JPH10121949A - Engine exhaust emission control device - Google Patents

Engine exhaust emission control device

Info

Publication number
JPH10121949A
JPH10121949A JP8282431A JP28243196A JPH10121949A JP H10121949 A JPH10121949 A JP H10121949A JP 8282431 A JP8282431 A JP 8282431A JP 28243196 A JP28243196 A JP 28243196A JP H10121949 A JPH10121949 A JP H10121949A
Authority
JP
Japan
Prior art keywords
temperature
adsorbent
catalyst
electrically heated
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8282431A
Other languages
Japanese (ja)
Inventor
Yuzo Kashima
祐三 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP8282431A priority Critical patent/JPH10121949A/en
Publication of JPH10121949A publication Critical patent/JPH10121949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently purify HC in exhaust gas and in transpired gas from a fuel tank by increasing the temperature of catalyst up to an activating temperature at an early time after a start of an engine. SOLUTION: An absorbent 5, an electrically heated oxidizing catalyst 6 and three-way catalyst 7 are arranged in an exhaust pipe 4 in the mentioned order from the upstream side. When the temperature of exhaust gas is low, HC in exhaust gas is adsorbed to the adsorbent 5. When the temperature of the exhaust gas becomes higher, HC released from the adsorbent 5 is purified by the electrically heated oxidizing catalyst 6. At this time, secondary air is fed into the exhaust pipe 4 from an air pump 13 through an atmospheric passage 8a in order to enhance the purifying performance of the electrically heated oxidizing catalyst 6. When HC is completely released from the adsorbent 5, the secondary air is fed into the exhaust pipe 4 from the pump 13 by way of a canister 14 so as to purify HC contained in transpired gas fed together with the secondary air and accumulated in the canister 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、排気ガスの浄化処理と
燃料タンクからの蒸散ガスの浄化処理とを排気系に介装
された触媒によって行うエンジンの排気ガス浄化装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an engine in which a purifying process of an exhaust gas and a purifying process of a vaporized gas from a fuel tank are performed by a catalyst provided in an exhaust system.

【0002】[0002]

【従来の技術】自動車から排出される排気ガス中に含ま
れる未燃のままの炭化水素(以下HCと称する)は、一
般に酸化触媒や三元触媒等による化学反応を利用して浄
化された後、大気中に放出されている。
2. Description of the Related Art Unburned hydrocarbons (hereinafter, referred to as HC) contained in exhaust gas discharged from automobiles are generally purified by using a chemical reaction of an oxidation catalyst, a three-way catalyst, or the like. Has been released into the atmosphere.

【0003】しかしながら、エンジン始動時等において
は上記酸化触媒や三元触媒等は、低温領域にあり、十分
な浄化作用は期待できない。
However, when the engine is started or the like, the oxidation catalyst, the three-way catalyst, and the like are in a low temperature range, and a sufficient purification action cannot be expected.

【0004】これに対処するに、特開平6−66133
号公報では、上記排気ガス中に含まれる未燃HCを、触
媒が活性化温度になるまで一旦吸着剤に吸着させてお
き、上記触媒が活性化温度に達した後に、上記吸着剤か
ら離脱させ浄化する技術、及び、未燃HCを効率良く浄
化するため、上記触媒に対し二次空気を供給する技術が
開示されている。
[0004] To cope with this, Japanese Patent Laid-Open No. 6-66133 has been proposed.
In the publication, unburned HC contained in the exhaust gas is temporarily adsorbed on an adsorbent until the catalyst reaches an activation temperature, and after the catalyst reaches the activation temperature, the unburned HC is desorbed from the adsorbent. A technique for purifying and a technique for supplying secondary air to the catalyst to efficiently purify unburned HC are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、一般的
に、上記吸着剤からHCが脱離し始める温度は上記触媒
の活性化温度よりも低く、そのため、上記特開平6−6
6133号公報の技術では、上記吸着剤が脱離温度以上
であって上記触媒が活性化温度以下にあるときの上記吸
着剤から脱離されるHC及び排気ガス中のHCの浄化は
不十分となる虞がある。
However, in general, the temperature at which HC starts to be desorbed from the adsorbent is lower than the activation temperature of the catalyst.
According to the technology disclosed in Japanese Patent No. 6133, purification of HC desorbed from the adsorbent and HC in exhaust gas when the adsorbent is at or above the desorption temperature and the catalyst is at or below the activation temperature is insufficient. There is a fear.

【0006】また、エンジン始動時等の排気ガス低温時
の触媒浄化能力を向上させるため、触媒担体を電気的に
加熱して早期に活性化させる技術が広く提案されてい
る。しかしながらエンジン始動時等において、電気加熱
された触媒の熱は、低温で排出される排気ガスによって
奪われるため触媒加熱効率が悪く、消費電力が多大にな
り、バッテリの増設をはじめとする電力供給システムの
コストが大幅に増大してしまう虞がある。
Further, in order to improve the catalyst purifying ability at the time of low temperature of the exhaust gas at the time of starting the engine or the like, a technique of electrically heating the catalyst carrier and activating the catalyst carrier early has been widely proposed. However, when the engine is started or the like, the heat of the electrically heated catalyst is taken away by exhaust gas discharged at a low temperature, so that the catalyst heating efficiency is poor, the power consumption is large, and the power supply system including the addition of batteries is increased. May significantly increase the cost.

【0007】ところで、HCは燃料タンクからの蒸散ガ
ス中にも含まれており、この蒸散ガス中のHCに対して
は、一旦キャニスタに貯えた後、吸入管に導き機関内で
燃焼させる手段や一旦キャニスタに貯えた後、上記酸化
触媒や上記三元触媒等によって浄化させる手段等がある
(特開昭59−58143号公報、特開平5−2636
38号公報)。
[0007] HC is also contained in the vaporized gas from the fuel tank. The HC in the vaporized gas is temporarily stored in a canister and then led to a suction pipe for combustion in the engine. Once stored in a canister, there is a means for purifying it with the oxidation catalyst, the three-way catalyst, or the like (JP-A-59-58143, JP-A-5-2636).
No. 38).

