JPH10122323A - Load sensing type direct acting continuously variable transmission - Google Patents

Load sensing type direct acting continuously variable transmission

Info

Publication number
JPH10122323A
JPH10122323A JP28044296A JP28044296A JPH10122323A JP H10122323 A JPH10122323 A JP H10122323A JP 28044296 A JP28044296 A JP 28044296A JP 28044296 A JP28044296 A JP 28044296A JP H10122323 A JPH10122323 A JP H10122323A
Authority
JP
Japan
Prior art keywords
nut
screw shaft
load
screw
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28044296A
Other languages
Japanese (ja)
Inventor
Shigeo Hirose
茂男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP28044296A priority Critical patent/JPH10122323A/en
Publication of JPH10122323A publication Critical patent/JPH10122323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a load sensing type direct acting continuously variable transmission which can continuously vary deceleration ratio by sensing a load given in accordance with an operating environment corresponding to external force or the like also convert a rotary motion into a linear motion by high transmitting efficiency. SOLUTION: In a screw shaft 2 constituted by screwing helical screw parts 4, 3 having a prescribed pitch P and a nut 1, a diameter D0 of the screw part 3 in the nut 1 is formed a little larger than a diameter d of the screw part 4 of the screw shaft 2 screwed thereto, also the nut 1 is supported turnably relating to a support member 5, this support member 5 is energized by a prescribed spring load Fs in a diametric direction of the screw shaft 2, so as to bring the nut 1 into eccentric contact with the screw shaft 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットや運搬機
械あるいはジャッキ等、幅広い分野において利用され得
る負荷感応型直動無段変速機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load-responsive linearly-operated continuously variable transmission that can be used in a wide variety of fields such as robots, transporting machines, and jacks.

【0002】[0002]

【従来の技術】産業界のあらゆる分野において電動モー
タ等の回転運動を直動運動に変換する変換装置として、
螺子あるいはボール螺子が広く採用されている。しか
し、それらの変速比は固定されていたために、通常は使
用条件のうち最大の推力を生成する条件でも作動が可能
なように大きな減速比を選択せざるを得なかった。その
ため、負荷が軽いときでも低速でしか駆動できないとい
う大きな問題があった。そこで、負荷に応じて変速比を
変更できる負荷感応型の変速機能を有する駆動系が必要
とされていたが、実質的には全く存在していないのが現
状である。例えば、これまで電動モータからボール螺子
を駆動するまでの歯車列を切り換えるような機構は存在
していたが、負荷によって変速比を切り換えるために
は、負荷を検知して切換え動作を行うところの制御機構
を必要とするために、大がかりな装置となる他、変速も
連続的に行えるものではなかった。また、この変速機構
として車両等において採用しているような負荷感応型ト
ルクコンバータを使用する方法も考えられるが、これも
装置が大型化して広い範囲で使用できる装置とはなって
いない。
2. Description of the Related Art In all fields of the industrial world, as a conversion device for converting a rotary motion of an electric motor or the like into a linear motion,
Screws or ball screws are widely used. However, since those gear ratios were fixed, a large reduction gear ratio had to be selected so that operation was possible even under the condition of generating the maximum thrust in the use conditions. For this reason, there is a major problem that driving can be performed only at low speed even when the load is light. Therefore, a drive system having a load-responsive speed change function capable of changing the speed ratio according to the load has been required, but at present, there is virtually no drive system. For example, there has been a mechanism for switching a gear train from driving an electric motor to driving a ball screw.However, in order to switch a gear ratio according to a load, control is performed by detecting a load and performing a switching operation. Since a mechanism is required, the device becomes a large-scale device, and the speed cannot be continuously changed. Although a method using a load-sensitive torque converter such as that employed in vehicles and the like is also conceivable as this transmission mechanism, this method is also not a device that can be used in a wide range due to an increase in the size of the device.

【0003】また、従来から図6に示すような、螺子軸
に対してそのピッチ円半径よりも若干半径が大きい軸受
を支持部材に対して回動自在に支持し、該軸受を螺子軸
の直径方向に偏心させて接触させるように構成した変速
機はすでに市販されている。このものは、螺子軸と軸受
のそれぞれの中心軸から偏心接触点までの半径の差が螺
子軸の回転にしたがって並進運動を生成するものであ
り、その特徴は、ボール螺子のような複雑な構造でな
く、螺子軸と軸受のみから構成されるので構造が単純で
軽量かつ安価であり、また摩擦によることなくローリン
グコンタクトによって回転運動を直線運動に変換できる
ため、摩擦損失が少なく変換効率が高い等の利点があ
る。
Conventionally, as shown in FIG. 6, a bearing having a radius slightly larger than the pitch circle radius with respect to a screw shaft is rotatably supported with respect to a support member, and the bearing has a diameter of the screw shaft. Transmissions configured to contact eccentrically in the direction are already commercially available. In this device, the difference in radius from the center axis of each of the screw shaft and the bearing to the eccentric contact point generates a translational movement according to the rotation of the screw shaft, and the feature is a complicated structure like a ball screw. Instead of a screw shaft and a bearing, the structure is simple, light and inexpensive. In addition, since rolling motion can be converted to linear motion by rolling contact without friction, there is little friction loss and high conversion efficiency. There are advantages.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
図6の例では、螺子軸に対する軸受の偏心量は調整ビス
等により所定の一定の値に設定されて使用されるもので
あるため、その変速比は一定であった。
However, in the example of FIG. 6 described above, the amount of eccentricity of the bearing with respect to the screw shaft is set to a predetermined constant value by means of an adjusting screw or the like, so that the gear shifting is performed. The ratio was constant.

