JP3515483B2 - Exhaust gas purification system - Google Patents

Exhaust gas purification system

Info

Publication number
JP3515483B2
JP3515483B2 JP2000132154A JP2000132154A JP3515483B2 JP 3515483 B2 JP3515483 B2 JP 3515483B2 JP 2000132154 A JP2000132154 A JP 2000132154A JP 2000132154 A JP2000132154 A JP 2000132154A JP 3515483 B2 JP3515483 B2 JP 3515483B2
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorbent
temperature
catalyst
unburned hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000132154A
Other languages
Japanese (ja)
Other versions
JP2000320324A (en
Inventor
政克 藤下
武士 阿田子
章夫 本地
黒田  修
敏雄 小川
紀子 渡辺
大須賀  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000132154A priority Critical patent/JP3515483B2/en
Publication of JP2000320324A publication Critical patent/JP2000320324A/en
Application granted granted Critical
Publication of JP3515483B2 publication Critical patent/JP3515483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/121
    • Y02T10/47

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガス処理用触媒が
活性化するまでの間、自動車排気ガスを吸着剤により一
時的に吸着する排気ガス浄化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification system for temporarily adsorbing automobile exhaust gas with an adsorbent until the exhaust gas treatment catalyst is activated.

【0002】[0002]

【従来の技術】自動車から排出される排気ガスは大気汚
染の元凶として大きく取りざたされ、多くの排気ガス規
制が果されている。
2. Description of the Related Art Exhaust gas emitted from an automobile is widely targeted as a source of air pollution, and many exhaust gas regulations are fulfilled.

【0003】現在は、白金、ロジウム等を用いた三元触
媒により排気ガスを処理することにより、このような規
制をクリアしており、車一台毎の排出ガス中の未燃炭化
水素、窒素酸化物等は規制前に比べればずいぶんと少な
くなっている。
At present, such regulations are cleared by treating exhaust gas with a three-way catalyst using platinum, rhodium or the like, and unburned hydrocarbons and nitrogen in exhaust gas of each vehicle are eliminated. Oxides, etc. are much less than before the regulation.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来技術で
は、三元触媒の温度が活性を示す温度(ライトオフ温
度、約350℃)にまで上昇するまでの間は、排気ガス
を処理することができていなかった。特に、エンジン始
動直後は、未燃炭化水素の濃度が非常に高いにも関わら
ず、そのまま排出されていた。例えば、始動温度を20
℃とすると、ライトオフ温度(約350℃)に達するま
でには約100秒が必要であるが、この間には7000
〜8000ppmという非常に高いの濃度の未燃炭化水
素がたれ流し状態であった。
However, in the prior art, the exhaust gas is treated until the temperature of the three-way catalyst rises to the temperature at which it is active (light-off temperature, about 350 ° C.). It wasn't done. In particular, immediately after the engine was started, the unburned hydrocarbons were discharged as they were, although the concentration was very high. For example, the starting temperature is 20
℃, it takes about 100 seconds to reach the light-off temperature (about 350 ℃), 7,000
A very high concentration of unburned hydrocarbons of ˜8000 ppm was in the state of being washed away.

【0005】この問題への対策として電気ヒ−タ等によ
り触媒を予め加熱しておくことで対処しようとする動き
もあるが、必要とする電力が極めて大きいため実用上の
大きな問題を抱えている。
As a measure against this problem, there is a movement to deal with it by heating the catalyst in advance with an electric heater or the like, but since it requires an extremely large amount of electric power, it has a serious problem in practical use. .

【0006】一方、自動車台数の増加と大型化により、
排出される排気ガスの絶対量は増大し、近年は再び大気
汚染が問題化しつつある。そして、その解決策としさら
に厳しい排気ガス規制が実施されることが決まってい
る。例えば、LEV(LowEmission Veh
icle)規制が、1997年から米国カリフォルニア
州において実施されることが既に決まっている。これ
は、米国合衆国連邦全体においてもいずれ実施されるも
のである。また、国内においても同様の厳しい規制が実
施されることは明らかである。
On the other hand, due to the increase in the number of vehicles and the increase in size,
The absolute amount of exhaust gas emitted has increased, and in recent years air pollution has become a problem again. Then, as a solution to this, it has been decided that stricter exhaust gas regulations will be implemented. For example, LEV (Low Emission Veh)
It has already been decided that the regulations will be implemented in California, USA since 1997. This will eventually be implemented throughout the United States. It is also clear that similar strict regulations will be implemented in Japan.

【0007】本発明は、エンジン始動時、触媒が活性を
発揮する温度にまで温まるまでの間に排出される排気ガ
スを処理することのできる排気ガス浄化システムを提供
することを目的とする。
An object of the present invention is to provide an exhaust gas purifying system capable of treating exhaust gas discharged while the catalyst is warming up to a temperature at which it activates when the engine is started.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたもので、その一態様としては、エン
ジンの排気ガス流路中に配置された排気ガス処理用の触
媒と、未燃炭化水素を吸着する温度領域(以下、”吸着
ゾ−ン”という)と、該吸着ゾ−ンよりも高い温度領域
であって吸着した未燃炭化水素が脱離する温度領域(以
下、”脱離ゾ−ン”という)とを有し、上記排気ガス流
路の上記触媒の上流側に配置された吸着剤と、上記触媒
が機能していないときには、上記吸着剤の温度を吸着ゾ
−ンに保って、排気ガス中に含まれる未燃炭化水素を上
記吸着剤により一時的に吸着させ、上記触媒が機能し始
めると、上記吸着剤の温度を脱離ゾ−ンにして、吸着し
た未燃炭化水素を脱離させる温度制御手段と、上記エン
ジンに供給される空気量を検出する空気量検出手段と、
上記排気ガス流路の上記吸着剤内空間のガス速度を調整
する空間速度調整手段と、上記空気量検出手段の検出結
果に基づいて、上記空間速度調整手段を制御する制御手
段と、を備えていることを特徴とする排気ガス浄化シス
テムが提供される。
The present invention has been made to achieve the above object, and in one aspect thereof, an exhaust gas treatment catalyst disposed in an exhaust gas passage of an engine, and A temperature range for adsorbing fuel hydrocarbons (hereinafter referred to as "adsorption zone") and a temperature range higher than the adsorption zone for desorbing adsorbed unburned hydrocarbons (hereinafter referred to as "adsorption zone"). Desorption zone ") and is disposed upstream of the catalyst in the exhaust gas flow path, and when the catalyst is not functioning, the temperature of the adsorbent is adjusted to the adsorption zone. Unburned hydrocarbons contained in the exhaust gas are temporarily adsorbed by the adsorbent, and when the catalyst starts to function, the temperature of the adsorbent is set to a desorption zone and adsorbed. Temperature control means for desorbing unburned hydrocarbons and supply to the engine And air amount detecting means for detecting an air amount,
A space velocity adjusting means for adjusting the gas velocity of the space inside the adsorbent of the exhaust gas flow path; and a control means for controlling the space velocity adjusting means based on the detection result of the air amount detecting means. An exhaust gas purification system is provided.

【0009】また、他の態様としては、エンジンの排気
ガス流路中に配置された排気ガス処理用の触媒と、未燃
炭化水素を吸着する温度領域(以下、”吸着ゾ−ン”と
いう)と、該吸着ゾ−ンよりも高い温度領域であって吸
着した未燃炭化水素が脱離する温度領域(以下、”脱離
ゾ−ン”という)とを有し、上記排気ガス流路の上記触
媒の上流側に配置された吸着剤と、上記触媒が機能して
いないときには、上記吸着剤の温度を吸着ゾ−ンに保っ
て、排気ガス中に含まれる未燃炭化水素を上記吸着剤に
より一時的に吸着させ、上記触媒が機能し始めると、上
記吸着剤の温度を脱離ゾ−ンにして、吸着した未燃炭化
水素を脱離させる温度制御手段と、上記触媒内に流入す
る排気ガスの空燃比を制御する手段と、を備えているこ
とを特徴とする排気ガス浄化システムが提供される。
As another aspect, a catalyst for exhaust gas treatment arranged in an exhaust gas passage of an engine and a temperature range for adsorbing unburned hydrocarbons (hereinafter referred to as "adsorption zone") And a temperature range (hereinafter referred to as "desorption zone") in which the adsorbed unburned hydrocarbons are desorbed, which is a temperature range higher than the adsorption zone, When the adsorbent disposed on the upstream side of the catalyst and the catalyst are not functioning, the temperature of the adsorbent is kept in the adsorption zone so that the unburned hydrocarbon contained in the exhaust gas is absorbed by the adsorbent. When the catalyst starts functioning, the temperature of the adsorbent is set to a desorption zone and the adsorbed unburned hydrocarbons are desorbed .
And a means for controlling the air-fuel ratio of the exhaust gas, the exhaust gas purifying system being provided.

【0010】この場合、上記温度制御手段は、上記排気
ガス流路の吸着剤よりも上流部分と、上記排気ガス流路
の上記吸着剤と上記触媒との間の部分との間に配置され
た熱交換器であることが好ましい。
In this case, the temperature control means is arranged between the portion of the exhaust gas passage upstream of the adsorbent and the portion of the exhaust gas passage between the adsorbent and the catalyst. It is preferably a heat exchanger.

【0011】また、上記排気ガス流路の上記触媒よりも
上流側において、該排気ガス流路に空気を供給する空気
供給手段を有することが好ましい。
Further, it is preferable to have an air supply means for supplying air to the exhaust gas passage on the upstream side of the catalyst in the exhaust gas passage.

【0012】さらには、上記エンジンに供給される空気
量を検出する空気量検出手段と、上記排気ガス流路の上
記吸着剤内の圧力を調整する圧力調整手段と、上記空気
量検出手段の検出結果に基づいて、上記圧力調整手段を
制御する制御手段とを有することが好ましい。
Further, air amount detecting means for detecting the amount of air supplied to the engine, pressure adjusting means for adjusting the pressure in the adsorbent in the exhaust gas flow path, and detection by the air amount detecting means. It is preferable to have control means for controlling the pressure adjusting means based on the result.

【0013】また、上記吸着剤中の排気ガスの圧力を検
出する圧力検出手段と、上記排気ガス流路の上記吸着剤
の下流側に設けられた圧力調整手段と、上記圧力検出手
段の検出結果に基づいて、上記圧力調整手段を制御する
制御手段とを有することが好ましい。
Further, pressure detecting means for detecting the pressure of the exhaust gas in the adsorbent, pressure adjusting means provided on the exhaust gas flow path downstream of the adsorbent, and detection results of the pressure detecting means. Based on the above, it is preferable to have a control means for controlling the pressure adjusting means.

【0014】他の態様としては、エンジンの排気ガス排
出用の排気ガス主流路と、上記排気ガス主流路途中に設
けられ、該排気ガス主流路の上流部と下流部とを結ぶバ
イパス流路と、上記バイパス流路に設けられ、未燃炭化
水素を吸着する温度領域(以下、”吸着ゾ−ン”とい
う)と、該吸着ゾ−ンよりも高い温度領域であって吸着
した未燃炭化水素が脱離する温度領域(以下、”脱離ゾ
−ン”という)と、上記脱離ゾ−ンにおいて完全に脱離
しなかった吸着物質を除去することのできる更に高温の
温度領域(以下”再生ゾ−ン”という)を有する吸着剤
と、上記排気ガス流路の上記バイパス流路と並列的な位
置に設けられた、排気ガス処理用の触媒と、上記吸着剤
および/または上記触媒の温度を検出する温度検出手段
と、上記バイパス流路において上記吸着剤の下流側に配
置された空気供給手段と、上記バイパス流路の出口部に
設けられ、上記排気ガス主流路と該バイパス流路との間
での排気ガス流量比を調整する流路切替手段と、上記吸
着剤の温度が吸着ゾ−ンにあるときには、上記流路切替
手段を制御して排気ガスを上記バイパス流路側に流し、
一方、上記吸着剤の温度が脱離ゾ−ンにあるときには、
上記切替手段を制御して上記バイパス流路をふさいで排
気ガスを上記主流路側に流すとともに、上記空気供給手
段により上記バイパス流路に空気を供給させる制御手段
とを有することを特徴とする排気ガス浄化システムが提
供される。
In another aspect, an exhaust gas main flow path for exhausting exhaust gas of an engine and a bypass flow path provided in the middle of the exhaust gas main flow path and connecting an upstream part and a downstream part of the exhaust gas main flow path. , A temperature region (hereinafter referred to as "adsorption zone") provided in the bypass passage for adsorbing unburned hydrocarbons, and an unburned hydrocarbon adsorbed in a temperature region higher than the adsorption zone. Temperature range (hereinafter referred to as "desorption zone") at which the adsorbed substances are not completely desorbed in the desorption zone (hereinafter referred to as "regeneration"). An adsorbent having a "zone", a catalyst for exhaust gas treatment provided in a position of the exhaust gas flow path in parallel with the bypass flow path, and a temperature of the adsorbent and / or the catalyst. Temperature detecting means for detecting the In the air supply means disposed on the downstream side of the adsorbent, and a flow that is provided at the outlet of the bypass flow passage and adjusts the exhaust gas flow rate ratio between the exhaust gas main flow passage and the bypass flow passage. When the temperature of the path switching means and the adsorbent is in the adsorption zone, the flow path switching means is controlled to flow the exhaust gas to the bypass flow path side,
On the other hand, when the temperature of the adsorbent is in the desorption zone,
Exhaust gas characterized by having control means for controlling the switching means to flow exhaust gas to the main flow path side by closing the bypass flow path and for supplying air to the bypass flow path by the air supply means. A purification system is provided.