【0008】上記キャニスタに貯えたHCを機関内で燃
焼させる手段では機関空燃比に乱れが生じるため、燃料
噴射量などを補正して空燃比の適正化を図る必要があ
る。一方、上記キャニスタに貯えたHCを触媒によって
処理する手段では、このHCの処理のために燃料噴射量
などを補正する必要がなく安定した機関空燃比を得られ
るが、上記触媒の浄化処理能力は触媒が活性化温度に達
した時点以降でのみ有効であるという時間的制約がある
ため、始動後から触媒が活性化するまでに比較的長時間
を要すると、先ず、排気ガス中に含まれる未燃HCを早
期に処理しなければならないが、その間、キャニスタ内
にはHCが蓄積されたままであるため、走行条件によっ
てはキャニスタ内のHCが十分に処理しきれずあふれる
可能性がある。
In the means for burning the HC stored in the canister in the engine, the air-fuel ratio of the engine is disturbed. Therefore, it is necessary to correct the fuel injection amount and the like to optimize the air-fuel ratio. On the other hand, the means for treating the HC stored in the canister with a catalyst can provide a stable engine air-fuel ratio without having to correct the fuel injection amount or the like for the treatment of the HC, but the purification processing ability of the catalyst is Since there is a time constraint that the catalyst is effective only after the catalyst reaches the activation temperature, if a relatively long time is required from the start to the time when the catalyst is activated, firstly, unreacted gas contained in the exhaust gas is not included. The fuel HC must be processed early, but during that time, the HC in the canister remains accumulated in the canister, and depending on the traveling conditions, the HC in the canister may not be sufficiently processed and may overflow.

【0009】本発明は上記事情に鑑みてなされたもの
で、蒸散ガス中のHCを触媒によって浄化する手段にお
いて、エンジン始動後、触媒温度を早期且つ効率良く活
性化温度まで上昇させ、エンジンから排出されるHC及
び燃料タンクからの蒸散ガス中のHCを効率良く浄化さ
せることができるエンジンの排気ガス浄化装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. In a means for purifying HC in a vaporized gas with a catalyst, the catalyst temperature is quickly and efficiently raised to an activation temperature after the engine is started, and exhausted from the engine. It is an object of the present invention to provide an engine exhaust gas purifying apparatus capable of efficiently purifying HC and HC in vaporized gas from a fuel tank.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本発明によるエンジンの排気ガス浄化装置は、エンジン
本体の排気系に上流側から低温時に炭化水素を吸着する
吸着剤と電気加熱酸化触媒と三元触媒とを配設し、上記
吸着剤と上記電気加熱酸化触媒との間に二次空気供給通
路と燃料タンク中の蒸発燃料を貯留するキャニスタに連
通するキャニスタパージ通路とを通路切り換え手段を介
して選択的に切り換え自在に連通し、上記吸着剤が高温
となり吸着された炭化水素の脱離中は上記切り換え手段
を介して上記二次空気供給通路を連通し、また、上記吸
着剤に吸着された炭化水素の脱離完了後はキャニスタパ
ージ通路を連通するものである。
To achieve the above object, an exhaust gas purifying apparatus for an engine according to the present invention comprises an adsorbent for adsorbing hydrocarbons at a low temperature from an upstream side to an exhaust system of an engine body, an electric heating oxidation catalyst, A three-way catalyst is provided, and a passage switching means is provided between the adsorbent and the electrically heated oxidation catalyst, between a secondary air supply passage and a canister purge passage communicating with a canister storing evaporative fuel in a fuel tank. The adsorbent is connected to the secondary air supply passage via the switching means during the desorption of the adsorbed hydrocarbons when the adsorbent is heated to a high temperature. After the completion of the desorption of the hydrocarbons, the canister is connected to the purge passage.

【0011】以上の構成において本発明では、低温時に
吸着剤がエンジン本体から排出される排気ガス中の炭化
水素を吸着し保持する。その後、排気ガス温度が上昇し
上記吸着剤が高温になると吸着された炭化水素が脱離を
開始し、電気加熱された電気加熱酸化触媒は、脱離した
炭化水素を浄化する。このとき、二次空気供給通路から
上記吸着剤と上記電気加熱酸化触媒との間に供給される
二次空気は、上記電気加熱酸化触媒の浄化能力を向上さ
せる。
In the present invention having the above-described structure, the adsorbent adsorbs and holds hydrocarbons in the exhaust gas discharged from the engine body at a low temperature. Thereafter, when the temperature of the exhaust gas rises and the temperature of the adsorbent rises, the adsorbed hydrocarbons begin to desorb, and the electrically heated oxidation catalyst purifies the desorbed hydrocarbons. At this time, the secondary air supplied from the secondary air supply passage between the adsorbent and the electrically heated oxidation catalyst improves the purification ability of the electrically heated oxidation catalyst.

【0012】上記吸着剤に吸着された炭化水素の脱離完
了後、上記二次空気供給通路は切り換え手段によって、
キャニスタパージ通路に切り換えられ、上記電気加熱酸
化触媒は、上記キャニスタパージ通路から上記吸着剤と
上記電気加熱酸化触媒との間に二次空気とともに供給さ
れるキャニスタに貯留された蒸散燃料を浄化する。
After the completion of the desorption of the hydrocarbon adsorbed by the adsorbent, the secondary air supply passage is switched by the switching means.
Switching to the canister purge passage, the electric heating oxidation catalyst purifies the vaporized fuel stored in the canister supplied with secondary air from the canister purge passage between the adsorbent and the electric heating oxidation catalyst together with the secondary air.