【0005】そこで本発明は、前記従来の変速機におけ
る諸課題を解決して、外力等に対応した動作環境に応じ
て与えられた負荷に感応して減速比を無段階で変えるこ
とができるとともに回転運動を直線運動に高い伝達効率
で変換することができる負荷感応型直動無段変速機を提
供する。
Accordingly, the present invention solves the above-mentioned problems in the conventional transmission, and can change the speed reduction ratio steplessly in response to a load applied in accordance with an operating environment corresponding to an external force and the like. Provided is a load-responsive linearly-operated continuously variable transmission that can convert rotational motion into linear motion with high transmission efficiency.

【0006】[0006]

【課題を解決するための手段】このため本発明は、所定
ピッチを有する螺旋状の螺子部の螺合により構成された
螺子軸とナットにおいて、前記ナットにおける螺子部の
直径をこれに螺合する螺子軸の螺子部の直径より若干大
きく形成するとともに、前記ナットを支持部材に対して
回動自在に支持し、該支持部材を前記螺子軸直径方向に
所定のばね荷重によって付勢して前記ナットを螺子軸に
偏心して接触するように構成したことを特徴とするもの
である。また本発明は、前記螺子軸とナットの偏心接触
面について、それの偏心量と接触角度の関係を与える螺
子軸あるいはナットの螺子面のフランク形状と、前記ナ
ットを螺子軸に対してその直径方向に付勢するばねにお
ける変位と荷重の特性との相互関係を調整することによ
って、螺子軸あるいはナットに作用する軸方向の負荷荷
重が増大するにしたがって前記ナットの螺子軸に対する
偏心量が所望の割合で減少しかつ減速比が所望の割合で
増大する特性を有し、また前記螺子軸あるいはナットに
作用する軸方向の負荷荷重が減少するにしたがって前記
ナットの螺子軸に対する偏心量が所望の割合で増大しか
つ減速比が所望の割合で減少する特性を有するように構
成したことを特徴とするもので、これらを課題解決のた
めの手段とするものである。
SUMMARY OF THE INVENTION Therefore, according to the present invention, in a screw shaft and a nut formed by screwing helical screw portions having a predetermined pitch, the diameter of the screw portion of the nut is screwed to the screw shaft. The nut is formed to be slightly larger than the diameter of the screw portion of the screw shaft, the nut is rotatably supported by a support member, and the support member is urged in a diameter direction of the screw shaft by a predetermined spring load. Are eccentrically contacted with the screw shaft. Further, the present invention provides a flank shape of the screw surface of the screw shaft or the nut that gives a relationship between the amount of eccentricity and the contact angle of the eccentric contact surface of the screw shaft and the nut, and the nut in a diametrical direction with respect to the screw shaft. By adjusting the mutual relationship between the displacement and the load characteristics of the spring biasing the nut, the amount of eccentricity of the nut with respect to the screw shaft becomes a desired ratio as the axial load applied to the screw shaft or the nut increases. And the reduction ratio increases at a desired ratio, and the amount of eccentricity of the nut with respect to the screw shaft at the desired ratio as the axial load acting on the screw shaft or the nut decreases. The present invention is characterized in that it has a characteristic of increasing and reducing a reduction ratio at a desired ratio, and these are used as means for solving the problem.

【0007】[0007]

【実施の形態】以下本発明の実施の形態を図面に基づい
て説明する。図1は本発明の負荷感応型直動無段変速機
の1実施の形態の基本原理を示すものであり、図1
(A)は低負荷荷重小減速比でナット直行速度大なる時
の直動無段変速機の縦断面図、図1(B)は高負荷荷重
大減速比でナット直行速度小なる時の直動無段変速機の
縦断面図、図1(C)は低負荷荷重時(図1(A))か
ら高負荷荷重時(図1(B))までのナットと螺子軸の
噛合状態を無段階的に示した横断面図である。図1
(A)に示すように、本発明の回転運動を直線運動に変
換する変換装置を兼ね備える負荷感応型直動無段変速機
は、所定ピッチPを有する螺旋状の台形螺子等からなる
螺子部4を具備する螺子軸2が、同様に所定ピッチPを
有する螺旋状の台形螺子等からなる螺子部3を具備する
ナット1の内周側に螺合されて構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic principle of one embodiment of a load-responsive linear motion continuously variable transmission according to the present invention.
FIG. 1A is a longitudinal sectional view of a linearly-operated continuously variable transmission when the linear speed of the nut increases at a low load load and a small reduction ratio, and FIG. FIG. 1C is a longitudinal sectional view of the dynamic continuously variable transmission. FIG. 1C shows a state in which the nut and the screw shaft mesh with each other from a low load (FIG. 1A) to a high load (FIG. 1B). It is the cross-sectional view shown in steps. FIG.
As shown in (A), the load-sensitive linearly-operated continuously variable transmission having a conversion device for converting a rotary motion into a linear motion according to the present invention has a screw portion 4 composed of a spiral trapezoidal screw having a predetermined pitch P or the like. Is screwed to the inner peripheral side of a nut 1 having a screw portion 3 similarly formed of a spiral trapezoidal screw having a predetermined pitch P.