【0015】この場合、上記排気ガス主流路から上記バ
イパス流路の上記吸着剤の後側部分に排気ガスを導入す
るサブバイパス手段を有し、上記制御手段は、上記サブ
バイパス流路を通じた上記バイパス流路へ排気ガスを流
入させて、上記吸着剤の温度を再生ゾ−ンにまで昇温さ
せる機能を有することが好ましい。
In this case, there is a sub-bypass means for introducing the exhaust gas from the exhaust gas main flow path to the rear side portion of the adsorbent of the bypass flow path, and the control means has the above-mentioned sub-bypass flow path. It is preferable to have a function of causing the exhaust gas to flow into the bypass passage to raise the temperature of the adsorbent to the regeneration zone.

【0016】他の態様としては、エンジンの排気ガス排
出用の排気ガス主流路と、上記排気ガス主流路途中に設
けられ、該排気ガス主流路の上流部と下流部とを結ぶバ
イパス流路と、上記バイパス流路に設けられ、未燃炭化
水素を吸着する温度領域(以下、”吸着ゾ−ン”とい
う)と、該吸着ゾ−ンよりも高い温度領域であって吸着
した未燃炭化水素が脱離する温度領域(以下、”脱離ゾ
−ン”という)と、上記脱離ゾ−ンにおいて完全に脱離
しなかった吸着物質を除去することのできる更に高温の
温度領域(以下”再生ゾ−ン”という)を有する吸着剤
と、上記排気ガス流路の上記バイパス流路と並列的な位
置に設けられた、排気ガス処理用の触媒と、上記吸着剤
および/または上記触媒の温度を検出する温度検出手段
と、上記バイパス流路において上記吸着剤の上流側に配
置された空気供給手段と、上記バイパス流路の出口部に
設けられ、上記排気ガス主流路と該バイパス流路との間
での排気ガス流量比を調整する流路切替手段と、上記バ
イパス流路において上記吸着剤の下流部と上記エンジン
の吸気系とを結び、所望の量の排気ガスを該吸気系に戻
す排気ガス還流手段と、上記吸着剤の温度が吸着ゾ−ン
にあるときには、上記流路切替手段を制御して排気ガス
を上記バイパス流路側に流し、一方、上記吸着剤の温度
が脱離ゾ−ンにあるときには、上記切替手段を制御して
上記バイパス流路をふさいで排気ガスを上記主流路側に
流すとともに、上記空気供給手段により上記バイパス流
路に空気を供給するとともに、上記排気ガス還流手段を
用いて該バイパス流路中のガスを上記吸気系に還流させ
る制御手段とを有することを特徴とする排気ガス浄化シ
ステムが提供される。
As another aspect, an exhaust gas main flow path for exhausting exhaust gas of an engine, and a bypass flow path provided in the middle of the exhaust gas main flow path and connecting an upstream part and a downstream part of the exhaust gas main flow path , A temperature region (hereinafter referred to as "adsorption zone") provided in the bypass passage for adsorbing unburned hydrocarbons, and an unburned hydrocarbon adsorbed in a temperature region higher than the adsorption zone. Temperature range (hereinafter referred to as "desorption zone") at which the adsorbed substances are not completely desorbed in the desorption zone (hereinafter referred to as "regeneration"). An adsorbent having a "zone", a catalyst for exhaust gas treatment provided in a position of the exhaust gas flow path in parallel with the bypass flow path, and a temperature of the adsorbent and / or the catalyst. Temperature detecting means for detecting the In the air supply means arranged on the upstream side of the adsorbent, and at the outlet of the bypass flow passage, the flow for adjusting the exhaust gas flow rate ratio between the exhaust gas main flow passage and the bypass flow passage. The path switching means, the exhaust gas recirculation means for connecting a downstream portion of the adsorbent in the bypass flow path and the intake system of the engine to return a desired amount of exhaust gas to the intake system, and the temperature of the adsorbent are When in the adsorption zone, the flow passage switching means is controlled to flow the exhaust gas to the bypass flow passage side, while when the temperature of the adsorbent is in the desorption zone, the switching means is controlled. The exhaust gas is flowed to the main flow path side by blocking the bypass flow path, the air is supplied to the bypass flow path by the air supply means, and the gas in the bypass flow path is discharged by using the exhaust gas recirculation means. the above An exhaust gas purification system, characterized in that a control means for recirculating the exhaust system is provided.

【0017】この場合、上記排気ガス主流路から上記バ
イパス流路の上記吸着剤の前側部分に排気ガスを導入す
るサブバイパス手段を有し、上記制御手段は、上記サブ
バイパス流路を通じて上記バイパス流路へ排気ガスを流
入させて、上記吸着剤の温度を再生ゾ−ンにまで昇温さ
せる機能を有することが好ましい。
In this case, there is a sub-bypass means for introducing the exhaust gas from the exhaust gas main flow path to the front side of the adsorbent in the bypass flow path, and the control means has the bypass flow path through the sub bypass flow path. It is preferable to have a function of causing the exhaust gas to flow into the passage to raise the temperature of the adsorbent to the regeneration zone.

【0018】なお、上記エンジンに供給される空気量を
検出する空気量検出手段と、上記制御手段は、上記空気
量検出手段の検出結果に基づいて、上記排気ガス還流手
段による排気ガス還流量を制御する機能を有することが
好ましい。
The air amount detection means for detecting the amount of air supplied to the engine and the control means determine the exhaust gas recirculation amount by the exhaust gas recirculation means based on the detection result of the air amount detection means. It is preferable to have a function of controlling.

【0019】更に別の態様としては、エンジンの排気ガ
ス排出用の排気ガス主流路と、上記排気ガス主流路途中
に設けられ、該排気ガス主流路の上流部と下流部とを結
ぶバイパス流路と、上記バイパス流路に設けられ、未燃
炭化水素を吸着する温度領域(以下、”吸着ゾ−ン”と
いう)と、該吸着ゾ−ンよりも高い温度領域であって吸
着した未燃炭化水素が脱離する温度領域(以下、”脱離
ゾ−ン”という)と、上記脱離ゾ−ンにおいて完全に脱
離しなかった吸着物質を除去することのできる更に高温
の温度領域(以下”再生ゾ−ン”という)を有する吸着
剤と、上記排気ガス流路の上記バイパス流路よりも下流
側に設けられた、排気ガス処理用の触媒と、上記吸着剤
および/または上記触媒の温度を検出する温度検出手段
と、上記排気ガス主流路において、上記バイパス流路よ
りも上流側に配置された空気供給手段と、上記バイパス
流路の入り口部に設けられ、上記排気ガス主流路と該バ
イパス流路との間での排気ガス流量比を調整する流路切
替手段と、上記吸着剤の温度が吸着ゾ−ンにあるときに
は、上記流路切替手段を制御して排気ガスを上記バイパ
ス流路側に流し、上記吸着剤の温度が脱離ゾ−ンにあ
り、かつ、上記触媒が機能していないときには、上記切
替手段を制御して上記バイパス流路をふさいで排気ガス
を上記主流路側に流すとともに、上記空気供給手段によ
り上記バイパス流路に空気を供給させ、上記触媒が機能
する時には、上記切替手段を制御して上記バイパス流路
にも排気ガスを流す機能を有する制御手段とを有するこ
とを特徴とする排気ガス浄化システムが提供される。
As still another aspect, an exhaust gas main flow path for exhausting exhaust gas of an engine and a bypass flow path provided in the middle of the exhaust gas main flow path and connecting an upstream part and a downstream part of the exhaust gas main flow path A temperature region (hereinafter referred to as "adsorption zone") provided in the bypass flow path for adsorbing unburned hydrocarbons, and an unburned carbonization adsorbed in a temperature region higher than the adsorption zone. A temperature range in which hydrogen is desorbed (hereinafter, referred to as "desorption zone") and a higher temperature range in which the adsorbed substance which is not completely desorbed in the desorption zone can be removed (hereinafter referred to as "desorption zone"). An adsorbent having a "regeneration zone"), an exhaust gas treatment catalyst provided downstream of the bypass passage in the exhaust gas passage, and a temperature of the adsorbent and / or the catalyst. Temperature detecting means for detecting In the flow path, an air supply means arranged upstream of the bypass flow path, and an exhaust gas flow rate provided between the exhaust gas main flow path and the bypass flow path, which is provided at an inlet portion of the bypass flow path. When the temperature of the flow path switching means for adjusting the ratio and the adsorbent is in the adsorption zone, the flow path switching means is controlled to cause the exhaust gas to flow to the bypass flow path side so that the temperature of the adsorbent is released. When in the remote zone and when the catalyst is not functioning, the switching means is controlled to block the bypass passage to allow the exhaust gas to flow to the main passage side and the air supply means to cause the bypass flow. An exhaust gas purifying system having a function of supplying air to a passage and controlling the switching means to allow the exhaust gas to flow into the bypass passage when the catalyst functions. It is provided.

【0020】この場合、上記バイパス流路に、活性化温
度が上記触媒よりも低い第2の触媒を有することが好ま
しい。
In this case, it is preferable that the bypass passage has a second catalyst whose activation temperature is lower than that of the catalyst.

【0021】[0021]

【作用】触媒の温度が十分上昇し機能するようになるま
では、吸着剤の温度を吸着ゾ−ンに保って、未燃炭化水
素を一時的に吸着させる。そして、触媒がライトオフ温
度に達すると同時に吸着剤が脱離温度に達するように温
度制御を行う。これにより、一旦吸着されていた未燃炭
化水素は、触媒により処理される。
Function: The temperature of the adsorbent is kept in the adsorption zone until the temperature of the catalyst rises sufficiently to function, and the unburned hydrocarbons are temporarily adsorbed. Then, temperature control is performed so that the catalyst reaches the light-off temperature and the adsorbent reaches the desorption temperature at the same time. As a result, the unburned hydrocarbon that has been once adsorbed is processed by the catalyst.

【0022】この温度制御は、触媒のライトオフ温度
と、吸着剤の脱離ゾ−ンとがうまく一致していれば、自
然と達成される。一致していない場合には、例えば、熱
交換器を用いて吸着剤の前側位置で排気ガスから熱を奪
い、触媒の加熱に使用すること等により可能となる。
This temperature control is naturally achieved if the light-off temperature of the catalyst and the desorption zone of the adsorbent are well matched. If they do not match, it is possible, for example, by using a heat exchanger to remove heat from the exhaust gas at the front position of the adsorbent and use it for heating the catalyst.

【0023】以上の動作においては、空気量検出手段に
より検出したエンジンに供給される空気量や、圧力検出
手段により検出した吸着在内の圧力に基づいて、吸着剤
内の圧力を制御して、吸着効率を高めることができる。
In the above operation, the pressure in the adsorbent is controlled on the basis of the amount of air supplied to the engine detected by the air amount detecting means and the pressure in the adsorbent detected by the pressure detecting means. The adsorption efficiency can be increased.

【0024】また、空気供給手段により、触媒上流から
空気を供給して、脱離未燃炭化水素の存在により、空燃
比が理論空燃比からずれるのを防ぐ。
The air supply means supplies air from the upstream side of the catalyst to prevent the air-fuel ratio from deviating from the stoichiometric air-fuel ratio due to the presence of desorbed unburned hydrocarbons.

【0025】上述の温度制御等は、排気ガス流路にバイ
パス流路を設けて、ここに吸着剤を配置すれば、より柔
軟性をもって行うことができる。
The above-mentioned temperature control and the like can be performed more flexibly by providing a bypass passage in the exhaust gas passage and arranging an adsorbent therein.