【0013】[0013]

【発明の実施の形態】以下、発明の実施の形態について
図面を参照して説明する。図1〜図4は本発明の1実施
の形態を表し、図1は排気管に蒸散ガス供給時のエンジ
ンの排ガス浄化装置の構成図、図2は排気管に二次空気
供給時のエンジンの排ガス浄化装置の構成図、図3は後
述する電気加熱酸化触媒6の通電制御ルーチンを表すフ
ローチャート、図4は二次空気の供給通路制御ルーチン
を表すフローチャートである。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show an embodiment of the present invention. FIG. 1 is a configuration diagram of an exhaust gas purifying apparatus for an engine when evaporative gas is supplied to an exhaust pipe, and FIG. 2 is an illustration of an engine when secondary air is supplied to an exhaust pipe. FIG. 3 is a flowchart showing a power supply control routine of an electric heating oxidation catalyst 6 described later, and FIG. 4 is a flowchart showing a secondary air supply passage control routine.

【0014】図1において、符号1はエンジン本体を表
し、このエンジン本体1の排気ポートにエキゾーストマ
ニホルド3を介して排気管4が連通されている。
In FIG. 1, reference numeral 1 denotes an engine body, and an exhaust pipe 4 is connected to an exhaust port of the engine body 1 via an exhaust manifold 3.

【0015】上記排気管4の中途には上流側から、吸着
剤5、電気加熱酸化触媒6、周知の三元触媒7が介装さ
れ、上記電気加熱酸化触媒6と上記三元触媒7とによっ
て排気ガス、及び蒸散ガス中のHCが浄化される。
An adsorbent 5, an electrically heated oxidation catalyst 6, and a well-known three-way catalyst 7 are interposed from the upstream side in the middle of the exhaust pipe 4, and are interposed by the electrically heated oxidation catalyst 6 and the three-way catalyst 7. HC in the exhaust gas and the evaporated gas is purified.

【0016】尚、上記吸着剤5は上記エンジン本体1か
ら排出される排気ガス中の未燃炭化水素(HC)を、低
温時には吸着させて保持し、所定温度以上になったとき
脱離させる。
The adsorbent 5 adsorbs and retains unburned hydrocarbons (HC) in the exhaust gas discharged from the engine body 1 at a low temperature, and desorbs the hydrocarbons at a predetermined temperature or higher.

【0017】上記排気管4の上記吸着剤5と上記電気加
熱酸化触媒6との間に、大気通路8aを介してエアポン
プ13が接続されている。
An air pump 13 is connected to the exhaust pipe 4 between the adsorbent 5 and the electrically heated oxidation catalyst 6 via an atmosphere passage 8a.

【0018】また、上記大気通路8aの中途には、上記
エアポンプ13側から順にソレノイドなどによって動作
する切り換えバルブ12a、12bが介装されている。
In the middle of the air passage 8a, switching valves 12a and 12b which are operated by a solenoid or the like in order from the air pump 13 are interposed.

【0019】上記切り換えバルブ12aにバイパス通路
8bの一端が接続されており、このバイパス通路8bの
他端がキャニスタ14の二次空気吸入口14aに接続さ
れている。また、上記キャニスタ14のパージ口14b
にバイパス通路8cの一端が接続されており、このバイ
パス通路8cの他端が上記切り換えバルブ12bに接続
されている。更に、上記キャニスタ14の蒸散ガス吸入
口14cが、蒸散ガス通路15を介して燃料タンク16
に連接されている。
One end of a bypass passage 8b is connected to the switching valve 12a, and the other end of the bypass passage 8b is connected to a secondary air inlet 14a of the canister 14. Further, the purge port 14b of the canister 14 is provided.
Is connected to one end of a bypass passage 8c, and the other end of the bypass passage 8c is connected to the switching valve 12b. Further, the vaporized gas inlet 14c of the canister 14 is connected to the fuel tank 16 via the vaporized gas passage 15.
Is linked to

【0020】上記吸着剤5及び上記電気加熱酸化触媒6
には、それぞれ温度センサ9、10が設けられている。
これらの温度センサ9、10は制御装置11に接続され
ており、上記制御装置11に対し、上記吸着剤5及び上
記電気加熱酸化触媒6の温度に応じた信号を出力する。
The adsorbent 5 and the electrically heated oxidation catalyst 6
Are provided with temperature sensors 9 and 10, respectively.
These temperature sensors 9 and 10 are connected to a control device 11 and output signals to the control device 11 according to the temperatures of the adsorbent 5 and the electrically heated oxidation catalyst 6.

【0021】上記制御装置11では、上記温度センサ
9、10から出力される信号に基づき上記吸着剤5及び
上記電気加熱酸化触媒6の温度を検出し、上記吸着剤5
の温度に基づき、上記切り換えバルブ12a、12bに
対する駆動信号のオン、オフ制御を行い、また、上記電
気加熱酸化触媒6の温度に基づき上記電気加熱酸化触媒
6に対する通電制御を行う。
The control device 11 detects the temperatures of the adsorbent 5 and the electrically heated oxidation catalyst 6 based on signals output from the temperature sensors 9 and 10, and detects the temperature of the adsorbent 5
The on / off control of the drive signal for the switching valves 12a and 12b is performed based on the temperature of the electric heating oxidation catalyst 6, and the energization control for the electric heating oxidation catalyst 6 is performed based on the temperature of the electric heating oxidation catalyst 6.

【0022】尚、本実施の形態では、上記切り換えバル
ブ12a、12bに印加される駆動信号がオフのとき、
上記エアポンプ13と上記排気管4とは、上記大気通路
8aによって連通され(図2参照)、一方、上記切り換
えバルブ12a、12bに印加される駆動信号がオンの
とき、上記エアポンプ13と上記排気管4とは、中途に
上記バイパス通路8b、上記キャニスタ14、及び、上
記バイパス通路8cを介した上記大気通路8aによって
連通される(図1参照)。
In the present embodiment, when the drive signals applied to the switching valves 12a and 12b are off,
The air pump 13 and the exhaust pipe 4 are communicated with each other by the atmosphere passage 8a (see FIG. 2). On the other hand, when the drive signal applied to the switching valves 12a and 12b is on, the air pump 13 and the exhaust pipe 4 are turned on. 4 is communicated with the atmosphere passage 8a via the bypass passage 8b, the canister 14, and the bypass passage 8c halfway (see FIG. 1).

