JPH10122117A - Hydraulic machinery - Google Patents

Hydraulic machinery

Info

Publication number
JPH10122117A
JPH10122117A JP8283673A JP28367396A JPH10122117A JP H10122117 A JPH10122117 A JP H10122117A JP 8283673 A JP8283673 A JP 8283673A JP 28367396 A JP28367396 A JP 28367396A JP H10122117 A JPH10122117 A JP H10122117A
Authority
JP
Japan
Prior art keywords
coating
film
coated
hydraulic machine
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8283673A
Other languages
Japanese (ja)
Inventor
Ryoji Okada
亮二 岡田
Keiji Taguchi
啓二 田口
Toshiharu Ueyama
淑治 植山
Kazuo Niikura
和夫 新倉
Tsugio Yoshikawa
次雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8283673A priority Critical patent/JPH10122117A/en
Priority to CN97122814A priority patent/CN1075604C/en
Publication of JPH10122117A publication Critical patent/JPH10122117A/en
Priority to CNB011089636A priority patent/CN1210497C/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To improve abrasion resistance and corrosion resistance, and use a hydraulic machinery even under a condition where sediment or the like are contained in fluid by covering at least a part of a surface to contact with the fluid with a specific first coating film and a specific second coating film. SOLUTION: At least a part of a surface of a member used for a hydraulic machinery part is covered with a first coating film selected from a group composed of chrome carbide, tungsten carbide, nickel, chromium and cobalt, and is covered in the next place with a second coating film selected from a group composed of hard rubber, expoxy, polyethylene and polyester. After being covered with the first coating film, it is overheated at a temperature of 350 deg.C to 650 deg.C, preferably, 400 deg.C to 650 deg.C for one hour to 30 hours, and next, at least a part of the second coating film is covered by being overlapped on the first coating film. Here, a thermal spraying method, preferably, a high speed flame spraying method is used as a covering method of the first coating film. Therefore, abrasion resistance can be exhibited to sediment abrasion and cavitation damage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗性、耐食性に
優れた水力機械の部品を備えた水力機械、その部品及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic machine having parts of a hydraulic machine having excellent wear resistance and corrosion resistance, a part thereof, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】流路を流れる流体を動作流体とする水力
機械には、たとえば水の位置エネルギを動力源として回
転するランナを備えた発電用水車、インペラの回転によ
り流体に運動エネルギを与えるポンプなどがある。近
年、このような水力機械は、流体内に固形物、例えば土
砂などを含む条件下での使用が増えている。このような
条件下で運転される水力機械の各種部品、たとえばポン
プのインペラ、ケーシング、水車のランナ、ケーシン
グ、ガイドベーンなどは、固形物の衝突による摩耗(以
下、土砂摩耗という)とキャビテーション壊食とが複合
した損傷が発生する。そのため、例えば特開平3−47
477号公報には損傷発生部にゴム等の樹脂ライニン
グ、もしくはセラミックス等の高硬度材料を溶射するこ
とが開示されている。
2. Description of the Related Art A hydraulic machine using a fluid flowing through a flow path as a working fluid includes, for example, a water turbine for power generation provided with a runner rotating with the potential energy of water as a power source, and a pump for imparting kinetic energy to the fluid by rotation of an impeller. and so on. In recent years, such a hydraulic machine has been increasingly used under conditions where a fluid contains solids, such as earth and sand. Various parts of a hydraulic machine operated under such conditions, such as pump impellers, casings, turbine runners, casings, and guide vanes, are subject to wear due to collision of solid matter (hereinafter referred to as sediment wear) and cavitation erosion. And compound damage occurs. Therefore, for example, Japanese Unexamined Patent Publication No.
No. 477 discloses that a resin lining such as rubber or a high-hardness material such as ceramics is sprayed on a damage generating portion.

【0003】上記各種部材は、鋳造、若しくは製缶によ
って製作される。一般に3次元形状であるインペラ、ラ
ンナは鋳造によって製作されることが多い。しかし、発
電用水車インペラのような大型インペラでは、溶接によ
って組み立てる製造方法が一部用いられている。
[0003] The various members are manufactured by casting or can-making. In general, impellers and runners having a three-dimensional shape are often manufactured by casting. However, large-sized impellers such as power turbine impellers are partially manufactured by welding.

【0004】[0004]

【発明が解決しようとする課題】先に示したように、水
力機械を流体内に土砂などを含む条件下で使用する場
合、土砂摩耗とキャビテーション壊食とによる損傷防止
のため、各種部材には高硬度材料の被覆が必要である。
しかしながら、三次元形状であるインペラ、ランナ、ケ
ーシング等は高硬度材料の被覆は容易ではない。
As described above, when a hydraulic machine is used under conditions that include earth and sand in a fluid, various members are used to prevent damage due to earth and sand wear and cavitation erosion. A coating of a hard material is required.
However, it is not easy to coat a three-dimensionally shaped impeller, runner, casing or the like with a high hardness material.

【0005】メッキ法は複雑形状物にも容易に被覆でき
る方法であるが、本例に適用する場合、次の課題があ
る。すなわち、クロムメッキ(以下、Crメッキと表記
する)は最も広く用いられている電解メッキであり、皮
膜硬さはメッキ膜中では最高に属し、ビッカース硬さ
(以下、Hvと表記する)が約1000である。しかし
電解メッキであるため、形状による電解集中が生じ膜厚
を均一とすることが困難である。また、メッキでは皮膜
内の歪のため厚膜形成が難しく、土砂摩耗とキャビテー
ション壊食に十分な膜厚の皮膜形成が困難である。ニッ
ケル−リンメッキ(以下、Ni−Pメッキと表記する)
は無電解メッキであり、形状にとらわれず均一な膜厚の
皮膜を形成できる。しかしながら、皮膜硬さは最高でも
Hv700〜800程度であり、土砂摩耗とキャビテー
ション壊食に対して十分な耐摩耗性を有していない。ま
たCrメッキと同様に、皮膜内の歪のため厚膜形成が難
しく、土砂摩耗とキャビテーション壊食に十分な膜厚の
皮膜形成が困難である。さらに、Crメッキ、Ni−P
メッキ共に浴槽に浸せきするため、水車、ポンプの部材
のような大型部品への適用は設備上実用的ではない。
[0005] The plating method is a method capable of easily covering even a complicated-shaped object, but has the following problem when applied to this example. That is, chromium plating (hereinafter referred to as Cr plating) is the most widely used electrolytic plating, and the film hardness belongs to the highest in the plating film, and Vickers hardness (hereinafter referred to as Hv) is about 1000. However, because of electrolytic plating, electrolytic concentration occurs due to the shape, and it is difficult to make the film thickness uniform. Further, in plating, it is difficult to form a thick film due to distortion in the film, and it is difficult to form a film having a thickness sufficient for earth and sand wear and cavitation erosion. Nickel-phosphorous plating (hereinafter referred to as Ni-P plating)
Is an electroless plating, and a film having a uniform film thickness can be formed regardless of the shape. However, the film hardness is at most about Hv 700 to 800, and does not have sufficient wear resistance against earth and sand wear and cavitation erosion. Also, as in the case of Cr plating, it is difficult to form a thick film due to distortion in the film, and it is difficult to form a film having a thickness sufficient for earth and sand wear and cavitation erosion. Furthermore, Cr plating, Ni-P
Since the plating is immersed in the bathtub, it is not practically applied to large parts such as water turbines and pumps in terms of equipment.

【0006】溶射法によって形成する硬質被膜は、土砂
摩耗とキャビテーション壊食に対して十分な耐摩耗性を
有し、且つ溶射法は十分な厚みの皮膜を容易に被覆する
ことが出来る。しかしながら、溶射法を用いた場合には
次の課題がある。すなわち、良好な溶射皮膜を形成する
ためにはガンと部材との間隔に適切な距離が必要であ
り、さらに溶射ガンの寸法の制限から、比較的広いスペ
ースを必要とする。したがって、三次元形状であり、狭
いスペースを有する部材には、全ての領域において十分
な硬さと密着力を有する良好な皮膜を被覆することは困
難である。例えば、インペラ、ランナの場合、羽根の先
端のような溶射の容易な場所では良好な皮膜を形成する
ことが出来るが、羽根付け根のような流路内部では、ス
ペースが狭いため良好な皮膜の形成が困難である。流路
内部は羽根先端に比較し流体速度は低いが、それでも土
砂摩耗が生じ、土砂摩耗対策なしには十分な寿命が得る
ことが出来ない。
The hard coating formed by the thermal spraying method has sufficient abrasion resistance against earth and sand abrasion and cavitation erosion, and the thermal spraying method can easily coat a coating having a sufficient thickness. However, when the thermal spraying method is used, there is the following problem. That is, in order to form a good thermal spray coating, an appropriate distance is required for the interval between the gun and the member, and a relatively large space is required due to limitations on the size of the thermal spray gun. Therefore, it is difficult to cover a three-dimensional member having a narrow space with a good film having sufficient hardness and adhesion in all regions. For example, in the case of impellers and runners, a good coating can be formed in places where spraying is easy, such as the tip of a blade, but in a flow path such as the root of a blade, a good coating is formed due to the narrow space. Is difficult. Although the fluid velocity inside the flow path is lower than that at the blade tip, earth and sand wear still occurs, and a sufficient life cannot be obtained without measures against earth and sand wear.

【0007】本発明は上記課題を解決するためになされ
たものであり、本発明の目的は流体内に土砂などを含む
条件下でも使用可能な、耐摩耗性と耐食性に優れた水力
機械を提供することにある。◆本発明の別の目的は流体
内に土砂などを含む条件下でも使用可能な、耐摩耗性と
耐食性に優れた信頼性高い水力機械用部品を提供するこ
とにある。◆本発明のさらに別の目的は流体内に土砂な
どを含む条件下でも使用可能な、耐摩耗性と耐食性に優
れた水力機械を安価に製造する方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a hydraulic machine having excellent wear resistance and corrosion resistance, which can be used even under a condition in which a fluid contains earth and sand. Is to do. Another object of the present invention is to provide a highly reliable hydraulic machine part having excellent wear resistance and corrosion resistance, which can be used even under conditions where the fluid contains earth and sand. Another object of the present invention is to provide a method for inexpensively manufacturing a hydraulic machine having excellent wear resistance and corrosion resistance, which can be used even under conditions where the fluid contains earth and sand.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、内部に流体の流路を有するケーシングと、このケー
シング内に配設されており前記流路内の流体と共に回転
する回転体とを備えた水力機械において、次のいずれか
の構成を備える。
Means for Solving the Problems To solve the above-mentioned problems, a casing having a fluid flow passage therein, and a rotating body provided in the casing and rotating together with the fluid in the flow passage are provided. A hydraulic machine having one of the following configurations.