【0008】本発明による負荷感応型直動無段変速機
は、前記ナット1と螺子軸2とから構成された構成体に
おける螺子軸2に対し、ナット1の直径D0をこれに螺
合する螺子軸2の螺子部4の直径dより若干大きく形成
する(螺子軸2のピッチ円半径よりもナット1のピッチ
円半径を若干大きく形成)とともに、前記ナット1を支
持部材5に対してベアリング6等を介して回動自在に支
持し、該支持部材5を前記螺子軸2の直径方向に所定の
ばね荷重Fsによってばね7等により付勢されて前記ナ
ット1を螺子軸2に偏心して接触するように構成したも
のである。そして、その移動原理は、回転する螺子軸2
とこれに螺合するナット1との間に生じた相対回転差に
依存して互いに軸動するものである。すなわち螺子軸2
が回転のみして軸動不可であればナット1が相対回転差
に見合うだけのピッチ分だけ軸方向に直行する。
The load-responsive linearly-operated continuously variable transmission according to the present invention comprises a screw for screwing the diameter D0 of the nut 1 to the screw shaft 2 in the structure comprising the nut 1 and the screw shaft 2. The nut 1 is formed to be slightly larger than the diameter d of the screw portion 4 of the shaft 2 (the pitch circle radius of the nut 1 is formed slightly larger than the pitch circle radius of the screw shaft 2), and the nut 1 is fixed to the support member 5 by a bearing 6 or the like. So that the nut 1 is eccentrically brought into contact with the screw shaft 2 by being urged by a spring 7 or the like by a predetermined spring load Fs in the diameter direction of the screw shaft 2. It is what was constituted. The principle of movement is that the rotating screw shaft 2
And the nut 1 which is screwed to the nuts. That is, screw shaft 2
If only the rotation is impossible and the shaft cannot be moved, the nut 1 goes straight in the axial direction by a pitch corresponding to the relative rotation difference.

【0009】以上の構成により、前記螺子軸2とナット
1の螺子部3、4における偏心接触面について、それら
の偏心量Xと接触角度の関係を与える螺子軸2あるいは
ナット1の螺子面のフランク形状と、前記螺子軸2を直
径方向に付勢するばね7における変位と荷重の特性との
相互関係を調整することによって、螺子軸2あるいはナ
ット1に作用する軸方向の負荷荷重が増大するにしたが
って、前記ナット1の螺子軸2に対する偏心量Xが所望
の割合で減少しかつ減速比が所望の割合で増大する特性
を有し、また前記螺子軸2あるいはナット1に作用する
軸方向の負荷荷重F1が減少するにしたがって前記ナッ
ト1の螺子軸2に対する偏心量Xが所望の割合で増大し
かつ減速比が所望の割合で減少する負荷感応型の無段変
速特性を有するものであり、広く産業界全般にて使用で
きる。
With the above construction, the flank of the screw surface of the screw shaft 2 or the nut 1 which gives the relationship between the eccentric amount X and the contact angle of the eccentric contact surfaces of the screw shaft 2 and the screw portions 3 and 4 of the nut 1. By adjusting the shape and the correlation between the displacement and the characteristics of the load in the spring 7 that urges the screw shaft 2 in the diametric direction, the axial load applied to the screw shaft 2 or the nut 1 increases. Therefore, the nut 1 has such a characteristic that the eccentricity X of the nut 1 with respect to the screw shaft 2 decreases at a desired ratio and the reduction ratio increases at a desired ratio, and the axial load acting on the screw shaft 2 or the nut 1 As the load F1 decreases, the eccentric amount X of the nut 1 with respect to the screw shaft 2 increases at a desired rate and the reduction ratio decreases at a desired rate. , And the it can be used in a wide industry in general.

【0010】さらに詳述すると、前記ナット1における
螺子部3の直径D0とこれに螺合する螺子軸2の螺子部
4の直径dとの関係は、ナット1の直径D0がこれに螺
合する螺子軸2の螺子部4の直径dより若干大きく形成
され、図1(B)のように、螺子軸2に図面下方への高
負荷荷重F1が作用した場合に(ナット1に上方への高
負荷荷重F1(点線矢印)が作用したことと同効)、螺
子軸2の軸心lがナット1の軸心Lに対して小さな偏心
量Xが与えられ、すなわちナット1における螺子軸2と
の噛合直径D(X)≒dのように選定して、ナット1と
螺子軸2との間の減速比を無限大に近いものとするもの
である。つまり、螺子軸2の回転に対してナット1の軸
方向の直行速度は0に近くなるように選定されるもので
ある。ただし、X=0ではナット1が空転するのみで、
推力は生じないために、X=0となるような使用は避
け、有限値の範囲にて作動させる。
More specifically, the relationship between the diameter D0 of the screw portion 3 of the nut 1 and the diameter d of the screw portion 4 of the screw shaft 2 screwed to the nut 1 is that the diameter D0 of the nut 1 is screwed thereto. The screw shaft 2 is formed to have a diameter slightly larger than the diameter d of the screw portion 4, and when a high load F1 is applied to the screw shaft 2 downward in the drawing as shown in FIG. When the load F1 (dotted arrow) acts, the axis l of the screw shaft 2 is given a small amount of eccentricity X with respect to the axis L of the nut 1; The reduction ratio between the nut 1 and the screw shaft 2 is selected to be close to infinity by selecting the engagement diameter D (X) ≒ d. That is, the axial speed of the nut 1 with respect to the rotation of the screw shaft 2 is selected to be close to zero. However, when X = 0, only nut 1 idles,
Since thrust is not generated, use in which X = 0 is avoided, and operation is performed within a finite value range.