【0023】また、上記吸着剤5及び上記電気加熱酸化
触媒6の温度の検出は、上記温度センサ9、10によっ
て行うものであるが、例えば冷却水温などを基に、間接
的に、上記吸着剤5及び上記電気加熱酸化触媒6の温度
を推定したり、エンジン始動後の経過時間によって温度
上昇を判断するものであっても良い。
The temperature of the adsorbent 5 and the temperature of the electrically heated oxidation catalyst 6 are detected by the temperature sensors 9 and 10. However, the temperature of the adsorbent 5 and the electric heating oxidation catalyst 6 are indirectly detected based on, for example, the temperature of the cooling water. The temperature of the electric heating oxidation catalyst 5 and the temperature of the electrically heated oxidation catalyst 6 may be estimated, or the temperature rise may be determined based on the elapsed time after starting the engine.

【0024】以上の構成によるエンジンの排気ガス浄化
装置2において、HCは上記電気加熱酸化触媒6及び上
記三元触媒7で浄化され、また、その他、排気ガス中に
含まれている有害ガスの窒素酸化物(NOX)や一酸化
炭素(CO)は上記三元触媒7で浄化されるが、エンジ
ン始動時は、排気ガス中に未燃のまま多量に含まれてい
るHC及びキャニスタ14内に多量に蓄えられた蒸散ガ
ス中のHCが浄化しにくい。そこで、これらのHCを効
率よく早期に浄化するために以下に示す動作を行う。
In the exhaust gas purifying apparatus 2 for an engine having the above-described structure, HC is purified by the electrically heated oxidation catalyst 6 and the three-way catalyst 7, and the harmful gas nitrogen contained in the exhaust gas. Oxide (NOX) and carbon monoxide (CO) are purified by the three-way catalyst 7, but when the engine is started, a large amount of HC contained in unburned exhaust gas and a large amount in the canister 14 are present. HC in the evaporated gas stored in the tank is difficult to purify. Therefore, the following operation is performed to efficiently purify these HCs at an early stage.

【0025】上記電気加熱酸化触媒6に対する通電、並
びに、二次空気及びキャニスタ14に蓄積されている蒸
散ガスの上記電気加熱酸化触媒6及び上記三元触媒7に
対する供給は、上記制御装置11によって制御される。
The controller 11 controls the energization of the electrically heated oxidation catalyst 6 and the supply of the secondary air and the vaporized gas stored in the canister 14 to the electrically heated oxidation catalyst 6 and the three-way catalyst 7. Is done.

【0026】以下、上記制御装置11による、上記電気
加熱酸化触媒6の通電制御及び、上記切り換えバルブ1
2a、12bの切り換え制御について図3、図4のフロ
ーチャートに従って説明する。
Hereinafter, the control of the energization of the electric heating oxidation catalyst 6 and the switching valve 1 by the control device 11 will be described.
The switching control between 2a and 12b will be described with reference to the flowcharts in FIGS.

【0027】図示しないイグニッションスイッチをオン
して制御装置11に電源が投入されると、上記制御装置
11には、温度センサ9、10から出力される吸着剤5
及び電気加熱酸化触媒6の温度を示す信号が入力され
る。上記制御装置11では、上記温度センサ10からの
出力信号に基づき上記電気加熱酸化触媒6の温度を算出
し、また、上記温度センサ9からの出力信号に基づき上
記吸着剤5の温度を算出する。
When an ignition switch (not shown) is turned on and power is supplied to the control device 11, the control device 11 receives the adsorbent 5 output from the temperature sensors 9, 10.
A signal indicating the temperature of the electrically heated oxidation catalyst 6 is input. The controller 11 calculates the temperature of the electrically heated oxidation catalyst 6 based on the output signal from the temperature sensor 10, and calculates the temperature of the adsorbent 5 based on the output signal from the temperature sensor 9.

【0028】上記電気加熱酸化触媒6の温度は図3に示
す電気加熱酸化触媒通電制御ルーチンにおいて読み込ま
れる。また、上記吸着剤5の温度は図4に示す切り換え
バルブ動作ルーチンにおいて読み込まれる。
The temperature of the electrically heated oxidation catalyst 6 is read in an electrically heated oxidation catalyst energization control routine shown in FIG. The temperature of the adsorbent 5 is read in a switching valve operation routine shown in FIG.

【0029】図3に示す電気加熱酸化触媒通電制御ルー
チンでは、ステップS1で上記電気加熱酸化触媒6の温
度を読み込み、予め設定した基準値と比較する。そし
て、触媒温度が活性化温度以下のときはステップS2に
進み上記電気加熱酸化触媒6への通電をオンし、ルーチ
ンを抜ける。
In the electric heating oxidation catalyst energization control routine shown in FIG. 3, in step S1, the temperature of the electric heating oxidation catalyst 6 is read and compared with a preset reference value. If the catalyst temperature is equal to or lower than the activation temperature, the process proceeds to step S2 to turn on the power supply to the electrically heated oxidation catalyst 6, and exits the routine.

【0030】一方上記ステップS1で、触媒温度が活性
化温度以上のときはステップS3に進み上記電気加熱酸
化触媒6への通電をオフし、ルーチンを抜ける。
On the other hand, if the catalyst temperature is equal to or higher than the activation temperature in step S1, the process proceeds to step S3, in which the power supply to the electrically heated oxidation catalyst 6 is turned off, and the routine exits.