【0009】(A) 前記水力機械用部品の表面の少な
くとも一部に、クロム炭化物、タングステン炭化物、ニ
ッケル(以下、Niと表記する)、クロム(以下、Cr
と表記する)、コバルト(以下、Coと表記する)から
なる群から選ばれる少なくとも1種を含む第1皮膜と、
硬質ゴム、エポキシ、ポリエチレン、ポリエステルから
なる群から選ばれる少なくとも1種を含む第2皮膜とが
被覆されていること。◆ (B) (A)において、前記第1被膜の上に前記第2
被膜が被覆された領域を有すること。◆ (C) (A)または(B)において、前記第2皮膜が
流体と接する全面に被覆されていること。◆ (D) (A)乃至(C)のいずれか1つにおいて、前
記第1皮膜がクロム炭化物、若しくはタングステン炭化
物を50重量%から90重量%含む皮膜、望ましくは7
0重量%から90重量%含む皮膜とする。◆ (E) (A)乃至(D)のいずれか1つにおいて、前
記第1皮膜の膜厚を0.1mm以上1.0mm以下、硬
質ゴム、エポキシ、ポリエチレン、ポリエステルの内の
少なくとも1種類を含む樹脂から構成される皮膜の膜厚
を1mm以上3mm以下とする。◆ (F) (A)乃至(F)のいずれか1つにおいて、前
記第2皮膜の内部に、鉄、銅、ステンレス等の金属粉、
或いは酸化アルミ、酸化チタン、酸化マグネシウム、酸
化クロム、酸化珪素、炭化クロム、炭化タングステン、
炭化珪素、窒化珪素等のセラミック粒子を分散する。
(A) Chromium carbide, tungsten carbide, nickel (hereinafter referred to as Ni), chromium (hereinafter referred to as Cr)
And a first film containing at least one member selected from the group consisting of cobalt (hereinafter, described as Co);
A second coating containing at least one selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester is coated. (B) In (A), the second coating is applied on the first coating.
The coating has a coated area. ◆ (C) In (A) or (B), the second film is coated on the entire surface in contact with the fluid. (D) In any one of (A) to (C), the first film contains 50 to 90% by weight of chromium carbide or tungsten carbide, preferably 7%.
A film containing 0 to 90% by weight. ◆ (E) In any one of (A) to (D), the thickness of the first coating is 0.1 mm or more and 1.0 mm or less, and at least one of hard rubber, epoxy, polyethylene and polyester is used. The film thickness of the film composed of the contained resin is 1 mm or more and 3 mm or less. ◆ (F) In any one of (A) to (F), a metal powder such as iron, copper, stainless steel, or the like is provided inside the second coating.
Alternatively, aluminum oxide, titanium oxide, magnesium oxide, chromium oxide, silicon oxide, chromium carbide, tungsten carbide,
Disperse ceramic particles such as silicon carbide and silicon nitride.

【0010】上記課題を解決するため、水力機械を次の
いずれかの工程を有する製造方法で製造する。
In order to solve the above problems, a hydraulic machine is manufactured by a manufacturing method having any of the following steps.

【0011】(G) 用いる部材の表面の少なくとも一
部に、クロム炭化物、タングステン炭化物、ニッケル、
クロム、コバルトからなる群から選ばれる少なくとも1
種を含む第1皮膜を被覆し、次いで、硬質ゴム、エポキ
シ、ポリエチレン、ポリエステルからなる群から選ばれ
る少なくとも1種を含む第2皮膜を被覆する。◆ (H) (G)において、前記第1被膜を被覆後、35
0℃以上、650℃以下、望ましくは400℃以上、6
50℃以下の温度で1時間以上30時間以下加熱し、次
いで第2被膜を被覆する。◆ (I) (G)または(H)において、第2被膜の少な
くとも一部を第1被膜の上に重ねて被覆する。◆ (J) (G)または(I)において、第1被膜の被覆
方法として溶射法、望ましくは高速フレーム溶射法を用
いる。
(G) Chromium carbide, tungsten carbide, nickel,
At least one selected from the group consisting of chromium and cobalt
A first coating including a seed is coated, and then a second coating including at least one selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester is coated. ◆ (H) In (G), after coating the first coating, 35
0 ° C or higher and 650 ° C or lower, desirably 400 ° C or higher, 6
Heat at a temperature of 50 ° C. or less for 1 hour to 30 hours, and then coat the second coating. ◆ (I) In (G) or (H), at least a part of the second coating is coated on the first coating. (J) In (G) or (I), a thermal spraying method, preferably a high-speed flame spraying method, is used as a method for coating the first coating.

【0012】そして、上記の構成により以下の効果が生
じる。◆クロム炭化物、タングステン炭化物、Ni、C
r、Coからなる群から選ばれる少なくとも1種を含む
第1皮膜は被膜硬さが高いので、前記水力機械用部品の
表面の少なくとも一部に第1皮膜を被覆することにより
土砂摩耗とキャビテーション壊食に対して耐摩耗性を発
揮することが出来る。特にクロム炭化物としてCr32
を用い、タングステン炭化物としてWCを用いる皮膜
は、その皮膜硬さがHv1000以上であり且つ優れた
耐食性を有する。土砂などを構成する主な物質は長石と
石英であり、その最高硬さは石英のHv1000であ
る。土砂摩耗は衝突粒子の硬さを超えると急激に耐摩耗
性が向上するため、皮膜硬さがHv1000以上である
上記皮膜をインペラの表面の少なくとも一部に被覆する
ことによって、土砂摩耗とキャビテーション壊食に対し
て十分な耐摩耗性を発揮することが出来る。
The following effects are produced by the above configuration. ◆ Chromium carbide, tungsten carbide, Ni, C
Since the first coating containing at least one member selected from the group consisting of r and Co has a high coating hardness, at least a part of the surface of the hydraulic machine component is coated with the first coating to cause sediment wear and cavitation breakage. Abrasion resistance to corrosion can be exhibited. In particular, Cr 3 C 2 as chromium carbide
And a film using WC as a tungsten carbide has a film hardness of Hv1000 or more and excellent corrosion resistance. The main substances constituting earth and sand are feldspar and quartz, the highest hardness of which is Hv1000 of quartz. Since the abrasion resistance rapidly increases when the hardness of the impact particles exceeds the hardness of the colliding particles, at least a part of the impeller surface is coated with the above-mentioned coating having a coating hardness of Hv 1000 or more, so that the abrasion and cavitation damage are caused. Sufficient abrasion resistance to corrosion can be exhibited.

【0013】第1皮膜を、Cr32若しくはWCを50
重量%から90重量%、望ましくは70重量%から90
重量%含む皮膜とすることによって土砂摩耗に対し優れ
た耐食性と耐摩耗性を有する。すなわち、クロム炭化物
若しくはタングステン炭化物、及びNi,Cr,Coの
内の少なくとも1種類を含む金属とから構成される皮膜
はCr32,WCの量によって皮膜硬さが変化する。C
32,WCの量を増せば皮膜硬さは増すが、皮膜の靭
性が失われ脆性となり、皮膜破壊、剥離等が生じやすく
信頼性が低下する。Cr32,WCの量が50重量%か
ら90重量%範囲であれば,土砂摩耗に対して十分な皮
膜硬さを有し、且つ靭性を保つことが出来る。また、こ
の範囲であれば皮膜硬さとしてHv1000以上を得る
ことが可能であり、土砂摩耗に対し優れた耐食性と耐摩
耗性を有する。但し、土砂濃度が高い場合はCr32
WCの量を高め、皮膜硬さを高める必要がある。この場
合、Cr32,WCの量は70重量%から90重量%が
望ましい。
The first film is made of 50% Cr 3 C 2 or WC.
% To 90% by weight, preferably 70% to 90% by weight.
By providing a coating containing the weight%, it has excellent corrosion resistance and wear resistance against earth and sand wear. That is, the hardness of a coating composed of chromium carbide or tungsten carbide and a metal containing at least one of Ni, Cr, and Co changes depending on the amounts of Cr 3 C 2 and WC. C
When the amount of r 3 C 2 and WC is increased, the hardness of the film increases, but the toughness of the film is lost and the film becomes brittle, and the film is likely to be broken, peeled off, etc., and the reliability is lowered. When the amounts of Cr 3 C 2 and WC are in the range of 50% by weight to 90% by weight, sufficient film hardness against earth and sand wear and toughness can be maintained. Further, in this range, it is possible to obtain a coating hardness of Hv 1000 or more, and it has excellent corrosion resistance and abrasion resistance against earth and sand wear. However, when the sediment concentration is high, Cr 3 C 2 ,
It is necessary to increase the amount of WC and increase the film hardness. In this case, the amount of Cr 3 C 2 and WC is desirably 70 to 90% by weight.

【0014】上記第1皮膜の膜厚を0.1mm以上1.
0mm以下とすることによってインペラの土砂摩耗とキ
ャビテーション壊食に対して十分な寿命を保証でき、且
つ生産性、省エネルギの点で良好となる。すなわち、溶
射膜には微細なボイドが多数存在するため、優れた耐食
性と耐摩耗性を示すには皮膜厚さとしては0.1mm以
上を必要とする。一方、溶射膜は膜厚が増すと皮膜内部
の歪が増すため密着力が低下する。密着力の点からは、
この溶射膜は膜厚1.0mm以下とする必要がある。ま
た、この皮膜の耐摩耗性を考慮すると1.0mmの膜厚
があれば十分な寿命が予想され、作業の軽減、省エネル
ギの点でも1.0mm以下とすることが望ましい。以上
の点から膜厚を0.1mm以上1.0mm以下とすれ
ば、インペラの土砂摩耗とキャビテーション壊食に対し
て十分な寿命を保証でき、且つ生産性、省エネルギの点
で良好となる。
The thickness of the first coating is 0.1 mm or more.
By setting it to 0 mm or less, a sufficient life can be guaranteed against earth and sand wear and cavitation erosion of the impeller, and good productivity and energy saving can be obtained. That is, since a large number of fine voids are present in the thermal spray coating, a coating thickness of 0.1 mm or more is required to exhibit excellent corrosion resistance and wear resistance. On the other hand, as the thickness of the sprayed film increases, the internal strain increases, and the adhesion decreases. In terms of adhesion,
This sprayed film needs to have a thickness of 1.0 mm or less. Further, considering the wear resistance of this film, if the film has a thickness of 1.0 mm, a sufficient life is expected, and it is desirable that the thickness be 1.0 mm or less from the viewpoint of reduction of work and energy saving. From the above points, when the film thickness is set to 0.1 mm or more and 1.0 mm or less, a sufficient life can be ensured against earth and sand wear and cavitation erosion of the impeller, and good in productivity and energy saving.

【0015】皮膜被覆法として溶射を用いることにより
土砂摩耗とキャビテーション壊食に対して十分な寿命を
保証できる厚みの皮膜を容易に被覆することが出来る。
すなわち、皮膜被覆法として溶射を用いるとNi,C
r,Coとクロム炭化物とから構成される皮膜では0.
1mmから1mmまでの膜厚、Ni,Cr,Coとタン
グステン炭化物とから構成される皮膜では0.1mmか
ら0.5mmまでの膜厚が形成可能である。したがっ
て、溶射で皮膜を形成すれば、土砂摩耗とキャビテーシ
ョン壊食に対して十分な寿命を保証できる厚みの皮膜を
容易に被覆することができる。
By using thermal spraying as a coating method, it is possible to easily coat a film having a thickness that can guarantee a sufficient life against earth and sand abrasion and cavitation erosion.
That is, when thermal spraying is used as a coating method, Ni, C
r, Co and chromium carbide have a thickness of 0.
A film thickness of 1 mm to 1 mm, and a film thickness of 0.1 mm to 0.5 mm can be formed with a film composed of Ni, Cr, Co and tungsten carbide. Therefore, if a film is formed by thermal spraying, it is possible to easily coat a film having a thickness that can guarantee a sufficient life against earth and sand wear and cavitation erosion.