【0011】螺子軸2の軸方向に対して所定の負荷荷重
Fxが作用した場合に、ナット1を付勢するばね荷重F
sに抗してナット1の軸心Lが螺子軸2の軸心lから直
径方向に所定の偏心量Xだけ偏心した状態を説明するも
のである。この状態では、ナット1に作用するばね荷重
Fsは負荷荷重Fxが螺子斜面のカム作用によってナッ
ト1に及ぼすナット直径方向の力と釣り合っている。そ
して、ばね荷重Fsは偏心量Xに逆比例して増大する傾
向を有する(偏心量Xが大なるとき、ばね7は伸びてい
るために押圧力は小さく、偏心量Xが小なるとき、ばね
7は圧縮されて大きな押圧力を発揮する。)ため、軸方
向の負荷荷重が高くなると偏心量Xが小さくなるように
ばね7が大きく圧縮され、軸方向の負荷荷重が低くなる
とばね力で偏心量Xが大きくなるものである。つまり、
螺子軸2に図面下方へ所定の負荷荷重Fxが作用した場
合を考えると、螺子軸2とナット1の偏心接触面につい
て、それの偏心量Xと接触角度の関係を与える螺子軸2
あるいはナット1の螺子面のフランク形状と、前記螺子
軸2を直径方向に付勢するばね7における変位と荷重の
特性との相互関係が自動的に調整されることになって、
螺子軸2あるいはナット1に作用する軸方向の負荷荷重
が増大するにしたがって前記ナットの螺子軸に対する偏
心量が所望の割合で減少しかつ減速比が所望の割合で増
大する特性を有し、また前記螺子軸あるいはナットに作
用する軸方向の負荷荷重が減少するにしたがって前記ナ
ットの螺子軸に対する偏心量が所望の割合で増大しかつ
減速比が所望の割合で減少する特性を得ることができ
る。このとき、螺子軸2における螺子部4とナット1に
おける螺子部3との接触点Qが両者の噛合部を形成して
おり、その時の螺子軸2の回転直径はdであり、ナット
1の回転直径はD(X)=D0−2(a−X)である
(aは負荷なし時の最大偏心量)。したがって、螺子軸
2の角速度をωとすれば、その時のナット1の角速度W
は、両者の接触点Qを通過する円周距離が等しいことか
ら導かれるπdω=πD(x)Wより、W=(d/D
(x))ω=(d/(D0−2(a−X))ωとなる。
角速度の減速比R(x)はW/ω=d/D(x)であ
る。
When a predetermined load Fx is applied in the axial direction of the screw shaft 2, a spring load F for urging the nut 1 is set.
This illustrates a state in which the axis L of the nut 1 is eccentric from the axis l of the screw shaft 2 by a predetermined eccentric amount X in the diametric direction against s. In this state, the spring load Fs applied to the nut 1 is balanced with the force in the nut diameter direction exerted on the nut 1 by the load load Fx by the cam action of the screw slope. The spring load Fs tends to increase in inverse proportion to the amount of eccentricity X (when the amount of eccentricity X is large, the pressing force is small because the spring 7 is extended, and when the amount of eccentricity X is small, the spring load Fs is small). 7 is compressed and exerts a large pressing force.) Therefore, when the axial load increases, the spring 7 is largely compressed so that the eccentric amount X decreases, and when the axial load decreases, the spring 7 is eccentric by the spring force. The quantity X increases. That is,
Considering the case where a predetermined load Fx acts on the screw shaft 2 downward in the drawing, the screw shaft 2 that gives the relationship between the eccentric amount X and the contact angle of the eccentric contact surface between the screw shaft 2 and the nut 1 is considered.
Alternatively, the correlation between the flank shape of the screw surface of the nut 1 and the displacement and load characteristics of the spring 7 that urges the screw shaft 2 in the diameter direction is automatically adjusted.
As the axial load acting on the screw shaft 2 or the nut 1 increases, the amount of eccentricity of the nut with respect to the screw shaft decreases at a desired ratio and the reduction ratio increases at a desired ratio. As the axial load acting on the screw shaft or the nut decreases, the characteristic that the amount of eccentricity of the nut with respect to the screw shaft increases at a desired ratio and the reduction ratio decreases at a desired ratio can be obtained. At this time, the contact point Q between the screw portion 4 of the screw shaft 2 and the screw portion 3 of the nut 1 forms a meshing portion between them, and the rotation diameter of the screw shaft 2 at that time is d, and the rotation of the nut 1 is The diameter is D (X) = D0-2 (aX) (a is the maximum amount of eccentricity when there is no load). Therefore, assuming that the angular velocity of the screw shaft 2 is ω, the angular velocity W of the nut 1 at that time is
Is given by W = (d / D) from πdω = πD (x) W derived from the fact that the circumferential distances passing through both contact points Q are equal.
(X)) ω = (d / (D0−2 (a−X)) ω.
The angular velocity reduction ratio R (x) is W / ω = d / D (x).