【0026】当初は、流路切替手段によりバイパス流路
に排気ガスを流して、未燃炭化水素を吸着させる。吸着
剤の温度が脱離ゾ−ンに達すると、流路切替手段によ
り、主流路側に排気ガスを流す。一方、バイパス流路に
は、空気供給手段により空気を送って、脱離した未燃炭
化水素をバイパス流路を逆流させて主流路に戻すか、あ
るいは、排気ガス還流手段によりエンジンの吸気系に戻
す。この場合、空気供給手段から供給する空気量は、空
気量検出手段の検出結果に基づいて決定する。
Initially, the exhaust gas is caused to flow through the bypass passage by the passage switching means to adsorb unburned hydrocarbons. When the temperature of the adsorbent reaches the desorption zone, the flow path switching means causes the exhaust gas to flow to the main flow path side. On the other hand, air is sent to the bypass flow path by the air supply means so that the desorbed unburned hydrocarbons are caused to flow back through the bypass flow path and return to the main flow path, or the exhaust gas recirculation means is added to the intake system of the engine. return. In this case, the amount of air supplied from the air supply unit is determined based on the detection result of the air amount detection unit.

【0027】なお、触媒をバイパス流路と並列的な位置
に設けた場合には、サブバイパス流路を通じて排気ガス
を流すことにより、吸着時には触媒の加熱を行う。一
方、脱離、再生時には、吸着剤の加熱を行う。
When the catalyst is provided in a position parallel to the bypass flow passage, exhaust gas is caused to flow through the sub bypass flow passage to heat the catalyst during adsorption. On the other hand, during desorption and regeneration, the adsorbent is heated.

【0028】触媒をバイパス流路よりも後側に配置した
態様について説明する。
A mode in which the catalyst is arranged on the rear side of the bypass channel will be described.

【0029】吸着剤が脱離ゾ−ンにあり、かつ、触媒が
ライトオフ温度に達していない状態では、主流路に排気
ガスを流しながら、触媒よりも上流に設けた空気供給手
段により排気ガス主流路に空気を供給する。これによ
り、該主流路中で未燃炭化水素を燃焼させる。
In a state where the adsorbent is in the desorption zone and the catalyst has not reached the light-off temperature, the exhaust gas is made to flow by the air supply means provided upstream of the catalyst while flowing the exhaust gas in the main passage. Supply air to the main flow path. As a result, unburned hydrocarbons are burned in the main flow path.

【0030】[0030]

【実施例】本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described with reference to the drawings.

【0031】本発明の基本的な考え方は、触媒が活性を
呈する温度に達するまでは、言い替えれば、排気ガス触
媒による処理が可能になるまでは、吸着剤により未燃炭
化水素を一時的に吸着させて、排出させないというもの
である。そして、触媒が活性を呈するようになると、吸
着した未燃炭化水素を脱離放出させて、触媒により最終
的な処理を行うものである。
The basic idea of the present invention is that the unburned hydrocarbon is temporarily adsorbed by the adsorbent until the catalyst reaches a temperature at which it becomes active, in other words, until it can be treated by the exhaust gas catalyst. It does not allow it to be discharged. Then, when the catalyst becomes active, the adsorbed unburned hydrocarbon is desorbed and released, and the final treatment is performed by the catalyst.

【0032】本発明成立の前提となる吸着剤についてま
ず最初に説明する。
The adsorbent, which is a prerequisite for the establishment of the present invention, will first be described.

【0033】吸着剤は、当然ながら、その目的物質、本
実施例においては未燃炭化水素、を吸着する特性を有す
るものを使用する必要があるが、その特性は、温度によ
り異なっている。
As the adsorbent, of course, it is necessary to use an adsorbent having a characteristic of adsorbing the target substance, in this embodiment, unburned hydrocarbon, but the characteristic varies depending on the temperature.

【0034】温度が低いときには、図1に示すとおり、
未燃炭化水素を吸着する(図中、「吸着ゾ−ンQZ」と
して示した。)。さらに、温度が高くなると、吸着した
未燃炭化水素は脱離してゆく(図中、「脱離ゾ−ンD
Z」として示した。)。しかし、一旦、吸着した未燃炭
化水素は、脱離温度に達しても完全に脱離するものでは
なく、ある程度は吸着したままの状態となる。このよう
な未燃炭化水素を取り除くには、更に温度の高い状態と
することにより、燃焼等させて除去することができる
(図中、「再生ゾ−ンSZ」として示した)。
When the temperature is low, as shown in FIG.
Adsorb unburned hydrocarbons (indicated as "adsorption zone QZ" in the figure). Further, when the temperature rises, the adsorbed unburned hydrocarbons are desorbed (in the figure, "desorption zone D
Z ”. ). However, once adsorbed unburned hydrocarbon is not completely desorbed even when the desorption temperature is reached, and remains adsorbed to some extent. In order to remove such unburned hydrocarbons, it is possible to remove the unburned hydrocarbons by burning them at a higher temperature (indicated as "regenerated zone SZ" in the figure).

【0035】なお、触媒等が破壊されてしまう限界(図
中、「耐熱限界ゾ−ンTNZ」として示した。)は、更
に温度の高い領域にあることが最低限必要である。
The limit at which the catalyst or the like is destroyed (indicated as "heat-resistant limit zone TNZ" in the figure) must be at least in a higher temperature region.

【0036】本願発明においては、このような吸着材の
温度特性を利用している。つまり、触媒が活性化するま
では、吸着剤の温度を吸着ゾ−ンに保って、未燃炭化水
素を吸着させる。触媒が活性化した後は、吸着剤の温度
を脱離ゾ−ンにまで上昇させて、吸着させた未燃炭化水
素を脱離放出させる。なお、未脱離の未燃炭化水素が多
く残って、吸着剤の吸着容量が小さくなると温度を再生
ゾ−ンにまで上げて再生することにより、再び吸着量を
増大させる。
In the present invention, such a temperature characteristic of the adsorbent is used. That is, until the catalyst is activated, the temperature of the adsorbent is kept in the adsorption zone to adsorb unburned hydrocarbons. After the catalyst is activated, the temperature of the adsorbent is raised to the desorption zone to desorb and release the adsorbed unburned hydrocarbons. When a large amount of undesorbed unburned hydrocarbon remains and the adsorption capacity of the adsorbent decreases, the temperature is raised to the regeneration zone for regeneration, and the adsorption amount is increased again.

【0037】このような吸着システム自体は、触媒によ
る排気ガス処理とは完全に独立したものであって、温度
制御は独自に行う必要がある。また、吸着ゾ−ン等の温
度は、吸着剤の種類により異なるものである。
Such an adsorption system itself is completely independent of the exhaust gas treatment by the catalyst, and it is necessary to independently control the temperature. Further, the temperature of the adsorption zone or the like varies depending on the type of adsorbent.

【0038】従って、吸着剤の特性が使用する触媒の特
性とがうまく適合すれば、吸着剤を独自に温度制御する
必要はなく、触媒と一括した温度制御でたりる。しか
し、うまく適合しない場合には、触媒とは別個に温度制
御を行う必要がある。つまり、吸着剤、触媒の温度特性
により、実用上、必要とされる配管等の構成が異なる。
この点については、後ほどいくつかの具体的な構成例を
用いた説明において述べる。
Therefore, if the characteristics of the adsorbent are well matched with those of the catalyst to be used, it is not necessary to control the temperature of the adsorbent independently, and the temperature can be controlled together with the catalyst. However, if it does not fit well, it is necessary to control the temperature separately from the catalyst. In other words, the configuration of the pipe or the like required for practical use differs depending on the temperature characteristics of the adsorbent and the catalyst.
This point will be described later in the description using some specific configuration examples.

【0039】なお、上記吸着の特性についての説明にお
いては、温度の影響のみを説明したが、その他にも圧
力、空間速度等の影響を受ける。この場合、吸着は圧力
が高いほどが速いが、脱離は逆に圧力が低いほど速い。
また、空間速度(SV:Space Velocit
y)は、小さいほど吸着率が高くなる。
In the above description of the adsorption characteristics, only the influence of temperature has been explained, but other influences such as pressure and space velocity are also present. In this case, the higher the pressure, the faster the adsorption, but the lower the pressure, on the contrary, the faster the desorption.
In addition, space velocity (SV: Space Velocity)
The smaller y), the higher the adsorption rate.

【0040】これ以降、排気ガス浄化システムとしての
具体的な構成についていくつか例を上げて説明する。
Hereinafter, a specific configuration of the exhaust gas purification system will be described with some examples.

【0041】一つの排気ガス流路中において、触媒の前
側に吸着剤を配置した構成例を図2に示した。
FIG. 2 shows a structural example in which an adsorbent is arranged in front of the catalyst in one exhaust gas flow path.

【0042】本実施例においては、エンジン1とつなが
る排気ガス流路には、まず、吸着剤4が設けられる。そ
して、その後側に、主触媒8が配置された構成となって
いる。
In this embodiment, the adsorbent 4 is first provided in the exhaust gas flow path connected to the engine 1. The main catalyst 8 is arranged on the rear side.

【0043】また、吸着剤4の上流側には、2次空気ポ
ンプ9および2次空気量制御バルブ10が設けられてい
る。さらに、吸着剤4と主触媒8の間には、圧力制御バ
ルブ6が設けられている。
A secondary air pump 9 and a secondary air amount control valve 10 are provided on the upstream side of the adsorbent 4. Further, a pressure control valve 6 is provided between the adsorbent 4 and the main catalyst 8.

【0044】本実施例の吸着剤4は、上述の脱離ゾ−ン
が、主触媒8のライトオフ温度以上の温度領域であるも
のが最適である。言い替えれば、主触媒8の温度特性と
適合し、吸着剤4の温度のみを独立して制御する必要の
ない場合に本実施例のような構成をとることができる。
具体的に言えば、脱離ゾ−ンおよび再生ゾ−ンは、走行
時の排気ガスにより達成される温度領域にあることが好
ましい。この場合は、通常の走行によって、自然と脱
離、再生が行われることになる。なお、脱離特性が良好
であれば、再生ゾ−ンはなくても構わない。また、通常
の走行時にも、吸着剤4には排気ガスがそのまま通るた
め、主触媒8と同等レベルあるいはそれ以上の十分な耐
熱性が必要である(吸着剤4は主触媒8よりも前側にあ
るため、主触媒8よりも高温になる可能性がある)。な
お、始動時の温度領域において未燃炭化水素を吸着する
ことが必要であることは言うまでもない。
The adsorbent 4 of this embodiment is optimally one in which the above-mentioned desorption zone is in the temperature range above the light-off temperature of the main catalyst 8. In other words, when the temperature characteristics of the main catalyst 8 are matched and only the temperature of the adsorbent 4 does not need to be independently controlled, the configuration of this embodiment can be adopted.
Specifically, the desorption zone and the regeneration zone are preferably in the temperature range achieved by the exhaust gas during traveling. In this case, desorption and regeneration are naturally performed by normal traveling. If the desorption characteristic is good, the regeneration zone may be omitted. Further, even during normal traveling, the exhaust gas passes through the adsorbent 4 as it is, and therefore sufficient heat resistance equal to or higher than that of the main catalyst 8 is required (the adsorbent 4 is located in front of the main catalyst 8). Therefore, the temperature may be higher than that of the main catalyst 8). Needless to say, it is necessary to adsorb unburned hydrocarbons in the temperature range at the time of starting.

【0045】この吸着剤4には、温度を正確に検知する
ため、排気ガス温度センサ2、吸着剤温度センサ3、排
気ガス温度センサ5を設けている。これらの温度センサ
を用いた温度の検出法については、後ほど他の構成例の
場合とまとめて説明するため、ここでは詳細は述べな
い。
The adsorbent 4 is provided with an exhaust gas temperature sensor 2, an adsorbent temperature sensor 3, and an exhaust gas temperature sensor 5 in order to detect the temperature accurately. The method of detecting the temperature using these temperature sensors will be described later together with the case of the other configuration examples, and will not be described here in detail.

【0046】主触媒8には、三元触媒を使用している。
この主触媒8には、温度を検出するための触媒温度セン
サ7が設けられている。ここでは詳細は述べないが、該
触媒温度センサ7の検出結果を用いて各バルブ等を制御
している。
A three-way catalyst is used as the main catalyst 8.
The main catalyst 8 is provided with a catalyst temperature sensor 7 for detecting the temperature. Although not described here in detail, the valves and the like are controlled by using the detection result of the catalyst temperature sensor 7.