【0016】第1皮膜を被覆した後、350℃以上、6
50℃以下、望ましくは400℃以上、650℃以下の
温度で少なくとも1時間以上30時間以下加熱すること
によって、クロム炭化物若しくはタングステン炭化物、
及びNi,Cr,Coとから構成される皮膜内部におい
て、Ni,Cr,Coの金属相とクロム炭化物粒子若し
くはタングステン炭化物粒子との密着力が増すため、皮
膜の硬さが増加し、土砂摩耗とキャビテーション壊食に
対する耐摩耗性が増す。さらに、皮膜と母材との界面に
おいて密着力が増し、皮膜剥離が抑制される。したがっ
て、何らかの衝撃によって皮膜に亀裂が発生しても、皮
膜の剥離、脱落が抑制され信頼性が増す。加熱温度は高
いほど、皮膜内のNi,Cr,Co金属相とクロム炭化
物粒子若しくはタングステン炭化物粒子との密着力増
加、皮膜と母材との界面における密着力増加は早く進む
が、皮膜と母材との熱膨張率差によって熱歪が生じる。
熱歪による皮膜への影響を考慮すると650℃以下が望
ましい。また、皮膜の改良速度を考慮すると、350℃
が限界であり、これ以下では時間がかかり工業的利用が
困難となる。実用性を考慮すれば400℃以上、650
℃以下の温度範囲が望ましい。350℃以上、650℃
以下の温度範囲で検討すれば、350℃では20時間を
必要し、650℃であれば最低1時間で加熱の効果が生
じる。400℃以上、650℃以下の温度範囲で検討す
れば、30時間でその効果は収束する、したがって、効
果と省エネルギの点を考慮すれば1時間以上30時間以
下の加熱時間が望ましい。
After coating the first film, the temperature is raised to
By heating at a temperature of 50 ° C. or less, desirably 400 ° C. or more and 650 ° C. or less for at least 1 hour to 30 hours, a chromium carbide or a tungsten carbide;
In addition, since the adhesion between the metal phase of Ni, Cr, and Co and the chromium carbide particles or tungsten carbide particles increases within the coating composed of Ni, Cr, and Co, the hardness of the coating increases, and sediment abrasion occurs. Increases wear resistance to cavitation erosion. Further, the adhesion at the interface between the film and the base material is increased, and peeling of the film is suppressed. Therefore, even if a crack is generated in the film due to some impact, the peeling and falling off of the film is suppressed, and the reliability is increased. The higher the heating temperature, the faster the adhesion between the Ni, Cr and Co metal phases in the coating and the chromium carbide particles or tungsten carbide particles, and the faster the adhesion at the interface between the coating and the base material. A thermal strain is generated due to a difference in thermal expansion coefficient between the two.
Considering the influence of the thermal strain on the film, the temperature is preferably 650 ° C. or less. Considering the improvement rate of the film, 350 ° C.
However, below this, it takes a long time and industrial utilization becomes difficult. Considering practicality, 400 ° C. or more, 650
A temperature range of not more than ℃ is desirable. 350 ° C or higher, 650 ° C
Considering the following temperature range, heating at 350 ° C. requires 20 hours, and at 650 ° C., the effect of heating is at least 1 hour. When the temperature is examined in the temperature range of 400 ° C. or more and 650 ° C. or less, the effect converges in 30 hours. Therefore, considering the effect and energy saving, a heating time of 1 hour to 30 hours is desirable.

【0017】第1被膜の被覆方法として溶射、特に高速
フレーム溶射を用いると三次元形状部材に対して均一が
緻密な皮膜が形成できる。溶射には各種方法があり、そ
れぞれの長所短所に応じた適用が行われている。最も緻
密な皮膜を形成できる溶射法は減圧中でプラズマ溶射法
を行う減圧溶射法である。しかし、減圧溶射法では施工
部材を真空容器中にいれて被覆処理せねばならず、本例
のような大型部材への適用は実用的でない。緻密な皮膜
を被覆できる他の方法として、爆発溶射法と高速フレー
ム溶射がある。爆発溶射法は一度の被覆面積が広いた
め、大型平面部材への被覆には適するが、溶射ガン、設
備が大きく、ランナやインペラのような三次元形状部材
に対して均一に被覆することは困難である。高速フレー
ム溶射は緻密な皮膜が形成でき、且つガンが比較的小さ
く、三次元形状部材に対して均一が緻密な皮膜が形成で
きる。
[0017] If thermal spraying, especially high-speed flame spraying, is used as a method for coating the first coating, a uniform and dense coating can be formed on the three-dimensionally shaped member. There are various methods for thermal spraying, and each method is applied according to its advantages and disadvantages. The spraying method capable of forming the densest film is a reduced pressure spraying method in which a plasma spraying method is performed under reduced pressure. However, according to the reduced pressure spraying method, it is necessary to put the member to be applied in a vacuum vessel for coating treatment, and it is not practical to apply to a large member as in this example. Explosive spraying and high-speed flame spraying are other methods that can coat a dense film. Explosive spraying is suitable for coating large-sized flat members because the coating area is large at one time, but it is difficult to uniformly coat three-dimensionally shaped members such as runners and impellers because the spray gun and equipment are large. It is. The high-speed flame spraying can form a dense film, the gun is relatively small, and a uniform and dense film can be formed on a three-dimensionally shaped member.

【0018】第1皮膜を被覆したインペラの表面に、硬
質ゴム、エポキシ、ポリエチレン、ポリエステルからな
る群から選ばれる少なくとも1種を含む第2皮膜を被覆
すると部材全体の耐土砂摩耗性、耐キャビテーション性
が大幅に改善される。前述のごとく、高速フレーム溶射
はガンが比較的小さく、三次元形状部材に対して均一が
緻密な皮膜が形成できる溶射法であるが、それでもポン
プのインペラの流路内部のような箇所に良好な皮膜を形
成することは困難である。しかし、硬質ゴム、エポキ
シ、ポリエチレン、ポリエステルからなる群から選ばれ
る少なくとも1種を含む第2皮膜は、クロム炭化物、タ
ングステン炭化物、ニッケル、クロム、コバルトからな
る群から選ばれる少なくとも1種を含む第1皮膜に比較
すれば耐土砂摩耗性、耐キャビテーション性には劣るも
のの、施工法を適切に選定すればインペラの流路内部の
ような箇所にも良好な皮膜を被覆することができる。従
って、クロム炭化物若しくはタングステン炭化物、及び
Ni,Cr,Coのから構成される皮膜を溶射によって
被覆し、さらに同皮膜の被覆が困難な流路内部のような
箇所に硬質ゴム、エポキシ、ポリエチレン、ポリエステ
ルの内の少なくとも1種類を含む樹脂から構成される皮
膜を被覆すれば、部材全体の耐土砂摩耗性、耐キャビテ
ーション性が大幅に改善される。
When the surface of the impeller covered with the first film is coated with a second film containing at least one selected from the group consisting of hard rubber, epoxy, polyethylene and polyester, the whole member has resistance to earth and sand wear and cavitation. Is greatly improved. As described above, high-speed flame spraying is a thermal spraying method that can form a uniform and dense coating on a three-dimensionally shaped member with a relatively small gun, but it is still good for places such as inside the flow path of the impeller of the pump. It is difficult to form a film. However, the second coating containing at least one selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester is the first coating containing at least one selected from the group consisting of chromium carbide, tungsten carbide, nickel, chromium, and cobalt. Although it is inferior to earth and sand abrasion resistance and cavitation resistance as compared with the coating, if the construction method is appropriately selected, a good coating can be applied to a portion such as the inside of the flow path of the impeller. Therefore, a coating composed of chromium carbide or tungsten carbide and Ni, Cr, Co is coated by thermal spraying, and hard rubber, epoxy, polyethylene, polyester is applied to a portion such as the inside of a flow passage where coating of the coating is difficult. If a coating composed of a resin containing at least one of the above is coated, the earth and sand wear resistance and cavitation resistance of the entire member are greatly improved.

【0019】第1皮膜を被覆したインペラの表面に、第
2皮膜を被覆する際、少なくとも一部で被覆済の皮膜に
重ねることによって母材が継ぎ目なしに被覆されるた
め、土砂摩耗とキャビテーション壊食に対しての耐摩耗
性、信頼性が増す。皮膜の破壊、剥離は皮膜端部から生
じやすい。したがって、クロム炭化物若しくはタングス
テン炭化物、及びNi,Cr,Coの内の少なくとも1
種類を含む金属とから構成される皮膜に、硬質ゴム、エ
ポキシ、ポリエチレン、ポリエステル等の樹脂から構成
される皮膜一部重ねて被覆することによって、母材が継
ぎ目なしに被覆されるため、土砂摩耗とキャビテーショ
ン壊食に対しての耐摩耗性、信頼性が増す。
When the second coating is coated on the surface of the impeller coated with the first coating, the base material is seamlessly coated by overlapping at least a part of the coated coating, so that sediment wear and cavitation damage are caused. Increases abrasion resistance and reliability against corrosion. Destruction and peeling of the film are likely to occur from the edge of the film. Therefore, at least one of chromium carbide or tungsten carbide and Ni, Cr, Co
The base material is covered seamlessly by partially covering the film composed of resins such as hard rubber, epoxy, polyethylene, and polyester on the film composed of metals including various types. And cavitation erosion wear resistance and reliability are increased.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面に
示した実施例を参照して説明する。◆
Embodiments of the present invention will be described below with reference to embodiments shown in the drawings. ◆

【0021】[0021]

【実施例】【Example】

〔実施例1〕図1は、本発明の第1実施例を示す横軸ポ
ンプ1の概略断面図である。インペラ2は軸受3で両端
を支持された軸4に固定され、軸4の一端に連結された
駆動機(図示せず)によって回転し、インペラ両端から
吸い込んだ水をケーシング5から排出する機構である。
Embodiment 1 FIG. 1 is a schematic sectional view of a horizontal shaft pump 1 showing a first embodiment of the present invention. The impeller 2 is fixed to a shaft 4 supported at both ends by bearings 3, is rotated by a driving machine (not shown) connected to one end of the shaft 4, and drains water sucked from both ends of the impeller from a casing 5. is there.

【0022】本発明を適用した部品は、インペラ2とケ
ーシング5である。インペラ2を例に取り、詳細を以下
説明する。図2にインペラ2の概略外観を示す。内部構
造を明確にするため、一部を分割表示している。インペ
ラ2は軸4と嵌合するボス21、そのボス21を取り囲
むシュラウド22、ボス21とシュラウド22と連結す
る羽根23からなる。ボス21とシュラウド22のすき
間が流路となり、両側の吸い込み口24から流入した水
は、回転するインペラ2によって加速され、吐き出し口
25から吐き出され、ケーシング5内の流路を通りポン
プから吐き出される。
The parts to which the present invention is applied are the impeller 2 and the casing 5. Details will be described below taking the impeller 2 as an example. FIG. 2 shows a schematic external view of the impeller 2. Some parts are shown separately to clarify the internal structure. The impeller 2 includes a boss 21 fitted to the shaft 4, a shroud 22 surrounding the boss 21, and a blade 23 connected to the boss 21 and the shroud 22. The gap between the boss 21 and the shroud 22 forms a flow path, and the water flowing from the suction ports 24 on both sides is accelerated by the rotating impeller 2, discharged from the discharge port 25, and discharged from the pump through the flow path in the casing 5. .

