by the spatial modulating means (9) are converted into an object to be measured ( 5)
The reflected signal light (14) obtained by irradiating the
5) The input light (16) mixed with the reference light (13) is input, and the reference light (1) is extracted from the input light (16).
Optical synchronization detecting means (6) having a photorefractive effect for selectively detecting synchronously the reflected signal light (14) having a fixed relationship with 3) and outputting the same as synchronous detection light (17).
And receiving the synchronization detection light (17) and receiving an electric signal (1).
8) a light receiving means (7) for converting the light into the light;
And a measurement processing means (8) for performing a predetermined object measurement process based on the electric signal (18) converted in (1). The reflected signal light (8) is synchronously detected and converted into the electric signal (18). The three-dimensional shape of the object to be measured (5) is measured based on the spatial modulation information of (14) and the spatial modulation information of the spatially modulated signal light (12). Measuring device.
【請求項2】 前記光同期検出手段(6)が量子井戸構
造を有する化合物半導体である請求項1記載の光学的同
期検出による3次元形状計測装置。
2. A three-dimensional shape measuring apparatus according to claim 1, wherein said optical synchronization detecting means is a compound semiconductor having a quantum well structure.
JP27314196A 1996-10-16 1996-10-16 Three-dimensional shape measuring device by optically synchronous detection Pending JPH10122839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27314196A JPH10122839A (en) 1996-10-16 1996-10-16 Three-dimensional shape measuring device by optically synchronous detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27314196A JPH10122839A (en) 1996-10-16 1996-10-16 Three-dimensional shape measuring device by optically synchronous detection

Publications (1)

Publication Number Publication Date
JPH10122839A true JPH10122839A (en) 1998-05-15

Family

ID=17523698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27314196A Pending JPH10122839A (en) 1996-10-16 1996-10-16 Three-dimensional shape measuring device by optically synchronous detection

Country Status (1)

Country Link
JP (1) JPH10122839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038880A (en) * 2008-08-08 2010-02-18 Toshiba Corp Device and method for laser ultrasonography
CN111855639A (en) * 2020-07-30 2020-10-30 中国科学技术大学 Spectrum acquisition system and spectrum acquisition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038880A (en) * 2008-08-08 2010-02-18 Toshiba Corp Device and method for laser ultrasonography
CN111855639A (en) * 2020-07-30 2020-10-30 中国科学技术大学 Spectrum acquisition system and spectrum acquisition method
CN111855639B (en) * 2020-07-30 2021-08-13 中国科学技术大学 Spectrum acquisition system and spectrum acquisition method

Similar Documents

Publication Publication Date Title
US5309912A (en) Multidimensional imaging using a single point detector for a phase encoded modulated optical carrier
KR0168441B1 (en) Voltage imaging system using electro-optics
US20240061352A1 (en) Exposure light beam phase measurement method in laser interference photolithography, and photolithography system
CN102435136A (en) Spatial phase-shifting unit, interferometry system applying same and phase-correcting unit
CN103048268B (en) Digital electronic shear speckle interferometer based on micro-polaroid array
US10088292B2 (en) Method and apparatus for phase resolved heterodyne shearographic measurements
US4575247A (en) Phase-measuring interferometer
US20240053683A1 (en) Laser interference photolithography system
CN107356195B (en) Three view field digital holographic detection devices and method based on two-dimension periodic grating and point diffraction
CN107121196A (en) It is a kind of that the holographic Jones matrix parameter synchronous measuring apparatus of railway digital and method altogether are inverted based on visual field
CN102954758B (en) Interference detecting device based on synchronous carrier phase shift and detecting method of interference detecting device
CN106323163B (en) A kind of surface 3D detection device and detection method
CN107421437B (en) Three view field digital holographic detection devices and method based on two-dimensional phase grating and point diffraction
JPH10122839A (en) Three-dimensional shape measuring device by optically synchronous detection
McEwan et al. Optical-processing characteristics of a low-cost liquid crystal display device
Dolfi et al. Optical architectures for programmable filtering and correlation of microwave signals
CN214095898U (en) Light off-axis flip interference digital holographic detection device based on polarization synchronous phase shift
CN114459620A (en) Device and method for generating pi phase shift between double interference channels through single wave plate
JP3233723B2 (en) Phase pattern difference discriminator
JPS63241305A (en) Fringe scanning method
Bicknell et al. Integrated-optical synthetic aperture radar processor
JPH06194189A (en) Optical encoder
JPH03175303A (en) Measuring apparatus utilizing speckle
JP2787345B2 (en) Two-wavelength light source element
TWI588465B (en) Optical measurement system and method of liquid crystal panel