【0031】上記電気加熱酸化触媒6への通電がオンさ
れると上記電気加熱酸化触媒6は電気加熱され触媒温度
が上昇する。一方、オフされると上記電気加熱酸化触媒
6は電気加熱されない。
When the power supply to the electrically heated oxidation catalyst 6 is turned on, the electrically heated oxidation catalyst 6 is electrically heated, and the catalyst temperature rises. On the other hand, when turned off, the electrically heated oxidation catalyst 6 is not electrically heated.

【0032】従って、例えば冷態始動時には、上記電気
加熱酸化触媒6は活性化温度に達するまでの間電気加熱
され、その結果、上記電気加熱酸化触媒6を早期に活性
化温度まで加熱することができる。勿論、上記電気加熱
酸化触媒6が一旦活性化温度以上となった後、再び活性
化温度以下となったときであっても、上記電気加熱酸化
触媒6は再度電気加熱されるため上記活性化温度を常に
維持することができる。
Therefore, for example, at the time of a cold start, the electrically heated oxidation catalyst 6 is electrically heated until it reaches the activation temperature. As a result, the electrically heated oxidation catalyst 6 can be quickly heated to the activation temperature. it can. Needless to say, even when the temperature of the electrically heated oxidation catalyst 6 once becomes higher than the activation temperature and then becomes lower than the activation temperature, the electrically heated oxidation catalyst 6 is electrically heated again. Can always be maintained.

【0033】図4に示す切り換えバルブ動作ルーチンで
は、ステップS11で上記吸着剤5の温度を読み込み、
予め設定したHCの上記吸着剤5からの脱離温度を示す
基準温度と比較する。そして上記吸着剤5の温度が上記
基準温度以下のときはステップS12に進み上記切り換
えバルブ12a、12bに対する駆動信号をオフし、ル
ーチンを抜ける。
In the switching valve operation routine shown in FIG. 4, the temperature of the adsorbent 5 is read in step S11,
The temperature is compared with a reference temperature indicating a preset temperature of desorption of HC from the adsorbent 5. If the temperature of the adsorbent 5 is equal to or lower than the reference temperature, the process proceeds to step S12, in which the drive signal for the switching valves 12a and 12b is turned off, and the routine exits.

【0034】上記切り換えバルブ12a、12bに動作
電圧が印加されていない(オフされている)とき、上記
切り換えバルブ12a、12bは、上記エアポンプ13
から直接上記排気管4に二次空気を供給する上記大気通
路8aが開くとともに、上記大気通路8aと、上記バイ
パス8b、8cとを隔絶する(図2参照)。すると、上
記エアポンプ13からの二次空気は、上記大気通路8a
を介して上記排気管4に供給される。
When the operating voltage is not applied (turned off) to the switching valves 12a and 12b, the switching valves 12a and 12b
The air passage 8a for supplying the secondary air directly to the exhaust pipe 4 is opened, and the air passage 8a is isolated from the bypasses 8b and 8c (see FIG. 2). Then, the secondary air from the air pump 13 is supplied to the atmosphere passage 8a.
Through the exhaust pipe 4.

【0035】一方、上記吸着剤5が基準温度以上である
ときステップS13に進む。上記ステップS13では、
上記吸着剤5が基準温度以上となってからの経過時間を
計時し、予め設定した設定時間と比較する。上記設定時
間は、例えば、上記吸着剤5が脱離開始温度となり、こ
の吸着剤5に吸着していたHCの脱離を開始してから完
全に脱離し終わるまでの時間であり、予め実験などによ
って求められている。
On the other hand, if the temperature of the adsorbent 5 is equal to or higher than the reference temperature, the process proceeds to step S13. In step S13,
The elapsed time from when the adsorbent 5 becomes higher than the reference temperature is measured and compared with a preset set time. The set time is, for example, a time from the start of desorption of the adsorbent 5 to the start of desorption of HC adsorbed on the adsorbent 5 until the desorption is completed, and is set in advance by an experiment or the like. Is required by:

【0036】上記ステップS13で、経過時間が上記設
定時間以下のときは、上記動作電圧をオフしたままルー
チンを抜ける。すなわち、上記吸着剤5が脱離温度以上
となった後の経過時間が上記設定時間以下のとき、上記
エアポンプ13からの二次空気は、上記大気通路8aを
介して上記排気管4に供給される。そして、この二次空
気によって、上記吸着剤から脱離したHCは、上記電気
加熱酸化触媒6で効率良く浄化される。
If it is determined in step S13 that the elapsed time is equal to or shorter than the set time, the process exits the routine with the operating voltage kept off. That is, when the elapsed time after the adsorbent 5 has reached or exceeded the desorption temperature is equal to or less than the set time, the secondary air from the air pump 13 is supplied to the exhaust pipe 4 through the atmosphere passage 8a. You. Then, the HC desorbed from the adsorbent by the secondary air is efficiently purified by the electric heating oxidation catalyst 6.

【0037】一方、上記ステップS13で、経過時間が
上記設定時間以上のときは、ステップS14に進み、上
記ソレノイドバルブ12a、12bへの駆動信号をオン
した後ルーチンを抜ける。
On the other hand, if the elapsed time is equal to or longer than the set time in step S13, the process proceeds to step S14, where the drive signal to the solenoid valves 12a and 12b is turned on, and the routine exits.

【0038】上記切り換えバルブ12a、12bに駆動
信号が印加(オン)されると、上記切り換えバルブ12
aは、上記大気通路8aの中途を閉じるとともに、上記
エアポンプ13と上記バイパス通路8bとを連通し、ま
た、上記切り換えバルブ12bは、上記大気通路8aの
中途を閉じるとともに、上記大気通路8aと上記バイパ
ス通路8cとを連通する(図1参照)。すると、上記エ
アポンプ13からの二次空気は、上記大気経路8aの中
途に上記キャニスタ14を介した経路を通って上記排気
管4に供給される。
When a drive signal is applied (turned on) to the switching valves 12a and 12b, the switching valves 12a and 12b are turned on.
a closes the middle of the atmosphere passage 8a and communicates the air pump 13 with the bypass passage 8b. The switching valve 12b closes the middle of the atmosphere passage 8a and connects the air passage 8a to the bypass passage 8b. It communicates with the bypass passage 8c (see FIG. 1). Then, the secondary air from the air pump 13 is supplied to the exhaust pipe 4 through the path through the canister 14 in the middle of the air path 8a.