【0023】インペラ2に流入する流水に多数の土砂が
含まれる場合、土砂粒子の衝突によって土砂摩耗が発生
する。この土砂摩耗を防ぐため、インペラ2には流水速
度の速い箇所、粒子衝突頻度の高い箇所、すなわちに羽
根23とシュラウド22の一部に、膜厚0.4mmから
0.6mmのCr32−16重量%Ni−4重量%Cr
溶射膜(以後、Cr32−20%NiCr溶射膜と表記
する)を被覆しており、さらに軸4との嵌合部分を除く
インペラ2の全面に膜厚1mmから2mmのエポキシ樹
脂皮膜を被覆している。エポキシ樹脂皮膜の内部には、
酸化アルミ粒子が分散されており、その分量は本実施例
では50重量%である。エポキシ樹脂皮膜はCr32
20%NiCr溶射膜を被覆した箇所にも、その上層に
被覆されており、その重なり箇所では下層にCr32
20%NiCr溶射膜8、上層にエポキシ樹脂皮膜の2
層構造となっている。
When the running water flowing into the impeller 2 contains a large amount of earth and sand, earth and sand abrasion occurs due to the collision of the earth and sand particles. In order to prevent this sediment abrasion, a portion of the impeller 2 where the flowing water velocity is high and where the particle collision frequency is high, that is, a part of the blades 23 and the shroud 22 are Cr 3 C 2 having a thickness of 0.4 mm to 0.6 mm. -16% by weight Ni-4% by weight Cr
Sprayed film (hereinafter, Cr 3 denoted as C 2 -20% NiCr sprayed coating) are coated with a further whole surface film thickness 1 mm 2 mm of the epoxy resin film of the impeller 2, except the mating portion of the shaft 4 Coated. Inside the epoxy resin film,
Aluminum oxide particles are dispersed, and the amount is 50% by weight in this embodiment. Epoxy resin film is Cr 3 C 2
The portion coated with the 20% NiCr sprayed film is also coated on the upper layer, and in the overlapping portion, the lower layer is formed with Cr 3 C 2
20% NiCr sprayed film 8, 2 layers of epoxy resin film on top
It has a layer structure.

【0024】図3に、図2のインペラ2のA−A縦断面
をa方向から見た縦断面を示す。本図では断面以外にC
32−20%NiCr溶射膜8を被覆した箇所にハッ
チングを施す。Cr32−20%NiCr溶射膜8の被
覆箇所は、吸い込み口24、吐き出し口25近傍であ
り、溶射施工が容易な箇所である。
FIG. 3 shows a longitudinal section of the impeller 2 shown in FIG. In this drawing, C
Hatching is applied to the portion where the r 3 C 2 -20% NiCr sprayed film 8 is coated. The coating location of the Cr 3 C 2 -20% NiCr sprayed film 8 is near the suction port 24 and the discharge port 25, and is a location where thermal spraying is easy.

【0025】図4に、図2のインペラ2のb方向から見
た外観図を示す。但し、内部構造を明確にするため、右
半分のシュラウド22を省略してある。図4でも図3と
同様に、Cr32−20%NiCr溶射膜8を被覆した
箇所にハッチングを施す。
FIG. 4 is an external view of the impeller 2 of FIG. 2 as viewed from the direction b. However, in order to clarify the internal structure, the right half shroud 22 is omitted. In FIG. 4, similarly to FIG. 3, hatching is applied to the portion covered with the Cr 3 C 2 -20% NiCr sprayed film 8.

【0026】図5に、図4のインペラ2のB−B縦断面
をc方向から見た拡大の縦断面の一部を示すを示す。シ
ュラウド22と羽根24の一部にCr32−20%Ni
Cr溶射膜8が被覆され、さらに全面にエポキシ樹脂皮
膜9が被覆されている。 Cr32−20%NiCr溶
射膜8とエポキシ樹脂皮膜9は重なり、下層がCr32
−20%NiCr溶射膜8となる。
FIG. 5 shows a part of an enlarged vertical cross section of the impeller 2 of FIG. Cr 3 C 2 -20% Ni is applied to a part of the shroud 22 and the blade 24.
A Cr sprayed film 8 is coated, and an epoxy resin film 9 is further coated on the entire surface. The Cr 3 C 2 -20% NiCr sprayed film 8 and the epoxy resin film 9 overlap, and the lower layer is Cr 3 C 2
A -20% NiCr sprayed film 8 is obtained.

【0027】図6に、吐き出し口25の正面部分のケー
シング5の縦断面拡大図を示す。吐き出し口25の正面
部分51は、流速が早く、粒子衝突頻度が大きいために
土砂摩耗が生じやすい。そこで、吐き出し口25からの
流水が直接衝突する箇所にCr32−20%NiCr溶
射膜8が被覆され、さらに内面の全面にエポキシ樹脂皮
膜9が被覆されている。2分割化できるケーシング5
は、分割面から垂直となる吐き出し口25の正面部分5
1は溶射が可能であるが、他の部分は十分なスペースが
とれず、良好な溶射皮膜を被覆することが困難である。
そこで、インペラ2と同様に、エポキシ樹脂皮膜9を被
覆している。
FIG. 6 is an enlarged longitudinal sectional view of the casing 5 at the front part of the discharge port 25. The front portion 51 of the discharge port 25 has a high flow velocity and a high frequency of particle collision, so that sediment wear is likely to occur. Therefore, a portion where the flowing water from the discharge port 25 directly collides is coated with a Cr 3 C 2 -20% NiCr sprayed film 8, and an entire surface of the inner surface is coated with an epoxy resin film 9. Casing 5 that can be divided into two
Is a front part 5 of the discharge port 25 which is perpendicular to the division plane.
No. 1 is capable of thermal spraying, but the other portions do not have sufficient space, and it is difficult to coat a good thermal spray coating.
Therefore, similarly to the impeller 2, the epoxy resin film 9 is coated.

【0028】次に、本発明の製造方法に関する一実施例
をインペラ2を例にとり、図7によって説明する。イン
ペラ2は鋳造によって製作した。材料は13%Cr鋳鋼
である。鋳造後、歪取り焼鈍を行い、その後切削によっ
て所定寸法に仕上げる。次いで、Cr32−20%Ni
Cr溶射膜8を被覆する箇所に前処理を施す。まず、洗
浄によって油脂を除去し、その後アルミナ粉を用いたサ
ンドブラスト処理によって表面を適度な表面粗さとし、
且つ酸化膜等の除去によって新生面をもうける。その
後、所定箇所に高速フレーム溶射法によってCr32
20%NiCr溶射膜8を被覆する。本実施例では、組
成Cr32−20%NiCrの焼結体を粉砕、分級した
溶射粉を用いた。なお、高速フレーム溶射は、各種ある
溶射法に中で緻密な皮膜が形成でき、且つ溶射ガンが比
較的小さく、比較的狭スペースを有する部材に対して均
一が緻密な皮膜が形成できるため、インペラのような三
次元形状部材への被覆には最も適した溶射法である。
Next, an embodiment of the manufacturing method of the present invention will be described with reference to FIG. The impeller 2 was manufactured by casting. The material is 13% Cr cast steel. After casting, the steel is subjected to strain relief annealing, and then finished to predetermined dimensions by cutting. Then, Cr 3 C 2 -20% Ni
A pretreatment is performed on the portion to be coated with the Cr sprayed film 8. First, the fats and oils are removed by washing, and then the surface is adjusted to an appropriate surface roughness by sandblasting using alumina powder.
In addition, a new surface is formed by removing the oxide film and the like. Then, Cr 3 C 2
A 20% NiCr sprayed film 8 is coated. In this embodiment, a sprayed powder obtained by pulverizing and classifying a sintered body having a composition of Cr 3 C 2 -20% NiCr was used. In high-speed flame spraying, a dense coating can be formed in various spraying methods, and a uniform and dense coating can be formed on a member having a relatively small spray gun and a relatively narrow space. This is the most suitable thermal spraying method for coating a three-dimensionally shaped member such as.

【0029】次に、インペラを炉中に設置し、1時間以
上、30時間以下の間、350℃以上、650℃以下、
望ましくは400℃以上、650℃以下の温度範囲で保
持する加熱処理を施す。本実施例では、550℃で約1
5時間保持し、その後は炉中で冷却した。インペラは大
型部品であるため急激な昇温、冷却は困難であり、また
皮膜の熱歪の点からも適切でない。そのため、インペラ
は炉中で15h、550℃に保持し、その後炉中で緩や
かに冷却した。
Next, the impeller is set in a furnace, and for 1 hour or more and 30 hours or less, 350 ° C. or more, 650 ° C. or less,
Desirably, heat treatment is performed at a temperature in the range of 400 ° C. or more and 650 ° C. or less. In this embodiment, about 1 at 550 ° C.
Hold for 5 hours, then cool in furnace. Since the impeller is a large part, it is difficult to rapidly raise and cool the temperature, and it is not appropriate from the viewpoint of thermal distortion of the coating. Therefore, the impeller was kept at 550 ° C. for 15 h in the furnace, and then cooled slowly in the furnace.

【0030】この温度の加熱によって、Cr32−20
%NiCr溶射膜8おいてNi,CrとCr32粒子と
の密着力が増すため、皮膜の硬さが増加し、土砂摩耗と
キャビテーション壊食に対する耐摩耗性が増す。さら
に、Cr32−20%NiCr溶射膜8と母材との界面
において密着力が増し、皮膜剥離が抑制される。したが
って、何らかの衝撃によって皮膜に亀裂が発生しても、
皮膜の剥離、脱落が抑制され信頼性が増す。なお、この
現象はCr32−20%NiCr溶射膜に限らず、ばW
C−NiCr皮膜、WC−Co皮膜でも同様である。
By heating at this temperature, Cr 3 C 2 -20
Since the adhesion between Ni, Cr and Cr 3 C 2 particles in the% NiCr sprayed film 8 increases, the hardness of the film increases, and the wear resistance against earth and sand wear and cavitation erosion increases. Further, the adhesive strength at the interface between the Cr 3 C 2 -20% NiCr sprayed film 8 and the base material is increased, and the peeling of the film is suppressed. Therefore, even if the film cracks due to any impact,
Peeling and falling off of the film are suppressed and reliability is increased. This phenomenon is not limited to the Cr 3 C 2 -20% NiCr sprayed film,
The same applies to a C-NiCr film and a WC-Co film.