【0047】2次空気ポンプ9、2次空気量制御バルブ
10は、主触媒8に流れ込む排気ガスの空燃比を理論空
燃比に保つためのものである。これは、エンジン1に供
給される空燃比が理論空燃比となっていても、吸着剤4
から脱離する未燃炭化水素の存在により、主触媒8に到
達する排気ガスが理論空燃比からずれてしまうからであ
る。
The secondary air pump 9 and the secondary air amount control valve 10 are for maintaining the air-fuel ratio of the exhaust gas flowing into the main catalyst 8 at the stoichiometric air-fuel ratio. This is because even if the air-fuel ratio supplied to the engine 1 is the stoichiometric air-fuel ratio, the adsorbent 4
This is because the presence of unburned hydrocarbons desorbed from the exhaust gas causes the exhaust gas reaching the main catalyst 8 to deviate from the theoretical air-fuel ratio.

【0048】圧力制御バルブ6は、空間速度、言い替え
れば、排気ガスの流量を調整するためのものである。こ
れにより、温度等の条件が許す範囲内で空間速度を小さ
くし、未燃炭化水素の吸着率を高めることができる構成
となっている。該圧力制御バルブ6の制御には排気ガス
量のデ−タを必要とするが、これはエアクリ−ナ17を
通じて吸入される空気量を空気流量検出器16により検
出し、該吸入量を用いて排出ガス量を算定している。こ
の例においては、吸入量と排気ガス量とは等しいと近似
している。なお、詳細は述べないが、該空気量検出器1
6により検出された空気の吸入量は、該圧力制御バルブ
6だけでなく、後に説明する他の構成例で使用する各種
バルブ等の制御の際にもデ−タとして使用される。
The pressure control valve 6 is for adjusting the space velocity, in other words, the flow rate of exhaust gas. As a result, the space velocity can be reduced and the adsorption rate of unburned hydrocarbons can be increased within a range permitted by conditions such as temperature. The control of the pressure control valve 6 requires data on the amount of exhaust gas, which is detected by the air flow rate detector 16 to detect the amount of air taken in through the air cleaner 17 and is used as the amount of intake air. Emissions are calculated. In this example, it is approximated that the intake amount and the exhaust gas amount are equal. Although not described in detail, the air amount detector 1
The air intake amount detected by 6 is used as data not only for controlling the pressure control valve 6 but also for controlling various valves used in other configuration examples described later.

【0049】なお、空間速度を調整することは、吸着剤
4における圧力を調整することにもなる。この場合、温
度が変化するが、これはほとんど無視しうる程度の変化
であり、温度とは関係なく、空間速度をほぼ独立して制
御可能となっている。
Adjusting the space velocity also adjusts the pressure in the adsorbent 4. In this case, the temperature changes, but this change is almost negligible, and the space velocity can be controlled almost independently of the temperature.

【0050】動作を説明する。The operation will be described.

【0051】エンジン1始動時には、温度は低いため、
主触媒8は機能していない。しかし、このような低い場
合でも、吸着剤4は排気ガス中の未燃炭化水素を吸着
し、そのまま排出されることはない。
Since the temperature is low when the engine 1 is started,
The main catalyst 8 is not functioning. However, even in such a low case, the adsorbent 4 adsorbs unburned hydrocarbons in the exhaust gas and is not discharged as it is.

【0052】主触媒8の温度が上昇しライトオフ温度に
達すると、未燃炭化水素等を処理するようになる。一
方、これとほぼ同時に、吸着剤4が脱離ゾ−ンに入り、
吸着していた未燃炭化水素を放出するようになる。この
状態では、エンジン1から新たに排出されてくる排気ガ
スと吸着剤4から放出される未燃炭化水素とは主触媒8
により処理される。この場合、主触媒8において理論空
燃比からずれてしまうおそれがあるが、これは、2次空
気ポンプ9から別途空気を供給することにより調整可能
である。なお、主触媒8のすぐ前部分において空燃比検
出手段を設けて、その検出結果に基づいて2次空気ポン
プ9等を制御すればより正確に空燃比を制御することが
可能である。
When the temperature of the main catalyst 8 rises and reaches the light-off temperature, unburned hydrocarbons and the like are processed. On the other hand, almost simultaneously with this, the adsorbent 4 enters the desorption zone,
The unburned hydrocarbons that have been adsorbed are released. In this state, the exhaust gas newly discharged from the engine 1 and the unburned hydrocarbons discharged from the adsorbent 4 are contained in the main catalyst 8
Is processed by. In this case, the main catalyst 8 may deviate from the stoichiometric air-fuel ratio, but this can be adjusted by separately supplying air from the secondary air pump 9. It is possible to more accurately control the air-fuel ratio by providing an air-fuel ratio detecting means immediately in front of the main catalyst 8 and controlling the secondary air pump 9 and the like based on the detection result.

【0053】再生については、上述したとおり排気ガス
により達成される温度で吸着剤4が再生ゾ−ンを有して
いれば、そのままで自然と行われる。
The regeneration is naturally performed as it is if the adsorbent 4 has a regeneration zone at the temperature achieved by the exhaust gas as described above.

【0054】以上説明した動作は、すべて図12に示し
た制御コントロ−ルユニット23からの指示に基づいて
行われるものである。この制御コントロ−ルユニット2
3については、最後にまとめて説明する。
All the operations described above are performed based on the instruction from the control control unit 23 shown in FIG. This control unit 2
The third item will be collectively described at the end.

【0055】本実施例のシステムに、前触媒11と圧力
検出器12を設けた例を図3に示した。
An example in which the precatalyst 11 and the pressure detector 12 are provided in the system of this embodiment is shown in FIG.

【0056】この例においては、圧力検出器12を設け
たことにより圧力制御バルブ6の制御をより正確に行
い、吸着剤の能力を最大限活かすことが可能となる。
In this example, since the pressure detector 12 is provided, the pressure control valve 6 can be controlled more accurately and the capacity of the adsorbent can be maximized.

【0057】また、吸着剤4の上流側、言い替えれば、
エンジン1の排気孔により近い位置、例えば排気マニホ
−ルドに直付けした前触媒11は、温度上昇が速いた
め、触媒活性を得るまでの時間をより短くすることがで
きる。前触媒11に使用する触媒は、主触媒8と同様の
もので構わないが、エンジン1に近い位置に配置するた
め、より耐熱性の高いものを使用する必要がある。
On the upstream side of the adsorbent 4, in other words,
Since the temperature of the pre-catalyst 11 directly attached to a position closer to the exhaust hole of the engine 1, for example, directly attached to the exhaust manifold, increases in temperature, it is possible to further shorten the time until the catalyst activity is obtained. The catalyst used for the pre-catalyst 11 may be the same as the main catalyst 8, but since it is arranged at a position close to the engine 1, it is necessary to use a catalyst having higher heat resistance.

【0058】他の構成例を図4を用いて説明する。Another configuration example will be described with reference to FIG.

【0059】この例は、排気ガス流路にバイパス排気管
13を設け、ここに吸着剤4を配置した構成としてい
る。このバイパス排気管13中の吸着剤4の下流側に
は、空燃比を調整するための2次空気ポンプ9、2次空
気量制御バルブ10が設けられている。バイパス排気管
13の出口側には、該バイパス排気管13への排気ガス
の流入を制御する排気通路切替バルブ18が設けられて
いる。これを作動させることにより、エンジン1から出
た排気ガスを、主触媒8のある主流路側とバイパス排気
管13とのいずれを通過させるかを切替可能な構成とな
っている。また、該排気通路切替バルブ18は、開度を
調整可能であり、排気ガスの一部をバイパス排気管13
に流すこと等も可能である。
In this example, the bypass exhaust pipe 13 is provided in the exhaust gas flow path, and the adsorbent 4 is placed therein. A secondary air pump 9 and a secondary air amount control valve 10 for adjusting the air-fuel ratio are provided on the downstream side of the adsorbent 4 in the bypass exhaust pipe 13. An exhaust passage switching valve 18 that controls the inflow of exhaust gas into the bypass exhaust pipe 13 is provided on the outlet side of the bypass exhaust pipe 13. By operating this, it is possible to switch whether the exhaust gas emitted from the engine 1 passes through the main flow path side where the main catalyst 8 is present or the bypass exhaust pipe 13. Further, the exhaust passage switching valve 18 is capable of adjusting the opening, and a part of the exhaust gas is bypassed by the bypass exhaust pipe 13.
It is also possible to flush it to

【0060】なお、2次空気ポンプ9、2次空気量制御
バルブ10を吸着剤4の下流側に、また、排気通路切替
バルブ18を出口側に配置したのは、吸着剤4から未燃
炭化水素を脱離させる際には、後述するように該バイパ
ス排気管13中をガスを逆流させることになるからであ
る。
The secondary air pump 9 and the secondary air amount control valve 10 are arranged on the downstream side of the adsorbent 4, and the exhaust passage switching valve 18 is arranged on the outlet side. This is because when desorbing hydrogen, the gas will flow backward in the bypass exhaust pipe 13 as described later.

【0061】また、主触媒8は排気ガス流路の主流路側
において、バイパス排気管13の入口と出口との間に、
つまり、該吸着剤4と並列的に配置されている。そのた
め、排気ガスをバイパス排気管13側に流している場合
には、主触媒8中を直接、排気ガスが通過しないため、
主触媒8の温度上昇がゆるやかとなるが、これは配管形
状等を工夫することにより、十分補うことができる。例
えば、バイパス排気管13との主流路との分岐点から主
触媒8までの距離を短くすることや、バイパス排気管1
3を主触媒8を周囲を巻くように配置すること等が考え
られる。なお、排気通路切替バルブ18をバイパス排気
管13の下流側に配置しているのは、排気ガスをバイパ
ス排気管13の側に流している状態でも、バイパス排気
管13の入口部分において流路自体を遮断しないで、排
気ガスのもつ熱が主触媒8に伝わりやすくするためでも
ある。
Further, the main catalyst 8 is provided between the inlet and the outlet of the bypass exhaust pipe 13 on the main flow passage side of the exhaust gas flow passage.
That is, it is arranged in parallel with the adsorbent 4. Therefore, when the exhaust gas is flowing to the bypass exhaust pipe 13 side, the exhaust gas does not directly pass through the main catalyst 8,
The temperature rise of the main catalyst 8 becomes gentle, but this can be sufficiently compensated by devising the pipe shape and the like. For example, shortening the distance from the branch point between the bypass exhaust pipe 13 and the main flow path to the main catalyst 8 or the bypass exhaust pipe 1
It is conceivable to arrange 3 so that the main catalyst 8 is wound around it. The exhaust passage switching valve 18 is arranged on the downstream side of the bypass exhaust pipe 13 because the flow passage itself is provided at the inlet portion of the bypass exhaust pipe 13 even when the exhaust gas is flowing to the bypass exhaust pipe 13 side. This is also because the heat of the exhaust gas is easily transferred to the main catalyst 8 without shutting off.

【0062】バイパス排気管13との分岐点と主触媒8
との間には、A/F検知センサ21が設けられている。
これは、主触媒8に流れ込む排気ガスの空燃比が吸着剤
4から脱離した未燃炭化水素により変動するのを監視す
るためである。なお、該A/F検知センサ21の検出結
果は、前述の2次空気ポンプ9、2次空気量制御バルブ
10の制御に反映され、理論空燃比が保たれる構成とな
っている。
Branch point with bypass exhaust pipe 13 and main catalyst 8
An A / F detection sensor 21 is provided between and.
This is to monitor that the air-fuel ratio of the exhaust gas flowing into the main catalyst 8 changes due to unburned hydrocarbons desorbed from the adsorbent 4. The detection result of the A / F detection sensor 21 is reflected in the control of the secondary air pump 9 and the secondary air amount control valve 10 described above, and the stoichiometric air-fuel ratio is maintained.

【0063】本構成例においては、吸着剤4をバイパス
排気管13中に配置することにより独立して温度制御を
行うことができるため、脱離ゾ−ンが主触媒8の特性と
適合するか否かは問題とならない。また、再生ゾ−ン、
耐熱ゾ−ンについても同様に、制限を受けることはな
い。ただし、未燃炭化水素吸着の前提となる吸着ゾ−ン
については、上記実施例と同様にエンジン1の始動温度
領域においても未燃炭化水素を吸着する必要がある。
In this configuration example, since the temperature control can be independently performed by disposing the adsorbent 4 in the bypass exhaust pipe 13, is the desorption zone compatible with the characteristics of the main catalyst 8? Whether or not it does not matter. Also, the playback zone,
The heat-resistant zone is likewise not subject to any restrictions. However, as for the adsorption zone, which is a prerequisite for adsorbing unburned hydrocarbons, it is necessary to adsorb unburned hydrocarbons even in the starting temperature range of the engine 1 as in the above embodiment.