【0039】上記エアポンプ13からの二次空気は、上
記大気通路8a通過途中で上記キャニスタ14を通過す
ることによって、このキャニスタ14に蓄えられた燃料
タンク16からのHCを多量に含む蒸散ガスを伴って上
記排気管4に供給される。そして、上記排気管4に供給
された上記蒸散ガスに含まれるHCは、上記電気加熱酸
化触媒6で浄化される。
The secondary air from the air pump 13 passes through the canister 14 while passing through the atmosphere passage 8a, and is accompanied by vaporized gas containing a large amount of HC from the fuel tank 16 stored in the canister 14. To the exhaust pipe 4. Then, HC contained in the vaporized gas supplied to the exhaust pipe 4 is purified by the electric heating oxidation catalyst 6.

【0040】以上の動作により、例えば、エンジン始動
直後の排気温度が低温であるとき上記電気加熱酸化触媒
6は低温状態にあり、上記エンジン本体1から排出され
る未燃HCの浄化能力は十分でないが、電気加熱酸化触
媒6が充分に活性化するまでは上記未燃HCは、上記吸
着剤5に一旦保持されて大気中に排出されることはな
く、また、上記電気加熱酸化触媒5が電気加熱途中に上
記未燃HCを浄化する必要がないため、効率よく早期に
加熱される。
According to the above operation, for example, when the exhaust gas temperature immediately after the start of the engine is low, the electrically heated oxidation catalyst 6 is in a low temperature state, and the ability to purify the unburned HC discharged from the engine body 1 is not sufficient. However, until the electrically heated oxidation catalyst 6 is sufficiently activated, the unburned HC is temporarily retained in the adsorbent 5 and is not discharged to the atmosphere. Since there is no need to purify the unburned HC during the heating, the heating is performed efficiently and early.

【0041】従って、排気温度が上昇し上記吸着剤5に
保持されていたHCが脱離し始めるときには、上記電気
加熱酸化触媒6は電気加熱によって、活性化温度迄加熱
され、また、上記電気加熱酸化触媒6には、上記エアポ
ンプ13からの二次空気が上記大気通路8aを介して直
接供給されているため、上記吸着剤5からの脱離HC及
び、排気ガス中のHCは効率良く浄化される。
Therefore, when the exhaust gas temperature rises and the HC retained in the adsorbent 5 starts to be desorbed, the electric heating oxidation catalyst 6 is heated to the activation temperature by electric heating, and the electric heating oxidation catalyst 6 is heated. Since the secondary air from the air pump 13 is directly supplied to the catalyst 6 through the air passage 8a, the desorbed HC from the adsorbent 5 and the HC in the exhaust gas are efficiently purified. .

【0042】尚、上記吸着剤5からHCが脱離を開始し
ているときは、排気ガス温度はある程度上昇しているた
め、上記電気加熱酸化触媒6の活性化温度は充分に維持
される。
When HC starts to be desorbed from the adsorbent 5, the temperature of the exhaust gas has risen to some extent, so that the activation temperature of the electrically heated oxidation catalyst 6 is sufficiently maintained.

【0043】上記吸着剤5に吸着されていたHCが完全
に脱離し終わると、上記排気管4には、上記エアポンプ
13からの二次空気が上記キャニスタ14を介して供給
される。このとき二次空気は上記キャニスタ14を通過
する際にキャニスタ14内に蓄積された上記燃料タンク
16からのHCを多量に含む蒸散ガスを伴って上記排気
管4に達し、上記電気加熱酸化触媒6を通過する際に上
記蒸散ガス中のHCが浄化される。
When the HC adsorbed by the adsorbent 5 is completely desorbed, secondary air from the air pump 13 is supplied to the exhaust pipe 4 through the canister 14. At this time, when the secondary air passes through the canister 14, the secondary air reaches the exhaust pipe 4 with the vaporized gas containing a large amount of HC from the fuel tank 16 accumulated in the canister 14, and reaches the exhaust pipe 4. When passing through, the HC in the vaporized gas is purified.

【0044】また、上記吸着剤5に吸着されていたHC
が完全に脱離し終わる頃には、排気ガスによって上記三
元触媒7も活性化されるため、上記電気加熱酸化触媒6
と上記三元触媒77との相乗的な浄化作用によって蒸散
ガス中のHC及び排気ガス成分は効率よく浄化される。
The HC adsorbed on the adsorbent 5
By the time exhaust gas is completely desorbed, the three-way catalyst 7 is also activated by the exhaust gas.
And the three-way catalyst 77 synergistically purify the HC and exhaust gas components in the vaporized gas with high efficiency.