【0031】加熱温度は高いほど、溶接部の残留歪の解
放、皮膜内のNi,Crの金属相とCr32粒子との密
着力増加、皮膜と母材との界面における密着力増加は早
く進むが、Cr32−20%NiCr溶射膜8と母材1
3Cr鋼との熱膨張率差によって熱歪が生じる。熱歪に
よる皮膜への影響を考慮すると650℃以下が望まし
い。また、溶射膜の改良速度を考慮すると、350℃が
限界であり、これ以下では時間がかかり工業的利用が困
難となる。実用性を考慮すれば400℃以上、650℃
以下の温度範囲が望ましい。350℃以上、650℃以
下の温度範囲で検討すれば、350℃では20時間を必
要し、650℃であれば最低1時間で加熱の効果が生じ
る。400℃以上、650℃以下の温度範囲で検討すれ
ば、30時間でその効果は収束する、したがって、効果
と省エネルギの点を考慮すれば1時間以上30時間以下
の加熱時間が望ましい。なお、この条件はCr32−2
0%NiCr溶射膜に限らず、WC量が50重量%から
90重量%範囲であればWC−NiCr皮膜、WC−C
o皮膜でも同様である。
As the heating temperature is higher, the residual strain in the weld is released, the adhesion between the Ni and Cr metal phases in the coating and the Cr 3 C 2 particles is increased, and the adhesion at the interface between the coating and the base material is increased. Although it advances quickly, the Cr 3 C 2 -20% NiCr sprayed film 8 and the base material 1
Thermal distortion occurs due to a difference in thermal expansion coefficient from 3Cr steel. Considering the influence of the thermal strain on the film, the temperature is preferably 650 ° C. or less. Further, considering the improvement rate of the thermal sprayed film, the limit is 350 ° C. If it is less than 350 ° C., it takes a long time and industrial use becomes difficult. 400 ° C or higher, 650 ° C considering practicality
The following temperature range is desirable. Considering the temperature range of 350 ° C. or more and 650 ° C. or less, heating at 350 ° C. requires 20 hours, and at 650 ° C., the effect of heating occurs in at least 1 hour. When the temperature is examined in the temperature range of 400 ° C. or more and 650 ° C. or less, the effect converges in 30 hours. Therefore, considering the effect and energy saving, a heating time of 1 hour to 30 hours is desirable. Note that this condition is Cr 3 C 2 -2
The WC-NiCr coating and the WC-C are not limited to the 0% NiCr sprayed coating, and the WC amount may be in the range of 50% by weight to 90% by weight.
The same applies to the o film.

【0032】十分な冷却後、軸4との勘合面をのぞくイ
ンペラ2の全面にエポキシ樹脂皮膜9を被覆する。本実
施例ではビス型エポキシに粒径10〜40μmの酸化ア
ルミ粒子を50重量%、硬化剤を10重量%混練した溶
剤を用いた。この溶剤を軸4との勘合面をのぞくインペ
ラ2の全面に塗布し、所定条件で加熱硬化させ、焼き付
ける。
After sufficient cooling, the entire surface of the impeller 2 except for the mating surface with the shaft 4 is coated with an epoxy resin film 9. In this embodiment, a solvent obtained by kneading 50% by weight of aluminum oxide particles having a particle size of 10 to 40 μm and 10% by weight of a curing agent in a bis-type epoxy was used. This solvent is applied to the entire surface of the impeller 2 except for the mating surface with the shaft 4, and is heated and cured under predetermined conditions and baked.

【0033】〔実施例2〕図8は本発明の第2実施例を
示す水車6の概略外観図であり、内部構造を明確にする
ため一部を分割表示している。図8において、41は
軸、7はランナ、10はガイドベーン、11は上ランナ
カバー、12は下ランナカバー、13は軸受である。ガ
イドベーン10から軸41に固定されたランナ7内に水
が流れ込み、水の運動エネルギによってランナ7、軸4
1を回転させ、軸41の一端に連結された発電機(図示
せず)を回転させて発電する機構である。
[Embodiment 2] FIG. 8 is a schematic external view of a water turbine 6 showing a second embodiment of the present invention. 8, 41 is a shaft, 7 is a runner, 10 is a guide vane, 11 is an upper runner cover, 12 is a lower runner cover, and 13 is a bearing. Water flows from the guide vane 10 into the runner 7 fixed to the shaft 41, and the kinetic energy of the water causes the runner 7 and the shaft 4 to move.
1 is a mechanism for generating electricity by rotating a generator (not shown) connected to one end of the shaft 41.

【0034】本発明を適用した部品は、ランナ7、ガイ
ドベーン10、上ランナカバー11、下ランナカバー1
2である。ランナ7に流入する流水に多数の土砂が含ま
れる場合、ランナ7、ガイドベーン10、上下ランナカ
バー11、12は、土砂粒子の衝突によって土砂摩耗が
発生する。この土砂摩耗を防ぐため、ランナ7、ガイド
ベーン10、上下ランナカバー11、12には、土砂摩
耗の発生が予想される流水速度の速い箇所、粒子衝突頻
度の高い箇所にCr32−20%NiCr被膜が被覆さ
れ、他の部分には50重量%の酸化アルミ粒子が分散さ
れたエポキシ樹脂皮膜が被覆されている。Cr32−2
0%NiCr皮膜とエポキシ樹脂皮膜とは重なり、下層
にCr32−20%NiCr皮膜、上層にエポキシ樹脂
皮膜の構造となっている。
The parts to which the present invention is applied include a runner 7, a guide vane 10, an upper runner cover 11, and a lower runner cover 1.
2. When the running water flowing into the runner 7 contains a large amount of earth and sand, the runner 7, the guide vanes 10, and the upper and lower runner covers 11 and 12 suffer from earth and sand wear due to the collision of the earth and sand particles. In order to prevent this sediment abrasion, the runner 7, the guide vane 10, and the upper and lower runner covers 11 and 12 are provided with Cr 3 C 2 -20 at places where the speed of flowing water at which sand abrasion is expected to occur and where particle collision frequency is high is high. % NiCr coating, and the other part is coated with an epoxy resin coating in which 50% by weight of aluminum oxide particles are dispersed. Cr 3 C 2 -2
The 0% NiCr film and the epoxy resin film overlap, and the lower layer has a structure of a Cr 3 C 2 -20% NiCr film and the upper layer has an epoxy resin film.

【0035】ランナ7、ガイドベーン10を例に取り、
詳細を以下説明する。◆図9はランナ7の概略斜視図で
ある。図9において71はクラウン、72はバンド、7
3は羽根であり、クラウン71と羽根73、バンド72
と羽根73は溶接によって接合され、ランナ7を形成し
ている。図10はクラウン71と羽根73との溶接部の
拡大断面図である。なお、図10では煩雑さをさけるた
めクラウン71、羽根73の断面ハッチングを区別せ
ず、さらに溶接部のハッチングをしていない。
Taking the runner 7 and the guide vane 10 as an example,
Details will be described below. FIG. 9 is a schematic perspective view of the runner 7. 9, 71 is a crown, 72 is a band, 7
Reference numeral 3 denotes a blade, a crown 71, a blade 73, and a band 72.
And the blades 73 are joined by welding to form the runner 7. FIG. 10 is an enlarged sectional view of a welded portion between the crown 71 and the blade 73. In FIG. 10, the hatching of the cross section of the crown 71 and the blade 73 is not distinguished to avoid complication, and the hatching of the welded portion is not performed.

【0036】羽根73は流水部の流速が早く且つ粒子衝
突頻度も高いことから全面に、クラウン71、バンド7
2は内面に、Cr32−20%NiCr皮膜8が被覆さ
れている。エポキシ樹脂皮膜9はランナ7全面に被覆し
ており、Cr32−20%NiCr皮膜8被覆箇所も上
塗りしてある。流速の早いランナ内面は全てをCr32
−20%NiCr皮膜8によって被覆することが望まし
いが、クラウン71と羽根73、バンド72と羽根73
は溶接によってランナ7を形成しているため、溶接部に
事前に溶射皮膜を被覆しておくことはできない。従っ
て、溶接部は溶接後、エポキシ樹脂皮膜9を被覆し、土
砂摩耗の損傷を防ぐ構造としている。
Since the blade 73 has a high flow velocity in the flowing water portion and a high frequency of particle collision, the crown 73 and the band 7
2 has an inner surface coated with a Cr 3 C 2 -20% NiCr film 8. The epoxy resin film 9 covers the entire surface of the runner 7 and the Cr 3 C 2 -20% NiCr film 8 is also overcoated. The inner surface of the runner with high flow velocity is all Cr 3 C 2
It is desirable to cover with a -20% NiCr film 8, but a crown 71 and a blade 73, and a band 72 and a blade 73
Since the runner 7 is formed by welding, it is not possible to cover the welded portion with a thermal spray coating in advance. Therefore, after welding, the welded portion is coated with the epoxy resin film 9 to prevent damage to earth and sand wear.

【0037】次に、本発明の製造方法の一例をランナ7
を例にとり、図11によって説明する。図11は、本発
明の一実施例である水車ランナ7の製造方法を示す工程
図である。まず、クラウン71、バンド72、羽根73
を個々に製作する。次に、個々に製作されたクラウン7
1、バンド72、羽根73に、高速フレーム溶射法によ
ってCr32−20%NiCr皮膜を被覆する。Cr3
2−20%NiCr皮膜を被覆する際、溶接部となる
箇所はCr32−20%NiCr皮膜の膜厚よりも厚
い、望ましくは2倍以上の厚みを有する金属板を張り付
け、Cr32−20%NiCr皮膜の被覆を防ぐ。皮膜
の膜厚より2倍以上の厚みを有する金属板であれば、高
速フレーム溶射法における高速ガスに対しても十分な強
度、耐熱性を有するため、破断飛散が防げる。また皮膜
の膜厚より2倍以上の厚みであれば、マスキング部と被
覆部の皮膜が連続する事はなく、良好な皮膜端部が形成
できる。
Next, an example of the manufacturing method of the present invention will be described with reference to a runner 7.
This will be described with reference to FIG. FIG. 11 is a process chart showing a method for manufacturing a water turbine runner 7 according to one embodiment of the present invention. First, the crown 71, the band 72, the blade 73
Are manufactured individually. Next, the individually manufactured crown 7
1. The band 72 and the blade 73 are coated with a Cr 3 C 2 -20% NiCr film by a high-speed flame spraying method. Cr 3
When covering the C 2 -20% NiCr coating portion which becomes the welding portion is thicker than the film thickness of the Cr 3 C 2 -20% NiCr film, preferably stuck a metal plate having a thickness of more than twice, Cr 3 prevent coating of C 2 -20% NiCr film. A metal plate having a thickness of at least twice the thickness of the coating has sufficient strength and heat resistance to high-speed gas in the high-speed flame spraying method, so that scattered fracture can be prevented. If the thickness is at least twice as large as the thickness of the coating, the coating at the masking portion and the coating portion will not be continuous, and a good coating end can be formed.

【0038】次に、クラウン71と羽根73、バンド7
2と羽根73を溶接し、ランナ7を形成する。溶接後、
溶接部をグラインダによって適切なR形状に加工し、稼
働時の応力集中を防ぐ。次に、ランナ7を炉中に設置
し、1時間以上、30時間以下の間、350℃以上、6
50℃以下、望ましくは400℃以上、650℃以下の
温度範囲で保持するSR処理を施す。本実施例では、5
50℃で約15時間保持し、その後は炉中で冷却した。
なお、15時間は550℃における保持時間である。5
50℃加熱では、約5時間以上の保持で皮膜硬さが増
し、約10時間以上の保持で密着力の著しい改善が図ら
れる。ランナは大型部品であるため急激な昇温、冷却は
困難であり、また皮膜の熱歪の点からも適切でない。ラ
ンナは炉中で15時間、550℃に保持し、その後炉中
で緩やかに冷却したものである。十分な冷却後、R形状
に加工した溶接部の酸化膜を再びグラインダで削除す
る。
Next, the crown 71, the blade 73, and the band 7
The runner 7 is formed by welding the blade 2 and the blade 73. After welding,
The weld is machined into an appropriate round shape with a grinder to prevent stress concentration during operation. Next, the runner 7 is set in a furnace, and at 350 ° C. or more for 6 hours or more and 30 hours or less.
An SR process is performed in which the temperature is maintained at 50 ° C. or lower, preferably 400 ° C. to 650 ° C. In this embodiment, 5
It was kept at 50 ° C. for about 15 hours, after which it was cooled in the furnace.
Note that 15 hours is a holding time at 550 ° C. 5
When heated at 50 ° C., the film hardness is increased by holding for about 5 hours or more, and the adhesion is significantly improved by holding for about 10 hours or more. Since the runner is a large part, it is difficult to rapidly raise and cool the temperature, and it is not appropriate from the viewpoint of thermal distortion of the coating. The runner was kept at 550 ° C. for 15 hours in a furnace and then cooled slowly in the furnace. After sufficient cooling, the oxide film of the welded portion processed into the R shape is removed again by the grinder.