【0064】排気ガス温度センサ2、吸着剤温度センサ
3、排気ガス温度センサ5、触媒温度センサ7について
は、上記実施例と同様である。温度検出については後ほ
ど詳細に説明する。
The exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, and the catalyst temperature sensor 7 are the same as those in the above embodiment. The temperature detection will be described in detail later.

【0065】動作を説明する。The operation will be described.

【0066】エンジン1の始動時には、排気通路切替バ
ルブ18は排気ガス流路の主流路側をふさぐような角度
aにする。この状態では、排気ガス中の未燃炭化水素は
吸着剤4に吸着され、外部には排出されない。
When the engine 1 is started, the exhaust passage switching valve 18 is set at an angle a that closes the main passage side of the exhaust gas passage. In this state, unburned hydrocarbons in the exhaust gas are adsorbed by the adsorbent 4 and are not discharged to the outside.

【0067】この時、排気ガス温度センサ2、吸着剤温
度センサ3、排気ガス温度センサ5、触媒温度センサ7
の出力に基づいて吸着剤4、主触媒8の温度を監視して
いる。そして、吸着剤4の温度が脱離ゾ−ンに近づいて
くると排気通路切替バルブ18を徐々に開いて、排気ガ
スの一部が主触媒8を通過するようにする。主触媒8は
既にある程度温められており、また、排気ガスそのもの
の温度もエンジン始動直後に比べて高いため、主触媒8
は速やかにライトオフ温度に達する。
At this time, the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, the catalyst temperature sensor 7
The temperatures of the adsorbent 4 and the main catalyst 8 are monitored based on the output of Then, when the temperature of the adsorbent 4 approaches the desorption zone, the exhaust passage switching valve 18 is gradually opened so that part of the exhaust gas passes through the main catalyst 8. The main catalyst 8 has already been warmed to some extent, and the temperature of the exhaust gas itself is higher than immediately after the engine is started.
Quickly reaches the light-off temperature.

【0068】触媒温度センサ7により主触媒8の温度が
十分上昇したことが確認されると、排気通路切替バルブ
18を角度bにして、排気ガスのすべてを主触媒8を通
過させるようにする。従って、これ以降、エンジン1か
ら新たに排出される排気ガスは直接主触媒8により処理
されることになる。
When the catalyst temperature sensor 7 confirms that the temperature of the main catalyst 8 has risen sufficiently, the exhaust passage switching valve 18 is set to the angle b so that all the exhaust gas passes through the main catalyst 8. Therefore, after that, the exhaust gas newly discharged from the engine 1 is directly processed by the main catalyst 8.

【0069】一方、排気通路切替バルブ18を完全に角
度bにした時には、吸着剤4の温度は脱離ゾ−ンに達し
ている。従って、この状態で、2次空気ポンプ9、2次
空気量制御バルブ10を作動させて、吸着剤4から脱離
した未燃炭化水素をバイパス排気管13を逆流させて主
触媒8を通過させ、処理する。この場合、該脱離未燃炭
化水素の流入により、主触媒8を通過する排気ガスが理
論空燃比(14.7)からずれてしまわないように、A
/F検知センサ21により監視し、2次空気ポンプ9、
2次空気量制御バルブ10により送る空気量を調整す
る。
On the other hand, when the exhaust passage switching valve 18 is completely set to the angle b, the temperature of the adsorbent 4 reaches the desorption zone. Therefore, in this state, the secondary air pump 9 and the secondary air amount control valve 10 are operated to cause the unburned hydrocarbon desorbed from the adsorbent 4 to flow back through the bypass exhaust pipe 13 and to pass through the main catalyst 8. , Process. In this case, the inflow of the desorbed unburned hydrocarbon does not cause the exhaust gas passing through the main catalyst 8 to deviate from the theoretical air-fuel ratio (14.7).
The secondary air pump 9, which is monitored by the / F detection sensor 21,
The amount of air sent by the secondary air amount control valve 10 is adjusted.

【0070】吸着剤4の再生に必要な温度上昇は、主触
媒8の場合と同様に、バイパス排気管13のレイアウト
や形状を工夫すれば、主触媒8を通過する排気ガスから
の伝熱により十分得ることができる。
The temperature rise required for the regeneration of the adsorbent 4 is caused by heat transfer from the exhaust gas passing through the main catalyst 8 if the layout and shape of the bypass exhaust pipe 13 are devised, as in the case of the main catalyst 8. You can get enough.

【0071】なお、バイパス排気管13中においてガス
を逆流させている状態では、主触媒8がライトオフ温度
に達するまでの間、未燃炭化水素等が処理されないまま
外部へ排出されることになる。しかし、始動後、多少と
も時間が経過し、排気ガス中の未燃炭化水素の含有率は
始動直後に比べれば少なくなっており、また、時間的に
もわずかな間であるため、この点はほとんど問題とはな
らない。従って、上述したとおり、吸着剤4の脱離温度
と、主触媒8のライトオフ温度は必ずしも一致している
必要はない。ただし、バイパス排気管13において吸着
剤4の上流側から空気を流入させる構成を別個に設ける
等して、主触媒8がライトオフ温度に達するまで吸着剤
4の温度が脱離ゾ−ンに達しないように制御すれば、こ
の問題点についても容易に解決することができる。
In the state where the gas is allowed to flow backward in the bypass exhaust pipe 13, unburned hydrocarbons and the like are discharged to the outside without being processed until the main catalyst 8 reaches the light-off temperature. . However, some time has passed since the engine was started, and the content of unburned hydrocarbons in the exhaust gas is lower than immediately after the engine is started. Almost no problem. Therefore, as described above, the desorption temperature of the adsorbent 4 and the light-off temperature of the main catalyst 8 do not necessarily match. However, the temperature of the adsorbent 4 reaches the desorption zone until the main catalyst 8 reaches the light-off temperature by separately providing the bypass exhaust pipe 13 with a structure in which air is introduced from the upstream side of the adsorbent 4. By controlling not to do so, this problem can be easily solved.

【0072】以上説明した動作は、すべて図12に示し
た制御コントロ−ルユニット23からの指示に基づいて
行われるものである。この制御コントロ−ルユニット2
3については、最後にまとめて説明する。
All the operations described above are performed based on the instruction from the control control unit 23 shown in FIG. This control unit 2
The third item will be collectively described at the end.

【0073】他の構成例を説明する。Another configuration example will be described.

【0074】この例の構成は、図5に示したとおり、基
本的には図4に示した実施例と同様である。ただし、脱
離した未燃炭化水素を、バイパス排気管13を逆流させ
て主触媒8を通過させるのではなく、バイパス排気管1
3の吸着剤4の下流域に設けたEGRバルブ15を通じ
て、エンジン1の吸気系に戻す構成となっている。その
ため、2次空気ポンプ9、2次空気量制御バルブ10を
吸着剤4よりも上流側に配置している。
As shown in FIG. 5, the configuration of this example is basically the same as that of the embodiment shown in FIG. However, the desorbed unburned hydrocarbons are not allowed to flow back through the bypass exhaust pipe 13 and pass through the main catalyst 8, but to the bypass exhaust pipe 1
It is configured to return to the intake system of the engine 1 through the EGR valve 15 provided in the downstream region of the adsorbent 4 of No. 3. Therefore, the secondary air pump 9 and the secondary air amount control valve 10 are arranged upstream of the adsorbent 4.

【0075】動作も上記実施例とほぼ同様である。EG
Rバルブ15は、吸着した未燃炭化水素を脱離させる時
に、つまり、排気通路切替バルブ18を角度bにしてい
るときに開くように制御する。この場合の制御は、空気
量検出器16により検出された吸気量と対応させて行
う。
The operation is almost the same as that of the above embodiment. EG
The R valve 15 is controlled to open when desorbing the adsorbed unburned hydrocarbons, that is, when the exhaust passage switching valve 18 is set to the angle b. The control in this case is performed corresponding to the intake air amount detected by the air amount detector 16.

【0076】再生に必要な熱源も同様に、レイアウト構
成を工夫することにより得ることができる。あるいは、
排気通路切替バルブ18あるいはEGRバルブ15を多
少開いて、排気ガスをバイパス排気管13に導入するこ
とにより、加熱しても良い。この構成例においては、バ
イパス排気管13をガスが逆流することがなく、より円
滑な制御を行うことができる。
Similarly, the heat source required for reproduction can be obtained by devising the layout configuration. Alternatively,
The exhaust passage switching valve 18 or the EGR valve 15 may be opened slightly and the exhaust gas may be introduced into the bypass exhaust pipe 13 to heat the exhaust gas. In this configuration example, gas does not flow back through the bypass exhaust pipe 13, and smoother control can be performed.

【0077】更に別の構成例を図6を用いて説明する。Still another configuration example will be described with reference to FIG.

【0078】この例は、図5に示した構成例と基本的に
は同様であるが、吸着剤4の再生をより円滑に行うた
め、吸着剤4の温度を再生ゾ−ンにまで加熱するための
熱源として、排気ガス流路の主流側からガスを導入して
いる点に、特徴を有するものである。
This example is basically the same as the configuration example shown in FIG. 5, but in order to regenerate the adsorbent 4 more smoothly, the temperature of the adsorbent 4 is heated to the regeneration zone. As a heat source for this, the gas is introduced from the mainstream side of the exhaust gas flow path.

【0079】この例においては、バイパス排気管13と
並列的に存在する排気ガス流路の主流の主触媒8の後側
に、排気ガス導入バルブ25を設けている。また、該排
気ガス導入バルブ25から流入した排気ガスをバイパス
排気管13の吸着剤4の上流側に流し込むサブバイパス
排気管22を設けた構成となっている。
In this example, an exhaust gas introduction valve 25 is provided on the rear side of the main catalyst 8 in the main flow of the exhaust gas flow path which is present in parallel with the bypass exhaust pipe 13. Further, a sub-bypass exhaust pipe 22 is provided to allow the exhaust gas flowing in from the exhaust gas introduction valve 25 to flow into the bypass exhaust pipe 13 upstream of the adsorbent 4.

【0080】排気ガス導入バルブ25は、その開き具合
を、排気ガス温度センサ2、吸着剤温度センサ3、排気
ガス温度センサ5、触媒温度センサ7の検出結果に基づ
いて調整可能である。
The opening degree of the exhaust gas introduction valve 25 can be adjusted based on the detection results of the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, and the catalyst temperature sensor 7.

【0081】動作を説明する。The operation will be described.

【0082】動作は、基本的には図5に示した例と同じ
である。
The operation is basically the same as the example shown in FIG.

【0083】エンジン1の始動直後、吸着剤4により未
燃炭化水素を吸着する場合には、排気通路切替バルブ1
8を角度aにして、バイパス排気管13に排気ガスを通
す。この例においては、この状態で、排気ガス導入バル
ブ25を少し開き、主触媒8にもある程度排気ガスが流
れるようにする。これにより、主触媒8の昇温を早める
ことができる。
Immediately after the engine 1 is started, when the unburned hydrocarbon is adsorbed by the adsorbent 4, the exhaust passage switching valve 1
The exhaust gas is passed through the bypass exhaust pipe 13 at an angle a of 8. In this example, in this state, the exhaust gas introduction valve 25 is slightly opened to allow the exhaust gas to flow to the main catalyst 8 to some extent. As a result, the temperature rise of the main catalyst 8 can be accelerated.

【0084】再生は、通常の走行中、すなわち、主触媒
8の温度が十分に上昇し、排気ガスの処理を主触媒8に
より行っている状態で行う。再生時には、排気ガス導入
バルブ25を少し開いて、主触媒8を通過してくる高温
の排気ガスを吸着剤4の上流側に流す。これにより、吸
着剤4を加熱し、十分な温度にまで温度を上昇させるこ
とができる。この場合、排気ガス導入バルブ25の開き
具合は、排気ガス温度センサ2、吸着剤温度センサ3、
排気ガス温度センサ5、触媒温度センサ7の温度に基づ
いて調整し、再生に最適な温度を得ることができる。
Regeneration is carried out during normal running, that is, in a state where the temperature of the main catalyst 8 has risen sufficiently and the exhaust gas is being treated by the main catalyst 8. At the time of regeneration, the exhaust gas introduction valve 25 is slightly opened to allow the high-temperature exhaust gas passing through the main catalyst 8 to flow to the upstream side of the adsorbent 4. As a result, the adsorbent 4 can be heated and the temperature can be raised to a sufficient temperature. In this case, the degree of opening of the exhaust gas introduction valve 25 depends on the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3,
The optimum temperature for regeneration can be obtained by adjusting based on the temperatures of the exhaust gas temperature sensor 5 and the catalyst temperature sensor 7.