【0045】このように本発明の実施の形態では、上記
電気加熱酸化触媒6が活性化温度以下では、上記エンジ
ン本体1から排出される未燃HCは上記吸着剤5に一旦
保持されるため、たとえ上記電気加熱酸化触媒6が活性
化温度以下であっても未燃HCを車外に排出することは
ない。その後、上記電気加熱酸化触媒6が活性化温度以
上となった後のHCの処理は一度に行うのではなく、先
ず、上記吸着剤5からの脱離HCの処理を行い、その
後、上記キャニスタ14からの蒸散ガス中のHCの処理
を行う。このため、一度に多量のHCが上記電気加熱酸
化触媒6に供給されることなく、上記吸着剤5からの脱
離HCと上記キャニスタ14からの蒸散ガス中のHCと
は双方とも確実に処理できる。また、上記電気加熱酸化
触媒6を電気加熱によって早期に加熱するとともに、二
次空気を供給することにより、上記吸着剤5からの脱離
HCを早期に効率良く処理するので、たとえ上記キャニ
スタ14からの蒸散ガス中のHCの処理が上記吸着剤5
からの脱離HC処理後であっても、上記キャニスタ14
からの蒸散ガス中のHCの処理は早期に開始することが
でき、上記キャニスタ14は蒸散ガスの飽和量を超える
ことはない。
As described above, in the embodiment of the present invention, when the temperature of the electrically heated oxidation catalyst 6 is lower than the activation temperature, the unburned HC discharged from the engine main body 1 is temporarily held by the adsorbent 5. Even if the electrically heated oxidation catalyst 6 is at or below the activation temperature, unburned HC is not discharged out of the vehicle. After that, the treatment of HC after the temperature of the electrically heated oxidation catalyst 6 becomes equal to or higher than the activation temperature is not performed at once, but first, the treatment of HC desorbed from the adsorbent 5 is performed. Of HC in the vaporized gas from the plant. For this reason, both the desorbed HC from the adsorbent 5 and the HC in the vaporized gas from the canister 14 can be reliably processed without a large amount of HC being supplied to the electrically heated oxidation catalyst 6 at one time. . Further, since the electric heating oxidation catalyst 6 is heated early by electric heating and the secondary air is supplied, the desorbed HC from the adsorbent 5 is efficiently treated at an early stage. Treatment of HC in the vaporized gas of the adsorbent 5
Even after the HC treatment desorbed from the canister 14
The treatment of HC in the vaporized gas from the canister can be started early, and the canister 14 does not exceed the saturated amount of the vaporized gas.

【0046】[0046]

【発明の効果】以上説明したように本発明によれば、エ
ンジン始動後、触媒温度を早期且つ効率良く活性化温度
まで上昇させ、エンジン本体から排出されるHC及び燃
料タンクからの蒸散ガス中のHCを効率良く浄化させる
ことができる。
As described above, according to the present invention, after the engine is started, the catalyst temperature is quickly and efficiently raised to the activation temperature, and the HC discharged from the engine body and the vaporized gas from the fuel tank are removed. HC can be efficiently purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気管に蒸散ガス供給時のエンジンの排気ガス
浄化装置の構成図
FIG. 1 is a configuration diagram of an exhaust gas purifying apparatus for an engine when evaporative gas is supplied to an exhaust pipe.

【図2】排気管に二次空気供給時のエンジンの排気ガス
浄化装置の構成図
FIG. 2 is a configuration diagram of an engine exhaust gas purifying apparatus when secondary air is supplied to an exhaust pipe.

【図3】電気加熱酸化触媒通電制御ルーチンを表すフロ
ーチャート
FIG. 3 is a flowchart showing an electric heating oxidation catalyst energization control routine.

【図4】切り換えバルブ動作制御ルーチンを表すフロー
チャート
FIG. 4 is a flowchart showing a switching valve operation control routine.

【符号の説明】[Explanation of symbols]

1 エンジン本体 4 排気管 5 吸着剤 6 電気加熱酸化触媒 7 三元触媒 8a 大気通路 8b バイパス通路 8c バイパス通路 12a 切り換えバルブ 12b 切り換えバルブ 14 キャニスタ 16 燃料タンク DESCRIPTION OF SYMBOLS 1 Engine main body 4 Exhaust pipe 5 Adsorbent 6 Electric heating oxidation catalyst 7 Three-way catalyst 8a Atmospheric passage 8b Bypass passage 8c Bypass passage 12a Switching valve 12b Switching valve 14 Canister 16 Fuel tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/08 ZAB F01N 3/20 ZABK 3/20 ZAB 3/22 ZAB 3/22 ZAB 301B 301 3/36 ZABJ 3/36 ZAB F02M 25/08 ZAB F02M 25/08 ZAB 301V 301 B01D 53/36 ZABB ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/08 ZAB F01N 3/20 ZABK 3/20 ZAB 3/22 ZAB 3/22 ZAB 301B 301 3/36 ZABJ 3/36 ZAB F02M 25/08 ZAB F02M 25/08 ZAB 301V 301 B01D 53/36 ZABB

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン本体の排気系に上流側から低温
時に炭化水素を吸着する吸着剤と電気加熱酸化触媒と三
元触媒とを配設し、 上記吸着剤と上記電気加熱酸化触媒との間に二次空気供
給通路と燃料タンク中の蒸発燃料を貯留するキャニスタ
に連通するキャニスタパージ通路とを通路切り換え手段
を介して選択的に切り換え自在に連通し、 上記吸着剤が高温となり吸着された炭化水素の脱離中は
上記切り換え手段を介して上記二次空気供給通路を連通
し、また、上記吸着剤に吸着された炭化水素の脱離完了
後はキャニスタパージ通路を連通することを特徴とする
エンジンの排気ガス浄化装置。
1. An adsorbent for adsorbing hydrocarbons at a low temperature from an upstream side in an exhaust system of an engine body, an electrically heated oxidation catalyst, and a three-way catalyst are disposed, and between the adsorbent and the electrically heated oxidation catalyst. A secondary air supply passage and a canister purge passage communicating with a canister storing evaporative fuel in a fuel tank are selectively selectively connected to each other through a passage switching means. During the desorption of hydrogen, the secondary air supply passage is communicated via the switching means, and after the desorption of the hydrocarbons adsorbed by the adsorbent is completed, the canister purge passage is communicated. Engine exhaust gas purification device.
JP8282431A 1996-10-24 1996-10-24 Engine exhaust emission control device Pending JPH10121949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282431A JPH10121949A (en) 1996-10-24 1996-10-24 Engine exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282431A JPH10121949A (en) 1996-10-24 1996-10-24 Engine exhaust emission control device

Publications (1)

Publication Number Publication Date
JPH10121949A true JPH10121949A (en) 1998-05-12