【0039】その後、軸41との嵌合面を除くランナ7
の全面にエポキシ樹脂皮膜を被覆する。本実施例ではビ
ス型エポキシに粒径10〜40μmの酸化アルミ粒子を
50重量%、硬化剤を10重量%混練した溶剤を用い
た。この溶剤を軸41との嵌合面を除くランナ7の全面
に塗布し、所定条件で加熱硬化させ焼き付ける。
Thereafter, the runner 7 excluding the fitting surface with the shaft 41 is
Is covered with an epoxy resin film. In this embodiment, a solvent obtained by kneading 50% by weight of aluminum oxide particles having a particle size of 10 to 40 μm and 10% by weight of a curing agent in a bis-type epoxy was used. This solvent is applied to the entire surface of the runner 7 except for the fitting surface with the shaft 41, and is heated and cured under predetermined conditions and baked.

【0040】次に、本発明の他の適用部品であるガイド
ベーン10の説明をする。図12はガイドベーン10の
外観図である。ガイドベーン10は軸部101と羽根部
102とからなる。本図では断面以外にCr32−20
%NiCr溶射膜、エポキシ樹脂皮膜を被覆した箇所に
ハッチングを施す。ガイドベーン10はランナの流入口
の前に位置し、羽根部102の角度によってランナへ流
入する良好な水の流れを作る。従って、羽根部102は
粒子衝突頻度が高く、土砂摩耗が生じやすく、耐摩耗皮
膜の被覆が不可欠である。そこで、本実施例では羽根部
102全面にCr32−20%NiCr溶射膜を被覆
し、さらにその上からエポキシ樹脂皮膜を被覆してい
る。
Next, the guide vane 10 which is another applicable part of the present invention will be described. FIG. 12 is an external view of the guide vane 10. The guide vane 10 includes a shaft portion 101 and a blade portion 102. In this figure, Cr 3 C 2 -20
The portions coated with the% NiCr sprayed film and the epoxy resin film are hatched. The guide vane 10 is located in front of the runner inlet, and creates a good water flow into the runner depending on the angle of the blade 102. Therefore, the blade 102 has a high particle collision frequency, and is liable to cause earth and sand abrasion. Therefore, in this embodiment, the entire surface of the blade 102 is coated with a Cr 3 C 2 -20% NiCr sprayed film, and an epoxy resin film is further coated thereon.

【0041】〔実施例3〕図13は、本発明の第3実施
例を示す縦軸ポンプ15の概略断面図である。羽根16
が複数支持された軸17が、その一端に連結された駆動
機(図示せず)によって回転し、吸い込み口151から
吸い込んだ水を吐き出し口152から排出する機構であ
る。なお、図13において、18は軸受、19は軸封、
20はケーシングである。
Embodiment 3 FIG. 13 is a schematic sectional view of a vertical pump 15 showing a third embodiment of the present invention. Feather 16
Is a mechanism for rotating a shaft 17 on which a plurality of shafts are supported by a driving device (not shown) connected to one end thereof, and discharging the water sucked from the suction port 151 through the discharge port 152. In FIG. 13, 18 is a bearing, 19 is a shaft seal,
20 is a casing.

【0042】本発明を適用した部品は、羽根16とケー
シング20の一部である。羽根16を例に取り、以下説
明する。図14は羽根16の概略外観図である。羽根1
6は羽根部161と軸部162とからなり、軸の端部に
取り付けられる構造である。図14では断面以外にCr
32−20%NiCr溶射膜、エポキシ樹脂皮膜を被覆
した箇所にハッチングを施す。本実施例の縦軸ポンプは
治水用排水ポンプ、発電所の循環水ポンプ等に用いら
れ、黄河、長江等で用いる場合、羽根16には粒子が激
しく衝突し、土砂摩耗が生じやすい。本実施例では羽根
16の土砂摩耗を防ぐため、羽根部161全面にCr3
2−20%NiCr溶射膜を被覆し、さらにその上か
らエポキシ樹脂皮膜を被覆している。羽根16は通常、
鋳物、若しくは鋳鋼であり、使用時は常時水中に設置さ
れる。鋳物製の場合、 Cr32−20%NiCr溶射
膜を被覆すると、下地の鉄材量とCr32−20%Ni
Cr溶射膜との間で電気腐食を生じる可能性がある。
Parts to which the present invention is applied are the blade 16 and a part of the casing 20. The blade 16 will be described below as an example. FIG. 14 is a schematic external view of the blade 16. Feather 1
Reference numeral 6 denotes a structure which includes a blade portion 161 and a shaft portion 162 and is attached to an end of the shaft. In FIG.
Hatching is applied to the portions coated with the 3 C 2 -20% NiCr sprayed film and the epoxy resin film. The vertical axis pump of this embodiment is used for flood control drainage pumps, circulating water pumps of power plants, and the like. When used in the Yellow River, the Yangtze River, etc., particles collide violently with the blades 16 and sediment wear is likely to occur. In the present embodiment, in order to prevent earth and sand abrasion of the blade 16, Cr 3
Covering the C 2 -20% NiCr sprayed coating, and further coated with an epoxy resin coating thereon. The wings 16 are usually
It is a casting or cast steel and is always installed in water when used. If it made of casting and coating the Cr 3 C 2 -20% NiCr sprayed coating, iron content of the base and the Cr 3 C 2 -20% Ni
There is a possibility that electric corrosion occurs with the Cr sprayed film.

【0043】エポキシ樹脂皮膜9は耐摩耗性の向上以外
に、上記電気腐食の防止を兼ね、耐食性の向上に寄与す
る。
The epoxy resin film 9 not only improves the wear resistance but also prevents the above-mentioned electric corrosion and contributes to the improvement of the corrosion resistance.

【0044】以下、上記実施例全てに共通する効果、作
用、検討結果を説明する。◆Cr32−NiCr皮膜は
Cr32の量によって皮膜硬さが変化する。Cr32
を増せば皮膜硬さは増すが、皮膜の靭性が失われ脆性と
なり、皮膜破壊、剥離等が生じやすく信頼性が低下す
る。 Cr32−NiCr皮膜について Cr32の含
有率を検討した結果、50重量%から90重量%範囲が
土砂摩耗とキャビテーション壊食に対して良好であるこ
とが判明した。但し、黄河や揚子江、あるいは大雨後の
河川水といった土砂濃度が高い場合はCr32の量を高
め、皮膜硬さを高める必要がある。この場合、Cr32
の量が70重量%から90重量%が望ましい。また、皮
膜の金属成分については、耐食性,皮膜硬さ、靭性の点
からNi,Cr,Coが適している。これらの金属から
の選定、若しくは組み合わせであれば耐食性,硬さ、靭
性が良好である。
Hereinafter, the effects, functions, and the results of studies common to all of the above embodiments will be described. ◆ The hardness of the Cr 3 C 2 —NiCr film changes depending on the amount of Cr 3 C 2 . When the amount of Cr 3 C 2 is increased, the hardness of the coating increases, but the toughness of the coating is lost and the coating becomes brittle. As a result of examining the content of Cr 3 C 2 with respect to the Cr 3 C 2 —NiCr film, it was found that the range of 50% by weight to 90% by weight was favorable for sediment wear and cavitation erosion. However, when the sediment concentration is high such as the Yellow River, the Yangtze River, or river water after heavy rain, it is necessary to increase the amount of Cr 3 C 2 and increase the film hardness. In this case, Cr 3 C 2
Is desirably 70% to 90% by weight. Ni, Cr, and Co are suitable for the metal component of the coating in terms of corrosion resistance, coating hardness, and toughness. If these metals are selected or combined, the corrosion resistance, hardness, and toughness are good.

【0045】Cr32−20%NiCr皮膜は、皮膜硬
さが約Hv1000であり且つ優れた耐食性を有する。
土砂などを構成する主な物質は長石と石英であり、その
最高硬さは石英のHv1000である。土砂摩耗は衝突
粒子の硬さを超えると急激に耐摩耗性が向上するため、
皮膜硬さが約Hv1000である皮膜を被覆することに
よって、土砂摩耗とキャビテーション壊食に対して十分
な耐摩耗性を発揮することが出来る。
The Cr 3 C 2 -20% NiCr coating has a coating hardness of about Hv1000 and has excellent corrosion resistance.
The main substances constituting earth and sand are feldspar and quartz, the highest hardness of which is Hv1000 of quartz. Sediment wear rapidly increases the wear resistance when it exceeds the hardness of the colliding particles,
By coating a coating having a coating hardness of about Hv1000, sufficient wear resistance against earth and sand wear and cavitation erosion can be exhibited.

【0046】溶射膜には微細なボイドが多数存在するた
め、Cr32−20%NiCr皮膜8が優れた耐食性と
耐摩耗性を示すには皮膜厚さとしては0.1mm以上を
必要とする。一方、溶射膜は膜厚が増すと皮膜内部の歪
が増すため密着力が低下する。密着力の点からは、 C
32−20%NiCr皮膜は膜厚1.0mm以下とす
る必要がある。また、Cr32−20%NiCr皮膜8
の耐摩耗性を考慮すると1.0mmの膜厚があれば十分
な寿命が予想され、作業の軽減、省エネルギの点でも
1.0mm以下とすることが望ましい。
Since a large number of fine voids are present in the thermal spray coating, the Cr 3 C 2 -20% NiCr coating 8 needs to have a coating thickness of 0.1 mm or more in order to exhibit excellent corrosion resistance and wear resistance. I do. On the other hand, as the thickness of the sprayed film increases, the internal strain increases, and the adhesion decreases. In terms of adhesion, C
The thickness of the r 3 C 2 -20% NiCr film needs to be 1.0 mm or less. Also, a Cr 3 C 2 -20% NiCr coating 8
Considering the abrasion resistance of the above, if the film thickness is 1.0 mm, a sufficient life is expected, and it is desirable that the thickness be 1.0 mm or less in terms of reduction of work and energy saving.

【0047】本実施例では、溶射膜としてCr32−2
0%NiCr皮膜を用いたが、本発明はこの組成に限定
されるものではない。取り扱い水中の土砂濃度が高く、
より高硬度の皮膜を必要とする場合、WC−NiCr皮
膜、若しくはWC−Co皮膜が望ましい。WC−NiC
r皮膜、WC−Co皮膜はCr32−NiCr皮膜に比
較し、高度が高く耐土砂摩耗性に優れが、高度が高い分
靭性に欠け、亀裂が生じやすい。従って、石の衝突のよ
うな衝撃が無く、且つ土砂濃度が高い場合最適の皮膜で
ある。
In this embodiment, Cr 3 C 2 -2 is used as the sprayed film.
Although a 0% NiCr coating was used, the present invention is not limited to this composition. The sediment concentration in the handling water is high,
When a higher hardness coating is required, a WC-NiCr coating or a WC-Co coating is desirable. WC-NiC
r coating, WC-Co coating as compared to the Cr 3 C 2 -NiCr coating excellent in high high earth and sand wear resistance, lack altitude high partial toughness, crack tends to occur. Therefore, it is an optimal film when there is no impact such as a stone collision and the concentration of earth and sand is high.