【0012】このように、本発明では、ナット1と螺子
軸2との偏心支持部分にばね荷重による付勢という単純
な構成を付加したことにより、従来では及びもつかなか
った負荷感応型無段変速という著しく重要な効果を生ぜ
しめることになったのである。何故なら、このばね荷重
によってナット1を螺子軸2に対し、大きな偏心が出る
ように支持している状態にて負荷である螺子軸2(ある
いは相対的にナット1)の軸方向の負荷荷重が増大する
と、ナット1および螺子軸2の各螺子部3、4のフラン
ク形状は通常は台形をしているため、螺子軸2はナット
1の中心に移動しようとする。かくして、螺子軸2とナ
ット1のそれぞれの軸心l、Lから偏心接触点Qまでの
半径の差が軸方向の直行運動を生成していたのであるか
ら、その差が少なくなると大きな変速効果が生成され
て、低速化しながら強力な推力を生成するという動作が
自然に生成されるのである。極限的に、螺子軸2とナッ
ト1の軸心lとLとが一致すると、螺子軸2とナット1
のそれぞれの軸心l、Lから偏心接触点Qまでの半径の
差がなくなり、螺子軸2が回転してもナット1は軸動し
なくなる。つまり減速比は無限大になり、無限大の推力
が生成できることになる。ただし、この時、極限状態で
は螺子軸2が回転するとナット1は同軸にて自由に回転
するため実質の推力はゼロに低下することになる。その
ため、負荷荷重に応じた推力は、偏心量が多い状態から
ゼロに近づいて行くと次第に増大し、ある偏心量で最大
になり、偏心量がゼロで推力もゼロになるような変動を
示すものと考えられる。そのため、実際の偏心量の作動
範囲は、ある値からゼロに近いが有限の小さな値まで変
動するようにして変速させることになると思われる。図
3に偏心量Xと出力軸速度(ナット1の直行速度)との
関係を示す。
As described above, according to the present invention, by adding a simple structure of biasing by a spring load to the eccentric support portion between the nut 1 and the screw shaft 2, a load-sensitive stepless step which has not been provided in the past is provided. The shift had an extremely important effect. This is because the axial load of the screw shaft 2 (or relatively the nut 1), which is a load, is maintained in a state where the nut 1 is supported by the spring load so as to have a large eccentricity with respect to the screw shaft 2. When increasing, the flank shape of each of the screw portions 3 and 4 of the nut 1 and the screw shaft 2 is usually trapezoidal, so that the screw shaft 2 tends to move to the center of the nut 1. Thus, since the difference in radius from the respective axes l, L of the screw shaft 2 and the nut 1 to the eccentric contact point Q has generated an orthogonal movement in the axial direction, a large shift effect is obtained when the difference is reduced. The action of being generated and generating a strong thrust while slowing down is naturally generated. Ultimately, when the axes l and L of the screw shaft 2 and the nut 1 match, the screw shaft 2 and the nut 1
There is no difference in radius from the respective axes l and L to the eccentric contact point Q, and the nut 1 does not axially move even if the screw shaft 2 rotates. That is, the reduction ratio becomes infinite, and an infinite thrust can be generated. However, at this time, in the extreme state, when the screw shaft 2 rotates, the nut 1 freely rotates coaxially, so that the actual thrust drops to zero. Therefore, the thrust according to the applied load increases gradually as the eccentricity approaches zero from a large eccentricity state, reaches a maximum at a certain eccentricity, and shows a fluctuation such that the eccentricity is zero and the thrust becomes zero. it is conceivable that. Therefore, it is assumed that the actual operating range of the eccentric amount is changed so as to vary from a certain value to a value close to zero but to a finite small value. FIG. 3 shows the relationship between the amount of eccentricity X and the output shaft speed (the orthogonal speed of the nut 1).

【0013】このような構成によって、ロボットあるい
は運搬機械さらにはジャッキ等において外力等に対応し
た動作環境に応じてロボットの脚あるいは運搬用腕等に
作用される負荷が、本発明の構成体である螺子軸2とナ
ット1との間で軸方向に作用する負荷として作用し、該
負荷に応じて、螺子軸2の入力回転を無負荷最小減速比
でナット直行速度最大時から最大負荷最大減速比でナッ
ト直行速度最小時までの無段階で変速してナット1の軸
方向の直行速度として出力することができる。しかも、
本発明によれば、その構成体が動力を回転運動から直線
運動に変換する変換装置としても機能することができ
て、従来のもののように電気的な制御装置などを伴うこ
とがなく、機械的な簡素な構造とすることが可能となり
低コストとなる。また、本発明の負荷感応型直動無段変
速機によれば、低負荷時には力は小さいが速やかにナッ
ト1が螺子軸2上を移動し、高負荷時には直行速度が遅
くなるがナット1が螺子軸2上を大きな推力で移動する
ことが可能となる。
With such a configuration, the load applied to the robot leg, the transport arm, or the like according to the operating environment corresponding to the external force or the like in the robot, the transport machine, and the jack is the configuration of the present invention. Acts as a load acting in the axial direction between the screw shaft 2 and the nut 1, and according to the load, the input rotation of the screw shaft 2 is changed from the maximum nut direct speed to the maximum load maximum reduction ratio at the no-load minimum reduction ratio. Thus, the speed can be changed in a stepless manner up to the time when the nut direct speed is minimum, and the speed can be output as the axial direct speed of the nut 1. Moreover,
According to the present invention, the component can also function as a conversion device for converting power from rotary motion to linear motion, and does not require an electric control device or the like unlike the conventional one, and is mechanically A simple structure can be achieved and the cost can be reduced. Further, according to the load-responsive linear motion continuously variable transmission of the present invention, the nut 1 moves quickly on the screw shaft 2 although the force is small at a low load, and the linear speed decreases at a high load. It is possible to move on the screw shaft 2 with a large thrust.

【0014】図2は、本発明の負荷感応型直動無段変速
機がユニット化されて支持部材であるハウジング5内に
収納された状態を示すもので、図2において、所定ピッ
チを有する螺旋状の螺子部の螺合により構成された回転
自在なナット1と螺子軸2との構成体は、ナット1の外
周に装着された一対のベアリング6、6によって支持部
材である筒状のハウジング5の内周に嵌合支持されてい
る。ハウジング5は、図2(B)に示すようにスプリン
グ7によって直径方向に所定のばね荷重にて付勢され、
図2(C)に示すように回転不能でスライド自在にレー
ル状の規制ガイド8に沿って直行するように構成されて
いる。本図における実施の形態では、図2(A)に示す
ように、ナット1と螺子軸2との負荷感応型直動無段変
速機の構成体を3個連結した3連構成を採用して確実で
円滑な駆動力の伝達により、より効果的な変換機能およ
び無段変速機能の実現が図られている。
FIG. 2 shows a state in which the load-responsive linearly-operated continuously variable transmission according to the present invention is unitized and housed in a housing 5 which is a supporting member. The rotatable nut 1 and the screw shaft 2 formed by screwing together the threaded portions are formed into a cylindrical housing 5 as a support member by a pair of bearings 6 mounted on the outer periphery of the nut 1. Are fitted and supported on the inner periphery of the. As shown in FIG. 2B, the housing 5 is urged by a spring 7 with a predetermined spring load in a diametrical direction.
As shown in FIG. 2 (C), it is configured so as to be non-rotatable and slidably perpendicular to the rail-shaped regulation guide 8. In the embodiment shown in this figure, as shown in FIG. 2 (A), a triple configuration is used in which three components of a load-responsive linear motion continuously variable transmission including a nut 1 and a screw shaft 2 are connected. A more effective conversion function and a continuously variable transmission function are realized by reliable and smooth transmission of the driving force.