Family

ID=17652333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282431A Pending JPH10121949A (en) 1996-10-24 1996-10-24 Engine exhaust emission control device

Country Status (1)

Country Link
JP (1) JPH10121949A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784713A1 (en) * 1998-10-20 2000-04-21 Renault EXHAUST DEVICE FOR EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE AND ITS OPERATING METHOD
WO2005028826A1 (en) * 2003-09-19 2005-03-31 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
JP2008128062A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Control device for internal combustion engine
US7614213B2 (en) 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
US7913672B2 (en) 2007-11-12 2011-03-29 Ford Global Technologies, Llc Hydrocarbon retaining and purging system
US8011176B2 (en) 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US8112985B2 (en) 2007-11-12 2012-02-14 Ford Global Technologies, Llc Hydrocarbon retaining system configuration for combustion engine
US8261531B2 (en) 2007-11-12 2012-09-11 Ford Global Technologies, Llc Hydrocarbon retaining system for flex-fuel combustion engine
US8333063B2 (en) 2007-11-12 2012-12-18 Ford Global Technologies, Llc Hydrocarbon retaining system and method
US8413433B2 (en) 2008-07-17 2013-04-09 Ford Global Technologies, Llc Hydrocarbon retaining and purging system
US8448422B2 (en) 2007-11-12 2013-05-28 Ford Global Technologies, Llc Engine starting control for engine with hydrocarbon retaining system
JP2013121811A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Evaporative emission discharge structure of hybrid vehicle
US11986811B2 (en) 2019-06-26 2024-05-21 Vitesco Technologies GmbH Exhaust gas aftertreatment device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784713A1 (en) * 1998-10-20 2000-04-21 Renault EXHAUST DEVICE FOR EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE AND ITS OPERATING METHOD
EP0995886A1 (en) * 1998-10-20 2000-04-26 Renault Exhaust device of an internal combustion engine and method of operation
US8209958B2 (en) 2003-09-19 2012-07-03 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
WO2005028826A1 (en) * 2003-09-19 2005-03-31 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
US7614213B2 (en) 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
US7849674B2 (en) 2003-09-19 2010-12-14 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
EP2426329A1 (en) * 2003-09-19 2012-03-07 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
US8578703B2 (en) 2004-02-02 2013-11-12 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US8011176B2 (en) 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
JP2008128062A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Control device for internal combustion engine
US8261531B2 (en) 2007-11-12 2012-09-11 Ford Global Technologies, Llc Hydrocarbon retaining system for flex-fuel combustion engine
US8112985B2 (en) 2007-11-12 2012-02-14 Ford Global Technologies, Llc Hydrocarbon retaining system configuration for combustion engine
US8333063B2 (en) 2007-11-12 2012-12-18 Ford Global Technologies, Llc Hydrocarbon retaining system and method
US8448427B2 (en) 2007-11-12 2013-05-28 Ford Global Technologies, Llc Hydrocarbon retaining and purging system for flex-fuel combustion engine
US8448422B2 (en) 2007-11-12 2013-05-28 Ford Global Technologies, Llc Engine starting control for engine with hydrocarbon retaining system
US7913672B2 (en) 2007-11-12 2011-03-29 Ford Global Technologies, Llc Hydrocarbon retaining and purging system
US8776496B2 (en) 2007-11-12 2014-07-15 Ford Global Technologies, Llc Hydrocarbon retaining system configuration for combustion engine
US8915070B2 (en) 2007-11-12 2014-12-23 Ford Global Technologies, Llc Hydrocarbon retaining and purging system for flex-fuel combustion engine
US8413433B2 (en) 2008-07-17 2013-04-09 Ford Global Technologies, Llc Hydrocarbon retaining and purging system
JP2013121811A (en) * 2011-12-09 2013-06-20 Hyundai Motor Co Ltd Evaporative emission discharge structure of hybrid vehicle
US9163592B2 (en) 2011-12-09 2015-10-20 Hyundai Motor Company Vapor gas discharging apparatus for hybrid electric vehicle
US11986811B2 (en) 2019-06-26 2024-05-21 Vitesco Technologies GmbH Exhaust gas aftertreatment device

Similar Documents

Publication Publication Date Title
JP4645639B2 (en) Exhaust purification device
KR960004832B1 (en) Engine exhaust gas purification apparatus
US5373696A (en) Automotive engine with exhaust hydrocarbon adsorber having oxygen sensor regeneration control
JPH10121949A (en) Engine exhaust emission control device
US20040083716A1 (en) Method of treating gasoline exhaust gases
JPH0814034A (en) Exhaust emission control device
JP4387048B2 (en) Exhaust gas purification device and exhaust gas purification method for natural gas engine
JPH0674019A (en) Exhaust emission control device
JP5321255B2 (en) Exhaust gas purification device for internal combustion engine
JPH06336915A (en) Exhaust emission control device of internal combustion engine
JP2008128108A (en) Exhaust emission control device for internal combustion engine
JP3515483B2 (en) Exhaust gas purification system
JPS62189309A (en) Unburnt fuel purifier for alcohol fuel vehicle
JPH10184345A (en) Emission control device for engine
JPH06235320A (en) Automobile exhaust gas purifier
JPH11159321A (en) Exhaust emission control device for automobile
JP2850657B2 (en) Exhaust gas purification device for internal combustion engine
JP3433531B2 (en) Exhaust gas purification device for internal combustion engine
JP3496260B2 (en) Automotive exhaust gas purification equipment
JPH0518236A (en) Exhaust gas purification device for automobile
JP3774918B2 (en) Exhaust gas purification equipment for automobiles
JPH0693849A (en) Exhaust emission control device for internal combustion engine
JPH0674020A (en) Exhaust emission control device
JPH10184346A (en) Emission purifier for internal combustion engine
JPH0835419A (en) Exhaust emission control device of alcohol diesel engine