【0085】この構成例においては、再生に必要な熱を
確実に確保することができ、バイパス排気管13等の形
状、レイアウトの自由度が大きくなる。また、再生時の
加熱を、主触媒8により処理され未燃炭化水素等を含ま
ないガスを使用しているため、再生をより完全に実施す
ることができる。
In this configuration example, the heat required for regeneration can be reliably ensured, and the degree of freedom in the shape and layout of the bypass exhaust pipe 13 and the like increases. In addition, since the gas that is treated by the main catalyst 8 and does not contain unburned hydrocarbons is used for the heating during the regeneration, the regeneration can be performed more completely.

【0086】更に別の構成例を図7を用いて説明する。Still another configuration example will be described with reference to FIG.

【0087】本構成例は、基本的には図4に示したもの
と同じである。ただし、主触媒8の後側に排気ガス導入
バルブ27を設け、該排気ガス導入バルブ27から導入
した排気ガスをサブバイパス排気管29によりバイパス
排気管13の吸着剤4の後側に導入している点が異な
る。これにより、吸着剤4の再生に必要な熱を、該排気
ガスから得ようとするものである。なお、排気ガス導入
バルブ27は、排気ガス温度センサ2、吸着剤温度セン
サ3等の検出結果に基づいてその開き具合を調整可能な
構成となっている。また、この図では、サブバイパス排
気管29は、バイパス排気管13の2次空気量制御バル
ブ10の後側においてバイパス排気管13と連通してい
るが、吸着剤4と2次空気量制御バルブ10の間でバイ
パス排気管13と連通する構成でもよい。
This configuration example is basically the same as that shown in FIG. However, an exhaust gas introduction valve 27 is provided on the rear side of the main catalyst 8, and the exhaust gas introduced from the exhaust gas introduction valve 27 is introduced to the rear side of the adsorbent 4 of the bypass exhaust pipe 13 by the sub bypass exhaust pipe 29. The difference is. As a result, the heat required to regenerate the adsorbent 4 is to be obtained from the exhaust gas. The exhaust gas introduction valve 27 is configured so that its opening degree can be adjusted based on the detection results of the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, and the like. Further, in this figure, the sub bypass exhaust pipe 29 communicates with the bypass exhaust pipe 13 at the rear side of the secondary air amount control valve 10 of the bypass exhaust pipe 13, but the adsorbent 4 and the secondary air amount control valve A configuration in which 10 and 10 communicate with the bypass exhaust pipe 13 may be used.

【0088】動作を説明する。The operation will be described.

【0089】基本動作は、図4に示した例と同じであ
る。
The basic operation is the same as the example shown in FIG.

【0090】ただし、再生時には、排気ガス導入バルブ
27を開き、高温の排気ガスを吸着剤4に通すことによ
り、吸着剤4を再生ゾ−ンにまで容易に昇温させること
ができる。なお、排気ガス導入バルブ27の開き具合
は、排気ガス温度センサ2、吸着剤温度センサ3、排気
ガス温度センサ5、触媒温度センサ7の検出結果に基づ
いて、最適温度が得られるように調整する。
However, at the time of regeneration, the exhaust gas introduction valve 27 is opened and high-temperature exhaust gas is passed through the adsorbent 4, whereby the temperature of the adsorbent 4 can be easily raised to the regeneration zone. The degree of opening of the exhaust gas introduction valve 27 is adjusted based on the detection results of the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, and the catalyst temperature sensor 7 so that the optimum temperature can be obtained. .

【0091】この例においては、再生に必要な熱を容易
に得ることができる。また、バイパス排気管13等の形
状、レイアウト等について再生に必要な熱を得るための
制限が少なくなり設計上の自由度が大きくなる。なお、
未燃炭化水素の脱離時にも、サブバイパス排気管29か
ら排気ガスを導入して、十分な脱離を行えるように加熱
することも可能である。
In this example, the heat required for regeneration can be easily obtained. Further, there is less restriction on the shape and layout of the bypass exhaust pipe 13 for obtaining heat required for regeneration, and the degree of freedom in design is increased. In addition,
Even when desorbing unburned hydrocarbons, it is possible to introduce exhaust gas from the sub-bypass exhaust pipe 29 and heat it so that sufficient desorption can be performed.

【0092】次の構成例を図8を用いて説明する。The next structural example will be described with reference to FIG.

【0093】この例は、図2に示した例と同じように、
排気流路は一本で、バイパスなどは設けていない。ま
た、該排気流路に、吸着剤4と主触媒8とを直列的に配
置している点も同様である。
This example is similar to the example shown in FIG.
There is only one exhaust flow path and no bypass is provided. The same applies to the fact that the adsorbent 4 and the main catalyst 8 are arranged in series in the exhaust passage.

【0094】ただし、この例においては吸着剤4の上流
側に熱交換器19を設けている点が図1の例とは異な
る。すなわち、この例は、吸着剤4の温度を制御するた
めの一部の構成を示す実施例である。
However, this example is different from the example of FIG. 1 in that the heat exchanger 19 is provided on the upstream side of the adsorbent 4. That is, in this example, the temperature of the adsorbent 4 was controlled.
2 is an embodiment showing a part of the configuration for the purpose.

【0095】排気ガス流路は、吸着剤4の上流側部分
と、吸着剤4と主触媒8との間の部分とが熱交換器19
を介して熱を交換する構成となっている。これにより、
吸着剤4と主触媒8とを直列に配置しながら、主触媒8
の昇温を妨げることなく、吸着剤4の温度調整をある程
度独立的に可能な構成としている。従って、この例にお
いて使用する吸着剤4の脱離ゾ−ンは、熱交換器19に
より調整可能な範囲内であれば、主触媒8のライトオフ
温度よりも低い範囲であっても構わない。また、その耐
熱性も、熱交換器19がない場合に比べれば弱くても良
い。
In the exhaust gas passage, the upstream side portion of the adsorbent 4 and the portion between the adsorbent 4 and the main catalyst 8 are heat exchangers 19.
It is configured to exchange heat via. This allows
While arranging the adsorbent 4 and the main catalyst 8 in series, the main catalyst 8
The temperature of the adsorbent 4 can be adjusted independently to some extent without hindering the temperature rise. Therefore, the desorption zone of the adsorbent 4 used in this example may be lower than the light-off temperature of the main catalyst 8 as long as it is within the range adjustable by the heat exchanger 19. Further, its heat resistance may be weaker than that in the case without the heat exchanger 19.

【0096】動作を説明する。The operation will be described.

【0097】エンジン1の始動直後、排出された排気ガ
スは、熱交換器19で熱を奪われ、ある程度温度が低下
するため、吸着剤4には直接高熱が加わらない。しか
し、排気ガス中の未燃炭化水素は、熱交換器19が存在
すること自体によっては何等影響を受けることがなく、
そのまま通過し、吸着剤4で吸着される。
Immediately after the engine 1 is started, the exhaust gas exhausted is deprived of heat by the heat exchanger 19 and its temperature is lowered to some extent, so that the adsorbent 4 is not directly subjected to high heat. However, the unburned hydrocarbons in the exhaust gas are not affected by the existence of the heat exchanger 19 itself,
It passes through as it is and is adsorbed by the adsorbent 4.

【0098】一方、熱交換器19が奪った熱は、主触媒
8の上流側において再び排気ガス流路に戻されるため、
吸着剤4を昇温させない分だけ主触媒8がライトオフ温
度に達するまでの時間が短くなる。逆に、主触媒8がラ
イトオフ温度に達するまで、吸着剤4が脱離ゾ−ンに入
るのを遅らせることが可能となる。
On the other hand, since the heat taken by the heat exchanger 19 is returned to the exhaust gas flow path again on the upstream side of the main catalyst 8,
Since the temperature of the adsorbent 4 is not raised, the time required for the main catalyst 8 to reach the light-off temperature is shortened. Conversely, it is possible to delay the adsorbent 4 from entering the desorption zone until the main catalyst 8 reaches the light-off temperature.

【0099】再生時は、熱交換器19の能力を調整する
ことにより、容易に吸着剤4の温度を高めて再生ゾ−ン
にすることができる。
At the time of regeneration, the temperature of the adsorbent 4 can be easily raised to a regeneration zone by adjusting the capacity of the heat exchanger 19.

【0100】なお、ここで詳細は述べないが、熱交換器
19の能力調整は、排気ガス温度センサ2、吸着剤温度
センサ3、排気ガス温度センサ5、触媒温度センサ7等
の検出結果に基づいて行うものであり、これにより正確
な制御が可能となる。
Although not described in detail here, the capacity adjustment of the heat exchanger 19 is based on the detection results of the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, the catalyst temperature sensor 7, and the like. This enables accurate control.

【0101】この構成例においては、熱交換器19と主
触媒8を別々にしているが、両者を一体化させても当然
構わない。
In this structural example, the heat exchanger 19 and the main catalyst 8 are separate, but it is of course possible to integrate both.

【0102】別の構成例を用いて説明する。Description will be made using another configuration example.

【0103】この例は、吸着剤から触媒への切替の過渡
期には、排気ガス流路中で未燃炭化水素を燃焼させるこ
とによって、未燃炭化水素が外部にそのまま排出される
のを防ぐ点に特徴を有するものである。
In this example, during the transitional period of switching from the adsorbent to the catalyst, the unburned hydrocarbons are burned in the exhaust gas passage to prevent the unburned hydrocarbons from being directly discharged to the outside. It is characterized by points.

【0104】具体的構成は図9に示したとおり、排気ガ
ス流路にバイパス排気管13を設け、ここに吸着剤4を
設けている。一方、主触媒8は排気ガス流路の主流部の
バイパス排気管13よりも後側に配置し、すべての排気
ガスは、常に主触媒8を通過する構成となっている。
As shown in FIG. 9, the specific structure is such that a bypass exhaust pipe 13 is provided in the exhaust gas flow path, and the adsorbent 4 is provided therein. On the other hand, the main catalyst 8 is arranged on the rear side of the bypass exhaust pipe 13 in the main flow portion of the exhaust gas flow path, and all the exhaust gas always passes through the main catalyst 8.

【0105】バイパス排気管13の入口部分には、開度
を所望の角度に調整可能な排気通路切替バルブ31が設
けられている。また、バイパス排気管13の出口側に
は、該バイパス排気管13への排気ガスの流量を制御す
る流量制御バルブ14が設けられている。従って、これ
らを制御することにより、排気ガスが、吸着剤4を経由
してから主触媒8へ到達するか、あるいは、吸着剤4を
経由しないで直接主触媒8に到達するかを切替ることが
できる構成となっている。従って、この例で使用する吸
着剤4は、脱離ゾ−ンが触媒のライトオフ温度よりも、
低い領域にあっても構わない。また、耐熱性についても
必ずしも、触媒ほど高い必要はない。
An exhaust passage switching valve 31 whose opening can be adjusted to a desired angle is provided at the inlet of the bypass exhaust pipe 13. A flow rate control valve 14 that controls the flow rate of the exhaust gas to the bypass exhaust pipe 13 is provided on the outlet side of the bypass exhaust pipe 13. Therefore, by controlling these, it is possible to switch whether the exhaust gas reaches the main catalyst 8 after passing through the adsorbent 4 or directly reaches the main catalyst 8 without passing through the adsorbent 4. It is configured to be able to. Therefore, in the adsorbent 4 used in this example, the desorption zone is higher than the light-off temperature of the catalyst.
It may be in a low area. Also, the heat resistance does not necessarily have to be as high as that of the catalyst.

【0106】この排気ガス流路の主流路側とバイパス排
気管13との分岐点よりも上流側には、未燃炭化水素を
燃焼させ、また、空燃比を調整するための2次空気ポン
プ9、2次空気量制御バルブ10が設けられている。
A secondary air pump 9 for burning unburned hydrocarbons and adjusting the air-fuel ratio is provided upstream of the branch point between the main flow passage side of the exhaust gas flow passage and the bypass exhaust pipe 13. A secondary air amount control valve 10 is provided.

【0107】排気ガス温度センサ2、吸着剤温度センサ
3、排気ガス温度センサ5、触媒温度センサ7について
は、上記例と同様である。詳細は後ほど説明する。
The exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, and the catalyst temperature sensor 7 are the same as in the above example. Details will be described later.

【0108】動作を説明する。The operation will be described.