【0048】WC−NiCr皮膜、WC−Co皮膜の場
合、Cr32−NiCr皮膜と同様に、WCの量によっ
て皮膜硬さが変化する。WC量を増せば皮膜硬さは増す
が、皮膜の靭性が失われ脆性となり、皮膜破壊、剥離等
が生じやすく信頼性が低下する。WC量が50重量%か
ら90重量%範囲であれば,土砂摩耗に対して十分な皮
膜硬さを有し、且つ靭性を保つことが出来る。また、こ
の範囲であれば皮膜硬さとしてHv1000以上を得る
ことが可能であり、土砂摩耗に対し優れた耐食性と耐摩
耗性を有する。
In the case of a WC-NiCr film and a WC-Co film, the film hardness changes depending on the amount of WC, similarly to the Cr 3 C 2 -NiCr film. Increasing the WC content increases the hardness of the film, but the film loses its toughness and becomes brittle, and the film is likely to be broken, peeled off, etc., and the reliability is reduced. When the WC content is in the range of 50% by weight to 90% by weight, the film has sufficient film hardness against earth and sand wear and can maintain toughness. Further, in this range, it is possible to obtain a coating hardness of Hv 1000 or more, and it has excellent corrosion resistance and abrasion resistance against earth and sand wear.

【0049】WC−NiCr皮膜、WC−Co皮膜の場
合、Cr32−NiCr皮膜と同様に、膜内に微細なボ
イドが多数存在する。従って優れた耐食性と耐摩耗性を
示すには皮膜厚さとしては0.1mm以上を必要とす
る。一方、溶射膜は膜厚が増すと皮膜内部の歪が増すた
め密着力が低下する。密着力の点からは、WC−NiC
r皮膜、WC−Co皮膜の場合、膜厚を0.5mm以下
とする必要がある。また、WC−NiCr皮膜、WC−
Co皮膜の耐摩耗性を考慮すると0.5mmの膜厚があ
れば十分な寿命が予想され、作業の軽減、省エネルギの
点でも0.5mm以下とすることが望ましい。
In the case of the WC-NiCr film and the WC-Co film, as in the case of the Cr 3 C 2 -NiCr film, there are many fine voids in the film. Therefore, in order to exhibit excellent corrosion resistance and abrasion resistance, the film thickness needs to be 0.1 mm or more. On the other hand, as the thickness of the sprayed film increases, the internal strain increases, and the adhesion decreases. In terms of adhesion, WC-NiC
In the case of the r film and the WC-Co film, the film thickness needs to be 0.5 mm or less. WC-NiCr coating, WC-
Considering the abrasion resistance of the Co film, if the film thickness is 0.5 mm, a sufficient life is expected, and it is desirable that the thickness be 0.5 mm or less from the viewpoint of reduction of work and energy saving.

【0050】上記実施例では、Cr32−20%NiC
r皮膜の上に、さらに膜厚1mmから2mmのエポキシ
樹脂皮膜9を被覆している。Cr32−20%NiCr
皮膜を被覆した箇所以外は比較的流速が遅く、且つ土砂
衝突頻度も少ない。しかし、それでも耐土砂摩耗対策を
施さなければ、土砂摩耗とキャビテーション壊食によっ
て摩耗が生じ、著しい性能低下が生じる。さらに、溶射
処理作業のスペースが無い場合、良好な溶射皮膜を被覆
することが出来ない。
In the above embodiment, Cr 3 C 2 -20% NiC
An epoxy resin film 9 having a thickness of 1 mm to 2 mm is further coated on the r film. Cr 3 C 2 -20% NiCr
The flow velocity is relatively low except for the portion covered with the coating film, and the frequency of impact with earth and sand is low. However, if no countermeasures against sediment abrasion are taken, abrasion occurs due to sediment abrasion and cavitation erosion, resulting in a significant decrease in performance. Furthermore, if there is no space for the thermal spraying operation, it is not possible to coat a good thermal spray coating.

【0051】エポキシ樹脂皮膜は、流速が早い領域では
土砂摩耗、或いはキャビテーション壊食に対しては決し
て十分な耐摩耗性を有しない。しかしながら、樹脂皮膜
内部に酸化アルミ粒子等のセラミック粒子を分散し皮膜
硬さを増せば、比較的流速が遅く、土砂衝突頻度の少な
い箇所であれば、十分な耐摩耗性を発揮する。また溶射
膜と異なり、スペースのない流路内部のような箇所であ
っても容易に良好な皮膜を被覆することができる。ま
た、一般に溶射膜の剥離は皮膜端部から発生する。溶射
膜をエポキシ樹脂皮膜で被覆することによって、溶射膜
端部が樹脂膜下層となり、皮膜端部からの剥離が抑制さ
れ信頼性が向上する。すなわち、前記Cr32−20%
NiCr溶射膜とエポキシ樹脂皮膜との2層皮膜、及び
単層のエポキシ樹脂皮膜9とを組み合わせることによっ
て、部品全体の耐摩耗性向上が得られる。
The epoxy resin film never has sufficient abrasion resistance against earth and sand wear or cavitation erosion in a region where the flow velocity is high. However, if the hardness of the film is increased by dispersing ceramic particles such as aluminum oxide particles inside the resin film, sufficient wear resistance is exhibited in a portion where the flow velocity is relatively slow and the frequency of landslide is small. Also, unlike a thermal sprayed film, a good film can be easily coated even in a place such as the inside of a flow path having no space. In general, the sprayed film is peeled off from the edge of the film. By coating the sprayed film with the epoxy resin film, the end of the sprayed film becomes a lower layer of the resin film, and peeling from the end of the film is suppressed and reliability is improved. That is, the Cr 3 C 2 -20%
By combining the two-layer coating of the NiCr sprayed coating and the epoxy resin coating and the single-layer epoxy resin coating 9, the wear resistance of the entire component can be improved.

【0052】本実施例では樹脂皮膜として、ビス型エポ
キシに粒径10〜40μmの酸化アルミ粒子を50重量
%、硬化剤を10重量%混練した樹脂を用いた。酸化ア
ルミ粒子の混入量を増せば樹脂皮膜硬さは増すが、皮膜
の靭性が失われ脆性となり、皮膜破壊が生じやすく信頼
性が低下する。酸化アルミ粒子の量が20重量%から7
0重量%範囲であれば,耐土砂摩耗性と靭性を両立する
ことが出来る。また、粒子径は、衝突する土砂粒子と同
等以上が望ましい。河川水に含まれる土砂粒子は粒子径
が約8〜12μmと言われており、河川水中での使用を
想定する場合、混入粒子径は10μm以上が望ましい。
In this embodiment, as the resin film, a resin obtained by kneading 50% by weight of aluminum oxide particles having a particle diameter of 10 to 40 μm and 10% by weight of a curing agent in a bis-type epoxy was used. If the content of aluminum oxide particles is increased, the hardness of the resin film increases, but the toughness of the film is lost and the film becomes brittle. 20% by weight of aluminum oxide particles to 7%
When it is in the range of 0% by weight, it is possible to achieve both earth and sand wear resistance and toughness. The particle diameter is desirably equal to or greater than the size of the colliding earth and sand particles. It is said that the earth and sand particles contained in river water have a particle diameter of about 8 to 12 μm, and when used in river water, the mixed particle diameter is desirably 10 μm or more.

【0053】本実施例では樹脂膜として酸化アルミ粒子
をエポキシ皮膜を用いたが、本発明はこの組成に限定さ
れるものではない。硬質ゴムのライニング、若しくはポ
リエチレン、ポリエステルの皮膜であっても良い。これ
らの皮膜は、エポキシ皮膜と同様に、流路内部のような
狭スペースであっても良好な皮膜を被覆することがで
き、さらに酸化アルミ粒子等の無機粒子の混入ができ
る。溶射膜に比較しより厚い皮膜が形成でき、比較的流
速が遅く、土砂衝突頻度の少ない箇所であれば、十分な
耐摩耗性を発揮する。
In this embodiment, an aluminum oxide particle and an epoxy film are used as the resin film, but the present invention is not limited to this composition. It may be a hard rubber lining or a polyethylene or polyester film. Like the epoxy film, these films can coat a good film even in a narrow space such as the inside of a flow path, and can be mixed with inorganic particles such as aluminum oxide particles. A thicker film can be formed as compared with the sprayed film, and a sufficient wear resistance can be exhibited in a place where the flow velocity is relatively slow and the frequency of landslide is small.

【0054】また、混入する粒子は酸化アルミ粒子に限
定されることはなく、鉄、銅、ステンレス等の金属粉、
或いは酸化チタン、酸化マグネシウム、酸化クロム、酸
化珪素、炭化クロム、炭化タングステン、炭化珪素、窒
化珪素等のセラミック粒子であっても良い。粒径は、前
述のごとく衝突粒子径以上が望ましい。◆なお、樹脂皮
膜としてエポキシ樹脂皮膜ではなく硬質ゴムのライニン
グ、若しくはポリエチレン、ポリエステルの皮膜を用い
た場合、被覆方法は塗布・焼き付けに限定するものでは
ない。
The particles to be mixed are not limited to aluminum oxide particles, but may be metal powders such as iron, copper, and stainless steel.
Alternatively, ceramic particles such as titanium oxide, magnesium oxide, chromium oxide, silicon oxide, chromium carbide, tungsten carbide, silicon carbide, and silicon nitride may be used. The particle diameter is desirably equal to or larger than the collision particle diameter as described above. In the case where a hard rubber lining or a polyethylene or polyester coating is used instead of an epoxy resin coating as the resin coating, the coating method is not limited to coating and baking.

【0055】[0055]

【発明の効果】本発明によって流体内に土砂などを含む
条件下でも使用可能な、耐摩耗性と耐食性に優れた水力
機械を実現でき、且つ安価に、効率よく製造する事が出
来る。
According to the present invention, it is possible to realize a hydraulic machine excellent in abrasion resistance and corrosion resistance which can be used even under the condition that the fluid contains earth and sand and the like, and can be manufactured inexpensively and efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す横軸ポンプの断面図
である。
FIG. 1 is a cross-sectional view of a horizontal shaft pump showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示すポンプインペラの一
部断面を含む概略斜視図である。
FIG. 2 is a schematic perspective view including a partial cross section of a pump impeller showing a first embodiment of the present invention.

【図3】本発明の第1実施例を示すポンプインペラの縦
断面図である。
FIG. 3 is a longitudinal sectional view of a pump impeller showing a first embodiment of the present invention.

【図4】本発明の第1実施例を示すポンプインペラの一
部断面を含む概略斜視図である。
FIG. 4 is a schematic perspective view including a partial cross section of a pump impeller showing a first embodiment of the present invention.

【図5】本発明の第1実施例を示すポンプインペラの拡
大断面図である。
FIG. 5 is an enlarged sectional view of a pump impeller showing a first embodiment of the present invention.

【図6】本発明の第1実施例を示すポンプケーシングの
拡大断面図である。
FIG. 6 is an enlarged sectional view of the pump casing showing the first embodiment of the present invention.

【図7】本発明の第1実施例を示すポンプインペラの製
造手順図である。
FIG. 7 is a manufacturing procedure diagram of the pump impeller according to the first embodiment of the present invention.