【0015】図4は、ナット1のフランク断面形状とし
てやや螺子山の斜面が凸面形状を呈している場合の偏心
量と出力軸速度との関係を示したもので、偏心量の増大
に対して出力軸速度が比較的徐々に増大する特性を有す
ることが理解される。図5では、ナット1のフランク断
面形状としてやや螺子山の斜面が凹面形状を呈している
場合の偏心量と出力軸速度との関係を示し、偏心量の増
大に対して出力軸速度が比較的急激に増大する特性を有
する。このように、本発明の負荷感応型直動無段変速機
を採用するロボットや運搬機械さらにはジャッキ等にお
いては、それらの脚や腕が外力等に対応した動作環境に
適合すべき挙動特性を示すように、螺子軸およびナット
構成体において適切なフランク形状が決定される。
FIG. 4 shows the relationship between the amount of eccentricity and the output shaft speed when the flank of the screw thread has a convex shape as the flank cross-sectional shape of the nut 1. It is understood that the output shaft speed has a relatively gradually increasing characteristic. FIG. 5 shows the relationship between the amount of eccentricity and the output shaft speed when the flank of the screw thread has a slightly concave shape as the flank cross-sectional shape of the nut 1. It has a characteristic that increases rapidly. As described above, in the robot, the transporting machine, and the jack, etc. that employ the load-responsive linear motion continuously variable transmission of the present invention, the behavior characteristics of their legs and arms that should be adapted to the operating environment corresponding to the external force, etc. As shown, an appropriate flank shape is determined for the screw shaft and nut arrangement.

【0016】以上、本発明の実施の形態について説明し
てきたが、本発明の趣旨の範囲内で、螺子軸およびナッ
トの形状、それらの材質、螺子部の断面形状および螺合
形態、ナットの支持部材における支持形態、スプリング
等による支持部材の付勢形態等については適宜採用でき
るものである。また、前述した実施の形態ではナットを
支持する支持部材を所定のばね荷重によって螺子軸直径
方向に付勢するように構成したが、場合によっては螺子
軸自体をナット側に所定のばね荷重によって付勢するよ
うに構成することも可能である。
The embodiments of the present invention have been described above. However, within the scope of the present invention, the shapes of the screw shaft and the nut, their materials, the cross-sectional shape and the screwing form of the screw portion, and the support of the nut The supporting mode of the member, the biasing mode of the supporting member by a spring, and the like can be appropriately adopted. Further, in the above-described embodiment, the support member for supporting the nut is configured to be urged in the screw shaft diametric direction by a predetermined spring load. However, in some cases, the screw shaft itself is mounted on the nut side by a predetermined spring load. It is also possible to configure so as to be energized.

【0017】[0017]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、ロボットあるいは運搬機械さらにはジャッキ等
において外力等に対応した動作環境に応じてロボットの
脚あるいは運搬用腕等に作用する負荷荷重が、螺子軸と
ナットとの間で軸方向に作用する負荷として作用して、
該負荷に応じて螺子軸の入力回転を無負荷最小減速比で
ナット直行速度最大時から最大負荷最大減速比でナット
直行速度最小時までの無段階で変速してナットの軸方向
の直行速度として出力することができる。しかも、本発
明によれば、その構成体が動力を回転運動から直線運動
に変換する変換装置としても機能することができて、従
来のもののように変速のための駆動機構や電気的な制御
装置などを伴うことがないので、機械的な機構の採用の
みにより著しく簡素な構造とすることが可能となり、堅
牢で軽量かつ小型化が可能で低コストとなる。また、本
発明の負荷感応型直動無段変速機によれば、簡素な機械
的な構造を有するものでありながら、低負荷時には力は
小さいが速やかにナットが螺子軸上を移動し、高負荷時
には直行速度が遅くなるがナットが螺子軸上を大きな力
で移動することが可能となり、負荷感応型直動無段変速
機を備えたロボットあるいは運搬機械等の脚や腕が外力
等に対応した動作環境に無理なく適合すべき挙動特性を
示すという絶大な効果を奏することになる。
As described above in detail, according to the present invention, a robot or a transport machine or a jack or the like acts on a leg or a transport arm of a robot according to an operating environment corresponding to an external force or the like. The load acts as a load acting in the axial direction between the screw shaft and the nut,
In accordance with the load, the input rotation of the screw shaft is steplessly shifted from the maximum speed of the nut at a non-load minimum reduction ratio to the minimum speed of the nut at a maximum load reduction ratio at a no-load minimum reduction ratio, and is set as a linear speed of the nut in the axial direction. Can be output. In addition, according to the present invention, the component can also function as a conversion device for converting power from rotary motion to linear motion, and a driving mechanism and an electrical control device for shifting as in the conventional device. Since it is not accompanied by a mechanical mechanism, the structure can be made extremely simple only by employing a mechanical mechanism, and the structure can be made robust, lightweight, compact, and low in cost. In addition, according to the load-responsive linearly-operated continuously variable transmission of the present invention, while having a simple mechanical structure, at low load, the force is small but the nut quickly moves on the screw shaft, The linear speed decreases when a load is applied, but the nut can move on the screw shaft with a large force, and the legs and arms of a robot or transport machine equipped with a load-sensitive linear motion continuously variable transmission respond to external forces, etc. This has a tremendous effect of exhibiting behavior characteristics that should be reasonably adapted to the operating environment that has been set.