【0109】始動時には、排気通路切替バルブ31を角
度aに制御して、つまり、主流路側を完全に閉じてバイ
パス排気管13の側に排気ガスを流し込む。この場合、
抵抗を少なくするため流量制御バルブ14は、全開状態
とする。ただし、吸着効率を高めるために、ガスの排出
に支障がない範囲内で、流量制御バルブ14を閉じて空
間速度を小さくしてもよい。この場合、該流量制御バル
ブ14の制御には、空気量検出器16の検出結果を用い
て排気ガス量を算定して用いており、最適化を図ってい
る。なお、2次空気ポンプ9、2次空気量制御バルブ1
0は作動させる必要はない。この状態において、排気ガ
ス中の未燃炭化水素は、吸着剤4に吸着される。また、
上述したとおり、すべての排気ガスは主触媒8を通過す
るため主触媒8は昇温される。
At the time of starting, the exhaust passage switching valve 31 is controlled to the angle a, that is, the main flow path side is completely closed and the exhaust gas is flown into the bypass exhaust pipe 13 side. in this case,
To reduce the resistance, the flow control valve 14 is fully opened. However, in order to improve the adsorption efficiency, the space velocity may be reduced by closing the flow rate control valve 14 within a range that does not hinder the gas discharge. In this case, the flow rate control valve 14 is controlled by using the exhaust gas amount calculated by using the detection result of the air amount detector 16 for optimization. The secondary air pump 9 and the secondary air amount control valve 1
0 does not need to be activated. In this state, the unburned hydrocarbons in the exhaust gas are adsorbed by the adsorbent 4. Also,
As described above, all the exhaust gas passes through the main catalyst 8, so the temperature of the main catalyst 8 is raised.

【0110】この時、排気ガス温度センサ2、吸着剤温
度センサ3、排気ガス温度センサ5、触媒温度センサ7
の出力に基づいて吸着剤4、主触媒8の温度を監視して
いる。そして、吸着剤4の温度が脱離ゾ−ンに近づく
と、一旦、排気通路切替バルブ31を角度bにするとと
もに、流量制御バルブ14を閉じてバイパス排気管13
中のガスの流れを止める。一方、これと並行して2次空
気ポンプ9、2次空気量制御バルブ10を作動させて、
主流路を流れる排気ガス中に新鮮な空気を送りこむ。す
ると、排気ガス中の未燃炭化水素は、この新鮮な空気に
より、主触媒8に到達する前に燃焼してしまう。従っ
て、排気通路切替バルブ31により排気ガス流路をバイ
パス排気管13から主流路側に切替た時点で、主触媒8
がライトオフ温度に達していなくても、未燃炭化水素が
そのまま外部に排出されることはない。
At this time, the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, the exhaust gas temperature sensor 5, the catalyst temperature sensor 7
The temperatures of the adsorbent 4 and the main catalyst 8 are monitored based on the output of When the temperature of the adsorbent 4 approaches the desorption zone, the exhaust passage switching valve 31 is once set to the angle b and the flow rate control valve 14 is closed to bypass the bypass exhaust pipe 13.
Stop the flow of gas inside. On the other hand, in parallel with this, the secondary air pump 9 and the secondary air amount control valve 10 are operated,
Inject fresh air into the exhaust gas flowing through the main flow path. Then, the unburned hydrocarbons in the exhaust gas are burned by the fresh air before they reach the main catalyst 8. Therefore, when the exhaust gas flow path is switched from the bypass exhaust pipe 13 to the main flow path side by the exhaust passage switching valve 31, the main catalyst 8
Even if the temperature does not reach the light-off temperature, the unburned hydrocarbons are not directly discharged to the outside.

【0111】主触媒8がライトオフ温度に達すると、排
気通路切替バルブ31を中開き状態、つまり、角度aと
角度bの間の角度にして、バイパス排気管13にある程
度排気ガスを流入させる。これにより、吸着剤4を脱離
ゾ−ンにまで昇温させ、吸着している未燃炭化水素を脱
離させる。この場合、抵抗を小さくするため流量制御バ
ルブ14は全開とする。
When the main catalyst 8 reaches the light-off temperature, the exhaust passage switching valve 31 is opened to the middle, that is, the angle between the angle a and the angle b is set, and the exhaust gas is caused to flow into the bypass exhaust pipe 13 to some extent. As a result, the temperature of the adsorbent 4 is raised to the desorption zone, and the adsorbed unburned hydrocarbons are desorbed. In this case, the flow rate control valve 14 is fully opened to reduce the resistance.

【0112】なお、主触媒8がライトオフ温度に達した
状態では未燃炭化水素の処理自体は主触媒8の能力のみ
で可能であるが、吸着剤4から脱離した未燃炭化水素の
存在により理論空燃比からずれてしまうのを防ぐため、
2次空気ポンプ9、2次空気量制御バルブ10によりあ
る程度空気を送りこむ。
Incidentally, when the main catalyst 8 reaches the light-off temperature, the unburned hydrocarbon treatment itself can be performed only by the ability of the main catalyst 8, but the presence of unburned hydrocarbons desorbed from the adsorbent 4 exists. To prevent deviation from the stoichiometric air-fuel ratio due to
The secondary air pump 9 and the secondary air amount control valve 10 feed air to some extent.

【0113】吸着剤4の再生は、通常の走行状態で行
う。この場合、脱離の場合と同様に、排気通路切替バル
ブ31を中開きとしてバイパス排気管13にある程度排
気ガスを流入させ、吸着剤4を再生ゾ−ンにまで昇温さ
せて行う。ただし、脱離の場合とは異なり、2次空気ポ
ンプ9、2次空気量制御バルブ10を作動させる必要は
ない。なお、この場合も、抵抗を小さくするため流量制
御バルブ14は全開とする。
Regeneration of the adsorbent 4 is carried out under normal running conditions. In this case, as in the case of desorption, the exhaust passage switching valve 31 is opened to allow the exhaust gas to flow into the bypass exhaust pipe 13 to some extent, and the adsorbent 4 is heated to the regeneration zone. However, unlike the case of desorption, it is not necessary to operate the secondary air pump 9 and the secondary air amount control valve 10. Also in this case, the flow rate control valve 14 is fully opened to reduce the resistance.

【0114】走行中、特に高負荷がかかる場合には、排
気ガスの温度が上昇し、吸着剤4の耐熱限界を越えてし
まうおそれがあるため、バイパス排気管13に排気ガス
が流入しないように排気通路切替バルブ31を制御する
と共に、流量制御バルブ14も閉じる。
During running, especially when a high load is applied, the temperature of the exhaust gas may rise and the heat resistance limit of the adsorbent 4 may be exceeded. Therefore, prevent the exhaust gas from flowing into the bypass exhaust pipe 13. The flow passage control valve 14 is closed while controlling the exhaust passage switching valve 31.

【0115】他の構成例を説明する。Another configuration example will be described.

【0116】この例は、図10に示したとおり、図9の
例ととほぼ同様であるが、バイパス排気管13の吸着剤
4と流量制御バルブ14の間に低温活性触媒20を設け
た点に特徴を有する。
As shown in FIG. 10, this example is almost the same as the example of FIG. 9, but a low temperature active catalyst 20 is provided between the adsorbent 4 of the bypass exhaust pipe 13 and the flow rate control valve 14. It is characterized by

【0117】このような構成を取ると、吸着剤4が万が
一飽和してしまった場合でも、未燃炭化水素の外部への
流出を防ぐことができる。また、吸着した未燃炭化水素
の脱離を行う際に、主触媒8がライトオフ温度に達して
いなくても、低温活性触媒20により未燃炭化水素を処
理することができる。従って、主触媒8がライトオフ温
度に達するまで、排気通路切替バルブ31、流量制御バ
ルブ14を閉じて待つ必要がなく、より速やかに排気ガ
スの処理ができる。これは、整備等のためエンジンの始
動停止を短時間に繰り返して、主触媒8を十分に昇温で
きないまま極めて多量の未燃炭化水素が発生する場合等
において特に有効である。
With such a structure, even if the adsorbent 4 is saturated, it is possible to prevent the unburned hydrocarbons from flowing out. Further, when desorbing the adsorbed unburned hydrocarbons, the unburned hydrocarbons can be treated by the low temperature active catalyst 20 even if the main catalyst 8 does not reach the light-off temperature. Therefore, it is not necessary to close the exhaust passage switching valve 31 and the flow rate control valve 14 until the main catalyst 8 reaches the light-off temperature, and the exhaust gas can be treated more quickly. This is particularly effective in the case where the engine start / stop is repeated in a short time for maintenance or the like, and an extremely large amount of unburned hydrocarbon is generated without sufficiently increasing the temperature of the main catalyst 8.

【0118】以上説明してきたいくつかの構成例の温度
制御について、これ以降でまとめて説明する。
The temperature control of some of the configuration examples described above will be collectively described below.

【0119】吸着剤4は、十分な吸着容量を確保する必
要があり、ある程度以上小型化することは困難である。
また、吸着速度を高めるためには表面積を大きくする必
要があり、吸着剤4内には多量の空間が存在することに
なる。従って、吸着剤4内の温度をどこでも一定にする
ことは困難である。そのため、吸着剤4の温度の検出
は、複数の温度センサを用いて、温度分布を確実に把握
している。
It is necessary for the adsorbent 4 to secure a sufficient adsorption capacity, and it is difficult to reduce the size to a certain extent or more.
Moreover, in order to increase the adsorption rate, it is necessary to increase the surface area, and a large amount of space exists in the adsorbent 4. Therefore, it is difficult to make the temperature inside the adsorbent 4 constant anywhere. Therefore, the temperature distribution of the adsorbent 4 is reliably detected by using a plurality of temperature sensors.

【0120】そして、吸着時は、該吸着剤4内の最高温
度を基準として、各種バルブ等の制御を実行している。
また、耐熱限界に達しているか否かの判断も当然なが
ら、最高温度を基準にして判断している。一方、脱離お
よび再生については、吸着剤4全体について十分行われ
る必要があるため、最低温度を用いて判断し、各部を制
御している。
At the time of adsorption, various valves and the like are controlled based on the maximum temperature in the adsorbent 4.
In addition, the judgment of whether or not the heat resistance limit is reached is naturally made based on the maximum temperature. On the other hand, desorption and regeneration need to be sufficiently performed for the entire adsorbent 4, so the determination is made using the lowest temperature and each part is controlled.

【0121】上述した構成例の温度検出について具体的
に説明する。
The temperature detection of the above configuration example will be specifically described.

【0122】上記各構成例においては、吸着剤4の温度
を、排気ガス温度センサ2、吸着剤温度センサ3、排気
ガス温度センサ5により、つまり、合計3ヵ所で測定し
ている。
In each of the above configuration examples, the temperature of the adsorbent 4 is measured by the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, and the exhaust gas temperature sensor 5, that is, at a total of three locations.

【0123】通常、温度は、排気ガスの流入して来る側
が高くなるため、吸着時および耐熱限界判断は排気ガス
温度センサ2の検出結果を用いて判断している。一方、
最低温度は、出口側において検出されると考えられるた
め、脱離時および再生時には排気ガス温度センサ5の検
出結果を用いて判断している。
Normally, the temperature becomes higher on the side where the exhaust gas flows in, so the adsorption time and the heat resistance limit are judged using the detection results of the exhaust gas temperature sensor 2. on the other hand,
Since it is considered that the minimum temperature is detected on the outlet side, the determination is made using the detection result of the exhaust gas temperature sensor 5 during desorption and regeneration.

【0124】なお、吸着剤温度センサ3は、具体的な制
御においては使用されることはないが、排気ガス温度セ
ンサ2、排気ガス温度センサ5が正常に機能しているか
否かの自己診断機能をもたせるために使用している。つ
まり、排気ガス温度センサ2、吸着剤温度センサ3、排
気ガス温度センサ5の検出した結果を比較し、温度分布
が、図11に示すようになっていれば、正常に機能して
いると判断する。なお、可否の判定においては、ある程
度のマ−ジン(図中、”α”で示す)を設けている。
Although the adsorbent temperature sensor 3 is not used in concrete control, it has a self-diagnosis function of whether or not the exhaust gas temperature sensor 2 and the exhaust gas temperature sensor 5 are functioning normally. I am using it to have. That is, the results detected by the exhaust gas temperature sensor 2, the adsorbent temperature sensor 3, and the exhaust gas temperature sensor 5 are compared, and if the temperature distribution is as shown in FIG. 11, it is determined that it is functioning normally. To do. It should be noted that a certain amount of margin (indicated by "α" in the figure) is provided in the determination of acceptability.