【図8】本発明の第2実施例を示す水車の一部断面を含
む概略斜視図である。
FIG. 8 is a schematic perspective view including a partial cross section of a water turbine showing a second embodiment of the present invention.

【図9】本発明の第2実施例を示す水車ランナの概略斜
視図である。
FIG. 9 is a schematic perspective view of a water turbine runner showing a second embodiment of the present invention.

【図10】本発明の第2実施例を示す水車ランナの拡大
断面図である。
FIG. 10 is an enlarged sectional view of a water turbine runner according to a second embodiment of the present invention.

【図11】本発明の第2実施例を示す水車ランナの製造
手順図である。
FIG. 11 is a manufacturing procedure diagram of a water turbine runner according to a second embodiment of the present invention.

【図12】本発明の第2実施例を示す水車ガイドベーン
の概略斜視図である。
FIG. 12 is a schematic perspective view of a water turbine guide vane showing a second embodiment of the present invention.

【図13】本発明の第3実施例を示す縦軸ポンプの概略
縦断面図である。
FIG. 13 is a schematic vertical sectional view of a vertical axis pump showing a third embodiment of the present invention.

【図14】本発明の第3実施例を示す縦軸ポンプ羽根の
概略斜視図である。
FIG. 14 is a schematic perspective view of a vertical axis pump blade showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…横軸ポンプ、2…インペラ、3…軸受、4…軸、5
…ケーシング、6…水車、7…ランナ、8…溶射膜、9
…樹脂皮膜、10…ガイドベーン、11…上ランナカバ
ー、12…下ランナカバー、13…軸受、15…縦軸ポ
ンプ、16…羽根、17…軸、18…軸受、19…軸
封、20…ケーシング、21…ボス、22…シュラウ
ド、23…羽根、24…吸い込み口、25…吐き出し
口、41…軸、71…クラウン、71…バンド、73…
羽根、101…軸部、102…羽根部、151…吸い込
み口、152…吐き出し口、161…羽根部、162…
軸部。
DESCRIPTION OF SYMBOLS 1 ... Horizontal axis pump, 2 ... Impeller, 3 ... Bearing, 4 ... Shaft, 5
... casing, 6 ... water wheel, 7 ... runner, 8 ... sprayed film, 9
... resin film, 10 ... guide vane, 11 ... upper runner cover, 12 ... lower runner cover, 13 ... bearing, 15 ... vertical axis pump, 16 ... blade, 17 ... shaft, 18 ... bearing, 19 ... shaft seal, 20 ... Casing, 21 boss, 22 shroud, 23 blade, 24 suction port, 25 discharge port, 41 shaft, 71 crown, 71 band, 73
Blades, 101: shaft portion, 102: blade portion, 151: suction port, 152: discharge port, 161: blade portion, 162 ...
Shaft.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新倉 和夫 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 吉川 次雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Niikura 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside the Hitachi Works, Hitachi, Ltd. (72) Inventor Tsugio Yoshikawa 3-Chome, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd. Hitachi Plant

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】内部に流体の流路を有するケーシングと、
このケーシング内に配設されており前記流路内の流体と
共に回転する回転体とを備えた水力機械において、この
水力機械の前記流路内の流体と接する面の少なくとも一
部に、クロム炭化物、タングステン炭化物、ニッケル、
クロム、コバルトからなる群から選ばれる少なくとも1
種を含む第1皮膜と、硬質ゴム、エポキシ、ポリエチレ
ン、ポリエステルからなる群から選ばれる少なくとも1
種を含む第2皮膜とが被覆されていることを特徴とする
水力機械。
A casing having a fluid passage therein;
A rotating machine disposed in the casing and rotating with the fluid in the flow path, wherein at least a part of a surface of the hydraulic machine in contact with the fluid in the flow path includes chromium carbide; Tungsten carbide, nickel,
At least one selected from the group consisting of chromium and cobalt
A first coating containing a seed and at least one selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester
A hydraulic machine characterized by being coated with a second coating containing seeds.
【請求項2】前記第1被膜の上に前記第2被膜が被覆さ
れた領域を有することを特徴とする請求項1に記載の水
力機械。
2. The hydraulic machine according to claim 1, further comprising a region on the first coating, the region being coated with the second coating.
【請求項3】前記第2皮膜が流体と接する全面に被覆さ
れていることを特徴とする請求項1または2に記載の水
力機械。
3. The hydraulic machine according to claim 1, wherein the second coating is coated on the entire surface in contact with the fluid.
【請求項4】水力機械を構成する水力機械用部品の流体
と接する面の少なくとも一部に、クロム炭化物、タング
ステン炭化物、ニッケル、クロム、コバルトからなる群
から選ばれる少なくとも1種を含む第1皮膜と、硬質ゴ
ム、エポキシ、ポリエチレン、ポリエステルからなる群
から選ばれる少なくとも1種を含む第2皮膜とが被覆さ
れていることを特徴とする水力機械用部品。
4. A first coating containing at least one selected from the group consisting of chromium carbide, tungsten carbide, nickel, chromium, and cobalt on at least a part of a surface of a hydraulic machine component constituting a hydraulic machine that comes into contact with a fluid. And a second coating containing at least one member selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester.
【請求項5】前記第1被膜の上に前記第2被膜が被覆さ
れた領域を有することを特徴とする請求項4に記載の水
力機械用部品。
5. The component for a hydraulic machine according to claim 4, wherein the component has a region where the second coating is coated on the first coating.
【請求項6】前記第2皮膜が流体と接する全面に被覆さ
れていることを特徴とする請求項4または5に記載の水
力機械用部品。
6. The component for a hydraulic machine according to claim 4, wherein the second coating is coated on the entire surface in contact with the fluid.
【請求項7】内部に流体の流路を有するケーシングと、
このケーシング内に配設されており前記流路内の流体と
共に回転する回転体とを備えた水力機械の製造方法にお
いて、用いる部材の表面の少なくとも一部に、クロム炭
化物、タングステン炭化物、ニッケル、クロム、コバル
トからなる群から選ばれる少なくとも1種を含む第1皮
膜を被覆し、次いで、硬質ゴム、エポキシ、ポリエチレ
ン、ポリエステルからなる群から選ばれる少なくとも1
種を含む第2皮膜を被覆することを特徴とする水力機械
の製造方法。
7. A casing having a fluid passage therein.
A rotator disposed in the casing and rotating together with the fluid in the flow path, wherein at least a part of the surface of a member to be used includes chromium carbide, tungsten carbide, nickel, chromium , A first film containing at least one member selected from the group consisting of cobalt, and then at least one member selected from the group consisting of hard rubber, epoxy, polyethylene, and polyester.
A method for manufacturing a hydraulic machine, comprising coating a second coating containing a seed.
【請求項8】請求項7において、前記第1被膜を被覆
後、350℃以上、650℃以下、望ましくは400℃
以上、650℃以下の温度で1時間以上30時間以下加
熱し、次いで第2被膜を被覆することを特徴とする水力
機械の製造方法。
8. The method according to claim 7, wherein after coating the first film, the temperature is from 350 ° C. to 650 ° C., preferably 400 ° C.
As described above, a method for manufacturing a hydraulic machine, comprising heating at a temperature of 650 ° C. or less for 1 hour to 30 hours and then coating a second coating.
【請求項9】請求項7または8において、第2被膜の少
なくとも一部を第1被膜の上に重ねて被覆することを特
徴とする水力機械の製造方法。
9. The method for manufacturing a hydraulic machine according to claim 7, wherein at least a part of the second coating is coated on the first coating.
JP8283673A 1996-10-25 1996-10-25 Hydraulic machinery Pending JPH10122117A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8283673A JPH10122117A (en) 1996-10-25 1996-10-25 Hydraulic machinery
CN97122814A CN1075604C (en) 1996-10-25 1997-10-24 Pump and water turbine, and processes for mfg. same
CNB011089636A CN1210497C (en) 1996-10-25 2001-02-28 Pump and hydraulic turbine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283673A JPH10122117A (en) 1996-10-25 1996-10-25 Hydraulic machinery

Publications (1)

Publication Number Publication Date
JPH10122117A true JPH10122117A (en) 1998-05-12

Family

ID=17668589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283673A Pending JPH10122117A (en) 1996-10-25 1996-10-25 Hydraulic machinery

Country Status (1)

Country Link
JP (1) JPH10122117A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013884A (en) * 2001-07-02 2003-01-15 Tsurumi Mfg Co Ltd Corrosive melt preventing structure for impeller fixing end face in underwater rotary machinery
CN101804716A (en) * 2010-03-26 2010-08-18 长沙学院 organic composite coating for impeller
JP2010229894A (en) * 2009-03-27 2010-10-14 Hitachi Plant Technologies Ltd Impeller and method for manufacturing same
EP2705925A3 (en) * 2011-09-16 2017-03-29 King Abdulaziz City for Science & Technology (KACST) Method of enhancing wear resistance of the centrifugal pump parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013884A (en) * 2001-07-02 2003-01-15 Tsurumi Mfg Co Ltd Corrosive melt preventing structure for impeller fixing end face in underwater rotary machinery
JP2010229894A (en) * 2009-03-27 2010-10-14 Hitachi Plant Technologies Ltd Impeller and method for manufacturing same
CN101804716A (en) * 2010-03-26 2010-08-18 长沙学院 organic composite coating for impeller
EP2705925A3 (en) * 2011-09-16 2017-03-29 King Abdulaziz City for Science & Technology (KACST) Method of enhancing wear resistance of the centrifugal pump parts

Similar Documents

Publication Publication Date Title
JP5916079B2 (en) Method for manufacturing a component using a two-layer coating
US11859499B2 (en) Turbine clearance control coatings and method
US8533949B2 (en) Methods of manufacture for components with cooling channels
CN103834893B (en) A kind of electric spark deposition strengthens the method for metal hydroturbine runner blade surface in conjunction with plasma cladding
JP2014224526A (en) Components with double sided cooling features and methods of manufacturing the same
RU2436866C2 (en) Heat resistant component
JP6192982B2 (en) MICROCHANNEL COOLING PLATFORM, PARTS HAVING FILLET AND MANUFACTURING METHOD
JP2012102731A (en) Method of fabricating component using fugitive coating
JP2006097133A (en) Method for applying abrasive and environment-resistant coating onto turbine component
JP2014087924A (en) Components with micro cooled coating layer and methods of manufacture
WO2014143244A1 (en) Coating system for improved erosion protection of the leading edge of an airfoil
CA2797164C (en) Centrifugal pump for slurries
US7347663B2 (en) Abrasion resistant surface treatment method of a rotary member, runner, and fluid machine having runner
EP3129596B1 (en) Method of protecting a component of a turbomachine from liquid droplets erosion, component and turbomachine
JP2016148322A (en) Engine component and methods for engine component
JP6216570B2 (en) Component with cooling channel and manufacturing method
US5938403A (en) Runner, water wheel and method of manufacturing the same
JPH10122117A (en) Hydraulic machinery
JP2001107833A (en) Hydraulic machine and its manufacturing device
CN105937034A (en) Cold spraying repairing method for cavitation pits of volute of booster pump
JP2014088875A (en) Components with micro cooled patterned coating layer and manufacturing methods
JPH10259790A (en) Pump and its manufacture
US9574573B2 (en) Wear resistant slurry pump parts produced using hot isostatic pressing
JP3744109B2 (en) Runner for hydraulic machine and method for manufacturing the same
JP2004232499A (en) Turbine rotor blade and coating forming method