【0018】また、通常の螺子軸とナットとの構成体に
おける接触面での摩擦による伝達機構のものでは伝達効
率がせいぜい20〜30%程度であるのに対して、本発
明の負荷感応型直動無段変速機によれば、螺子軸とナッ
トとの偏心接触面において滑ることなくローリングコン
タクトによって作動するために、摩擦に起因する損失が
殆どなく、70〜80%程度の伝達効率が得られる(伝
達効率の値については、本発明の負荷感応型直動無段変
速機における偏心接触点が有限の面にて接触していた
め、面各部で相対速度差がある。その効果は詳述しない
がヘルツの応力式等を用いて計算することができ
る。)。この伝達効率は、ボール螺子の伝達効率90%
に比較すればそれほどではないものの、ボール螺子より
もはるかに簡単な構造で上記のような伝達効率を達成で
きたことは注目に値するものである。さらに、ナットが
螺子軸の直径方向に生ずる非常に微小な移動にて大きな
変速比が生成できるため、負荷に感応した変速は、殆ど
肉眼でも関知できないような微小なナットの動きによっ
て行われるため、その応答速度は著しく高速であり、ま
た機構の磨耗も微小である。さらにまた、螺子軸とナッ
トは偏心接触してはいるものの、接触点は螺子部の山の
数だけ存在することによって負荷荷重はこれらの接触部
分に分散されるために、大きな負荷荷重まで支持するこ
とが可能となり堅牢である。
The transmission efficiency of a transmission mechanism using friction at the contact surface of a normal screw shaft and nut structure is at most about 20 to 30%, whereas the load-sensitive type direct current of the present invention is attained. According to the continuously variable transmission, since it operates by the rolling contact without slipping on the eccentric contact surface between the screw shaft and the nut, there is almost no loss due to friction and a transmission efficiency of about 70 to 80% can be obtained. (As for the value of the transmission efficiency, since the eccentric contact point in the load-responsive linear motion continuously variable transmission according to the present invention is in contact with a finite surface, there is a relative speed difference between the surfaces. The effect is not described in detail. Can be calculated using a Hertzian stress equation or the like.) The transmission efficiency of the ball screw is 90%.
It is noteworthy that the above-mentioned transmission efficiency was achieved with a structure much simpler than that of the ball screw, though not so much as compared with the above. Furthermore, since a large gear ratio can be generated by a very small movement of the nut in the diameter direction of the screw shaft, a gear shift in response to the load is performed by a very small movement of the nut that can hardly be recognized by the naked eye. The response speed is remarkably high, and the wear of the mechanism is very small. Furthermore, although the screw shaft and the nut are in eccentric contact, the load is dispersed to these contact portions by the number of contact points as many as the screw portion ridges, so that a large load is supported. It is possible and robust.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の負荷感応型直動無段変速機の1実施の
形態の基本原理を示すものであり、図1(A)は低負荷
荷重小減速比でナット直行速度大なる時の直動無段変速
機の縦断面図、図1(B)は高負荷荷重大減速比でナッ
ト直行速度小なる時の直動無段変速機の縦断面図、図1
(C)は低負荷荷重時から高負荷荷重時までのナットと
螺子軸の噛合状態の横断面図であ。
FIG. 1 shows the basic principle of an embodiment of a load-responsive linear motion continuously variable transmission according to the present invention. FIG. 1 (A) shows a state in which a nut direct speed is increased at a low load small load reduction ratio. FIG. 1B is a longitudinal sectional view of the linearly-operated continuously variable transmission, and FIG. 1B is a longitudinally sectional view of the linearly-operated continuously variable transmission when the speed at which the nut goes straight at a low speed with a large load and large reduction ratio;
(C) is a cross-sectional view of the meshing state of the nut and the screw shaft from the time of low load to the time of high load.

【図2】本発明のユニット化された負荷感応型直動無段
変速機の組付け状態の説明図である。
FIG. 2 is an explanatory view of an assembled state of a unitized load-responsive linear motion continuously variable transmission according to the present invention.

【図3】本発明の負荷感応型直動無段変速機における偏
心量と出力軸速度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of eccentricity and the output shaft speed in the load-responsive linear motion continuously variable transmission according to the present invention.

【図4】本発明の負荷感応型直動無段変速機における偏
心量と出力軸速度との関係の1例を示す図である。
FIG. 4 is a diagram showing an example of the relationship between the amount of eccentricity and the output shaft speed in the load-responsive linear motion continuously variable transmission according to the present invention.

【図5】本発明の負荷感応型直動無段変速機における偏
心量と出力軸速度との関係のその他の例を示す図であ
る。
FIG. 5 is a diagram showing another example of the relationship between the amount of eccentricity and the output shaft speed in the load-responsive linear motion continuously variable transmission according to the present invention.

【図6】従来の螺子軸とナットの構成体を示す要部縦断
面図である。
FIG. 6 is a longitudinal sectional view showing a main part of a conventional screw shaft and nut.