【0125】上記各構成例における各バルブ等の制御は
上記説明中において述べたセンサ等によって得られたデ
−タをもとにして、制御コントロ−ルユニット23が所
定の演算を行って算出した制御値に基づいて行うもので
ある。すなわち、図2〜7,9,10に示す実施例にお
ける温度制御手段は、各温度センサ2,3,5と、各温
度センサ2,3,5からの出力が入力する制御コントー
ルユニット23と、この制御コントロールユニット23
からの制御値に基づいて動作する各バルブとを有してい
る。該制御コントロ−ラ23への入出力の一部を図12
に示した。
The control of each valve and the like in each of the above configuration examples is a control calculated by the control control unit 23 performing a predetermined calculation based on the data obtained by the sensor and the like described in the above description. It is based on the value. That is, in the examples shown in FIGS.
The temperature control means for opening each temperature sensor 2, 3, 5 and each temperature
Control controller to which the output from the degree sensors 2, 3 and 5 is input
And the control unit 23
With each valve operating based on the control value from
It FIG. 12 shows a part of the input / output to / from the control controller 23.
It was shown to.

【0126】以上説明したように上記実施例によれば、
排気ガス処理用触媒が機能していないとき、例えば、エ
ンジン始動直後であっても、未燃炭化水素が外部にその
まま排出されることがない。また、上記実施例では未燃
炭化水素を吸着する例のみを説明したが、NOx等、他
の有害物質の除去についても適用可能である。
As described above, according to the above embodiment,
When the exhaust gas treatment catalyst is not functioning, for example, unburned hydrocarbons are not directly discharged to the outside even immediately after the engine is started. Further, in the above embodiment, only the example of adsorbing unburned hydrocarbons has been described, but it is also applicable to the removal of other harmful substances such as NOx.

【0127】[0127]

【発明の効果】以上説明したように本発明においては、
エンジン始動直後の触媒が十分温まっていない状態であ
っても、未燃炭化水素を吸着剤で吸着し、外部にそのま
ま流出することを防ぐことができる。
As described above, in the present invention,
Even when the catalyst is not warm enough immediately after the engine is started, it is possible to prevent unburned hydrocarbons from being adsorbed by the adsorbent and flowing out to the outside as they are.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸着剤の特性を示す説明図である。FIG. 1 is an explanatory diagram showing characteristics of an adsorbent.

【図2】本発明の一実施例を示す構成図である。FIG. 2 is a configuration diagram showing an embodiment of the present invention.

【図3】本発明の一実施例を示す構成図である。FIG. 3 is a configuration diagram showing an embodiment of the present invention.

【図4】本発明の一実施例を示す構成図である。FIG. 4 is a configuration diagram showing an embodiment of the present invention.

【図5】本発明の一実施例を示す構成図である。FIG. 5 is a configuration diagram showing an embodiment of the present invention.

【図6】本発明の一実施例を示す構成図である。FIG. 6 is a configuration diagram showing an embodiment of the present invention.

【図7】本発明の一実施例を示す構成図である。FIG. 7 is a configuration diagram showing an embodiment of the present invention.

【図8】本発明の一実施例を示す構成図である。FIG. 8 is a configuration diagram showing an embodiment of the present invention.

【図9】本発明の一実施例を示す構成図である。FIG. 9 is a configuration diagram showing an embodiment of the present invention.

【図10】本発明の一実施例を示す構成図である。FIG. 10 is a configuration diagram showing an embodiment of the present invention.

【図11】温度制御の規則を示すグラフである。FIG. 11 is a graph showing a rule of temperature control.

【図12】制御系全体の入力と出力とを示す説明図であ
る。
FIG. 12 is an explanatory diagram showing inputs and outputs of the entire control system.

【符号の説明】[Explanation of symbols]

1:エンジン、2:排気ガス温度センサ、3:吸着剤温
度センサ、4:吸着剤、5:排気ガス温度センサ、6:
圧力制御バルブ、7:触媒温度センサ、8:主触媒、
9:2次空気ポンプ、10:2次空気量制御バルブ、1
1:前触媒、12:圧力検出器、13:バイパス排気
管、14:流量制御バルブ、15:EGRバルブ、1
6:空気流量検出器、17:エアクリ−ナ、18:排気
通路切替バルブ、19:熱交換器、20:低温活性触
媒、21:A/F検知センサ、22:サブバイパス排気
管、23:制御コントロ−ルユニット、25:排気ガス
導入バルブ、27:排気ガス導入バルブ、29:サブバ
イパス排気管、31:排気通路切替バルブ、a:角度、
b:角度
1: Engine, 2: Exhaust gas temperature sensor, 3: Adsorbent temperature sensor, 4: Adsorbent, 5: Exhaust gas temperature sensor, 6:
Pressure control valve, 7: catalyst temperature sensor, 8: main catalyst,
9: Secondary air pump, 10: Secondary air amount control valve, 1
1: front catalyst, 12: pressure detector, 13: bypass exhaust pipe, 14: flow control valve, 15: EGR valve, 1
6: Air flow rate detector, 17: Air cleaner, 18: Exhaust passage switching valve, 19: Heat exchanger, 20: Low temperature active catalyst, 21: A / F detection sensor, 22: Sub bypass exhaust pipe, 23: Control Control unit, 25: exhaust gas introduction valve, 27: exhaust gas introduction valve, 29: sub-bypass exhaust pipe, 31: exhaust passage switching valve, a: angle,
b: angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 修 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 小川 敏雄 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 渡辺 紀子 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 大須賀 稔 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭62−159714(JP,A) 特開 昭55−101715(JP,A) 実開 平3−82824(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kuroda 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory (72) Toshio Ogawa 4026 Kuji Town, Hitachi City, Ibaraki Hitachi Research Co., Ltd. In-house (72) Noriko Watanabe 4026 Kuji-cho, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Minor Osuga 4026, Kuji-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (56) References JP 62-159714 (JP, A) JP 55-101715 (JP, A) Jitsukaihei 3-82824 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンの排気ガス流路中に配置された排
気ガス処理用の触媒と、 未燃炭化水素を吸着する温度領域(以下、”吸着ゾ−
ン”という)と、該吸着ゾ−ンよりも高い温度領域であ
って吸着した未燃炭化水素が脱離する温度領域(以
下、”脱離ゾ−ン”という)とを有し、上記排気ガス流
路の上記触媒の上流側に配置された吸着剤と、 上記触媒が機能していないときには、上記吸着剤の温度
を吸着ゾ−ンに保って、排気ガス中に含まれる未燃炭化
水素を上記吸着剤により一時的に吸着させ、上記触媒が
機能し始めると、上記吸着剤の温度を脱離ゾ−ンにし
て、吸着した未燃炭化水素を脱離させる温度制御手段
と、 上記エンジンに供給される空気量を検出する空気量検出
手段と、 上記排気ガス流路の上記吸着剤内空間のガス速度を調整
する空間速度調整手段と、 上記空気量検出手段の検出結果に基づいて、上記空間速
度調整手段を制御する制御手段と、 を備えていることを特徴とする排気ガス浄化システム。
1. A catalyst for exhaust gas treatment, which is arranged in an exhaust gas flow path of an engine, and a temperature range for adsorbing unburned hydrocarbons (hereinafter referred to as "adsorption zone").
And a temperature range higher than the adsorption zone and in which adsorbed unburned hydrocarbons are desorbed (hereinafter referred to as "desorption zone"). When the catalyst is not functioning with the adsorbent disposed upstream of the catalyst in the gas flow path, the temperature of the adsorbent is kept in the adsorption zone so that the unburned hydrocarbons contained in the exhaust gas. Is temporarily adsorbed by the adsorbent, and when the catalyst starts to function, the temperature of the adsorbent is set to a desorption zone to desorb adsorbed unburned hydrocarbons, and the engine is used. An air amount detecting means for detecting the amount of air supplied to the space, a space velocity adjusting means for adjusting the gas velocity of the adsorbent internal space of the exhaust gas flow path, based on the detection result of the air amount detecting means, Control means for controlling the space velocity adjusting means, An exhaust gas purification system, characterized in that.
【請求項2】エンジンの排気ガス流路中に配置された排
気ガス処理用の触媒と、 未燃炭化水素を吸着する温度領域(以下、”吸着ゾ−
ン”という)と、該吸着ゾ−ンよりも高い温度領域であ
って吸着した未燃炭化水素が脱離する温度領域(以
下、”脱離ゾ−ン”という)とを有し、上記排気ガス流
路の上記触媒の上流側に配置された吸着剤と、 上記触媒が機能していないときには、上記吸着剤の温度
を吸着ゾ−ンに保って、排気ガス中に含まれる未燃炭化
水素を上記吸着剤により一時的に吸着させ、上記触媒が
機能し始めると、上記吸着剤の温度を脱離ゾ−ンにし
て、吸着した未燃炭化水素を脱離させる温度制御手段
上記触媒内に流入する排気ガスの空燃比を制御する 手段
と、 を備えていることを特徴とする排気ガス浄化システム。
2. A catalyst for treating exhaust gas arranged in an exhaust gas passage of an engine, and a temperature range for adsorbing unburned hydrocarbons (hereinafter referred to as "adsorption zone").
And a temperature range higher than the adsorption zone and in which adsorbed unburned hydrocarbons are desorbed (hereinafter referred to as "desorption zone"). When the catalyst is not functioning with the adsorbent disposed upstream of the catalyst in the gas flow path, the temperature of the adsorbent is kept in the adsorption zone so that the unburned hydrocarbons contained in the exhaust gas. Is temporarily adsorbed by the adsorbent, and when the catalyst begins to function, the temperature of the adsorbent is set to a desorption zone to desorb adsorbed unburned hydrocarbons, and the catalyst. An exhaust gas purification system comprising: means for controlling an air-fuel ratio of exhaust gas flowing into the exhaust gas .
【請求項3】上記温度制御手段は、上記排気ガス流路の
吸着剤よりも上流部分と、上記排気ガス流路の上記吸着
剤と上記触媒との間の部分との間に配置された熱交換器
を有することを特徴とする請求項1及び2のいずれか一
項に記載の排気ガス浄化システム。
3. The temperature control means comprises heat disposed between a portion of the exhaust gas flow passage upstream of the adsorbent and a portion of the exhaust gas flow passage between the adsorbent and the catalyst. The exhaust gas purification system according to any one of claims 1 and 2, further comprising an exchanger.
JP2000132154A 1991-09-30 2000-05-01 Exhaust gas purification system Expired - Fee Related JP3515483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132154A JP3515483B2 (en) 1991-09-30 2000-05-01 Exhaust gas purification system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-251233 1991-09-30
JP25123391 1991-09-30
JP2000132154A JP3515483B2 (en) 1991-09-30 2000-05-01 Exhaust gas purification system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03258178A Division JP3083599B2 (en) 1991-09-30 1991-10-04 Exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2000320324A JP2000320324A (en) 2000-11-21
JP3515483B2 true JP3515483B2 (en) 2004-04-05

Family

ID=32314029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132154A Expired - Fee Related JP3515483B2 (en) 1991-09-30 2000-05-01 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP3515483B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002042625A1 (en) * 2000-11-27 2004-03-25 株式会社日立製作所 Exhaust purification device for internal combustion engine and control device for automobile
JP2002276429A (en) * 2001-03-16 2002-09-25 Mazda Motor Corp Exhaust emission control device for engine
US9482125B2 (en) * 2010-09-14 2016-11-01 GM Global Technology Operations LLC Particulate filter and hydrocarbon adsorber bypass systems
JP2016145532A (en) 2015-02-06 2016-08-12 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine

Also Published As

Publication number Publication date
JP2000320324A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP3083599B2 (en) Exhaust gas purification system
KR960004832B1 (en) Engine exhaust gas purification apparatus
US5307627A (en) Method and apparatus for oxidizing hydrocarbons from exhaust gases
JP3596168B2 (en) Exhaust gas purification device for internal combustion engine
JP3855818B2 (en) Diesel engine exhaust purification system
JP4645639B2 (en) Exhaust purification device
US5373696A (en) Automotive engine with exhaust hydrocarbon adsorber having oxygen sensor regeneration control
JP2855986B2 (en) Exhaust gas purification device
JP3515483B2 (en) Exhaust gas purification system
KR102383213B1 (en) Exhaust gas purification device of vehicle and control method thereof
JPH10121949A (en) Engine exhaust emission control device
JP3739876B2 (en) Exhaust purification device
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
JP5177441B2 (en) Exhaust gas purification device for internal combustion engine
JPH06101452A (en) Adsorbent self-diagnosing device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JPH05171929A (en) Exhaust emission control device for internal combustion engine
JP2549482Y2 (en) Exhaust gas treatment device
JP2717892B2 (en) Exhaust gas purification device
JP2003035135A (en) Exhaust emission control device
JP3774918B2 (en) Exhaust gas purification equipment for automobiles
JPH0518236A (en) Exhaust gas purification device for automobile
JPH05288035A (en) Exhaust gas treating device for internal combustion engine
JPH0835419A (en) Exhaust emission control device of alcohol diesel engine
JP3387792B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

LAPS Cancellation because of no payment of annual fees