【符号の説明】[Explanation of symbols]

1 ナット 2 螺子軸 3 ナット螺子部 4 螺子軸螺子部 5 ハウジング(支持部材) 6 ベアリング 7 ばね 8 規制ガイド a 最大偏心量 D0 ナットにおける螺子部の直径 d 螺子軸の螺子部の直径 F 負荷荷重 FS ばね荷重 L ナット軸心 l 螺子軸軸心 P 螺子部ピッチ Q 接触点 X 偏心量DESCRIPTION OF SYMBOLS 1 Nut 2 Screw shaft 3 Nut screw part 4 Screw shaft screw part 5 Housing (support member) 6 Bearing 7 Spring 8 Restriction guide a Maximum eccentricity D0 Diameter of screw part in nut d Diameter of screw part of screw shaft F Load load F S Spring load L Nut shaft center l Screw shaft center P Thread pitch Q Contact point X Eccentric amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定ピッチを有する螺旋状の螺子部の螺
合により構成された螺子軸とナットにおいて、前記ナッ
トにおける螺子部の直径をこれに螺合する螺子軸の螺子
部の直径より若干大きく形成するとともに、前記ナット
を支持部材に対して回動自在に支持し、該支持部材を前
記螺子軸直径方向に所定のばね荷重によって付勢して前
記ナットを螺子軸に偏心して接触するように構成したこ
とを特徴とする負荷感応型直動無段変速機。
In a screw shaft and a nut formed by screwing helical screw portions having a predetermined pitch, the diameter of the screw portion of the nut is slightly larger than the diameter of the screw portion of the screw shaft screwed thereto. While forming, the nut is rotatably supported with respect to a support member, and the support member is urged by a predetermined spring load in the screw shaft diametric direction so that the nut is eccentrically contacted with the screw shaft. A load-sensitive linearly-operated continuously variable transmission characterized by having a configuration.
【請求項2】 前記螺子軸とナットの偏心接触面につい
て、それの偏心量と接触角度の関係を与える螺子軸ある
いはナットの螺子面のフランク形状と、前記ナットを螺
子軸に対してその直径方向に付勢するばねにおける変位
と荷重の特性との相互関係を調整することによって、螺
子軸あるいはナットに作用する軸方向の負荷荷重が増大
するにしたがって前記ナットの螺子軸に対する偏心量が
所望の割合で減少しかつ減速比が所望の割合で増大する
特性を有し、また前記螺子軸あるいはナットに作用する
軸方向の負荷荷重が減少するにしたがって前記ナットの
螺子軸に対する偏心量が所望の割合で増大しかつ減速比
が所望の割合で減少する特性を有するように構成したこ
とを特徴とする請求項1に記載の負荷感応型直動無段変
速機。
2. The eccentric contact surface between the screw shaft and the nut, the flank shape of the screw surface of the screw shaft or the nut that gives a relationship between the amount of eccentricity and the contact angle, and the nut in the diametric direction with respect to the screw shaft. By adjusting the mutual relationship between the displacement and the load characteristics of the spring biasing the nut, the amount of eccentricity of the nut with respect to the screw shaft becomes a desired ratio as the axial load applied to the screw shaft or the nut increases. And the reduction ratio increases at a desired ratio, and the amount of eccentricity of the nut with respect to the screw shaft at the desired ratio as the axial load acting on the screw shaft or the nut decreases. 2. The load-responsive linearly-operated continuously variable transmission according to claim 1, wherein the transmission has a characteristic of increasing and reducing the reduction ratio at a desired ratio.
JP28044296A 1996-10-23 1996-10-23 Load sensing type direct acting continuously variable transmission Pending JPH10122323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28044296A JPH10122323A (en) 1996-10-23 1996-10-23 Load sensing type direct acting continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28044296A JPH10122323A (en) 1996-10-23 1996-10-23 Load sensing type direct acting continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH10122323A true JPH10122323A (en) 1998-05-15

Family

ID=17625121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28044296A Pending JPH10122323A (en) 1996-10-23 1996-10-23 Load sensing type direct acting continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH10122323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030768A1 (en) * 2004-09-16 2006-03-23 Scientific Technologies Ltd. Method and device for power transmission with load-sensing thrust amplifying mechanism
US7784373B2 (en) 2006-12-21 2010-08-31 Smc Kabushiki Kaisha Load sensing drive force transmission device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030768A1 (en) * 2004-09-16 2006-03-23 Scientific Technologies Ltd. Method and device for power transmission with load-sensing thrust amplifying mechanism
CN100458227C (en) * 2004-09-16 2009-02-04 科学技术有限会社 Method and device for power transmission with load-sensing thrust amplifying mechanism
US7584678B2 (en) 2004-09-16 2009-09-08 Scientific Technologies Ltd. Power transmission method and device having load sensing thrust augmentation mechanism
US7784373B2 (en) 2006-12-21 2010-08-31 Smc Kabushiki Kaisha Load sensing drive force transmission device

Similar Documents

Publication Publication Date Title
EP0197746B1 (en) Drive apparatus for auxiliary equipment
US4576057A (en) Anti-friction nut/screw drive
JP4568425B2 (en) Rolling contact continuously variable transmission
CA1050062A (en) Mechanical device converting rotary input to linear compression or stretching output with a high mechanical advantage
US5390558A (en) Continuously variable transmission
US4279177A (en) Variable speed transmission
US4561326A (en) Friction drive planetary roller type speed reducer
KR20010102123A (en) Continuously variable transmission unit
US4563915A (en) Wobble type axial speed reducer apparatus
JP2007155039A (en) Traction transmission device
JPH10122323A (en) Load sensing type direct acting continuously variable transmission
US5309781A (en) Stepless speed change gear
US6807878B2 (en) Device to provide continuously variable gear reduction
Hirose et al. Development of X-screw: a load-sensitive actuator incorporating a variable transmission
HU223320B1 (en) Continuously variable transmission and variants
CA2545509C (en) An improved continuously variable transmission device
US3516305A (en) Torque converter
US5288280A (en) Steplessly adjustable rotary transmission
US4478100A (en) Automatic transmission
US6016719A (en) Continuously variable reciprocating transmission device
JPH0131806Y2 (en)
CN218761171U (en) Tractor, stepless speed change device and speed regulation mechanism of stepless speed change device
US5051106A (en) Transverse axis infinitely variable transmission
KR20020089678A (en) Continuously variable transmission
RU2124661C1 (en) Planetary gear (design versions)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316