JPH10120415A - Recovery of liquid ammonia from aqueous solution - Google Patents

Recovery of liquid ammonia from aqueous solution

Info

Publication number
JPH10120415A
JPH10120415A JP29781096A JP29781096A JPH10120415A JP H10120415 A JPH10120415 A JP H10120415A JP 29781096 A JP29781096 A JP 29781096A JP 29781096 A JP29781096 A JP 29781096A JP H10120415 A JPH10120415 A JP H10120415A
Authority
JP
Japan
Prior art keywords
liquid
ammonia
vapor
aqueous solution
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29781096A
Other languages
Japanese (ja)
Inventor
英正 ▲鶴▼田
Hidemasa Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29781096A priority Critical patent/JPH10120415A/en
Publication of JPH10120415A publication Critical patent/JPH10120415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering liquid ammonia from an aqueous solution, enabling to obtain the highly pure liquid ammonia by bringing an ammonia-containing aqueous solution into countercurrent contact with steam to release the ammonia. SOLUTION: This method for recovering liquid ammonia from an aqueous solution comprises supplying an ammonia-containing aqueous solution 1 subjected to preliminary treatments in a stirring tank 2 and a precipitation tank 5 into the upper stage of a distillation tower 11 operated at the approximately atmospheric pressure through a liquid-sending pump 8 and a liquid heat exchanger 9, supplying heating steam 15 generated in a reboiler 14 into the bottom part 13 to bring the steam into countercurrent contact with the ammonia aqueous solution, discharging the released ammonia from the overhead 12, guiding the ammonia into a primary partial condenser 20 to cool the ammonia with ordinary temperature cooling water by the use of an indirect cooling surface 21, returning the obtained primary partially cooled liquid 22 into the overhead 12, guiding the left primary non-condensed vapor 24 into a secondary partial cooling condenser 25 to cool the vapor at a temperature below the ordinary temperature, returning the secondary partially condensed liquid 27 into the overhead 12, sending the left secondary non-condensed vapor 28 into a vapor compressor 29 to compress the vapor, and further sending the compressed vapor into a whole condenser 31 to cool the compressed vapor with ordinary temperature cooling water to obtain the liquid ammonia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は水に溶解している遊離
アンモニヤ分を常圧付近の蒸留塔を用いて蒸留して得ら
れる濃縮アンモニヤ蒸気を圧縮液化して液体アンモニヤ
(以下液安と称す)を得るプロセスに関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a liquid ammonia (hereinafter referred to as "liquid ammonia") by compressing and liquefying concentrated ammonia vapor obtained by distilling free ammonia dissolved in water using a distillation column near normal pressure. ).

【0002】[0002]

【従来の技術】アンモニヤ(NH3),分子量17.0,沸点
−33.4℃/760mmHg と水(H2O),分子量18.0,沸点10
0.0℃/760mmHg との混合液を所定の純度のNH3とH2Oに
分離して取得することは公知に属し、工業的には両者の
揮発度の差を利用して蒸留により目的を達するのが通例
である。
2. Description of the Related Art Ammonia (NH 3 ), molecular weight 17.0, boiling point −33.4 ° C./760 mmHg and water (H 2 O), molecular weight 18.0, boiling point 10
It is well known to obtain a mixture of 0.0 ° C./760 mmHg by separating it into NH 3 and H 2 O of a predetermined purity, and the industrial purpose is achieved by distillation utilizing the difference in volatility between the two. It is customary.

【0003】蒸留によりNH3とH2Oの混合物をNH3とH2Oに
分留するにはこれ等2成分間の気液平衡関係を用いて化
学工学的な分留計算により容易に計画を立てることが出
来る。
[0003] distilled by NH 3 and H 2 O mixture NH 3 and H easily planned by chemical engineering fractionation calculated using the vapor-liquid equilibrium relationship between the fractionating to 2 O which such two components Can be set up.

【0004】図2は常圧760mmHgの下におけるNH3とH2O
の気液平衡図であり、横軸X,Yは各々液相,気相のNH
3濃度である。2本の曲線X−T,Y−Tは各温度Tに
対して平衡関係にある液相,気相の濃度X,Yを示す。
たとえば常圧760mmHgで40℃においては、液相のNH3濃度
X1=24.4mol%に対して、気相の濃度Y1=94.7mol%
が平衡関係にあることを示している。また図2によれば
純H2Oは常圧下では100℃が沸点であるが、100%のNH3
常圧下で凝縮させるには−33.4℃以下に冷却する必要が
あることを示す。したがってNH3とH2Oの混合液を常圧下
で蒸留して純NH3とH2Oとに分別するには塔底液を100℃
以上に加熱すると共に塔頂より出るNH3は−33.4℃以下
に冷却凝縮する手段が必要である。
FIG. 2 shows NH 3 and H 2 O under a normal pressure of 760 mmHg.
Is a gas-liquid equilibrium diagram of FIG.
3 concentrations. The two curves XT and YT indicate the concentrations X and Y of the liquid phase and the gaseous phase in equilibrium with each temperature T.
For example, at a normal pressure of 760 mmHg and 40 ° C., the NH 3 concentration in the liquid phase X1 = 24.4 mol%, while the gas phase concentration Y1 = 94.7 mol%
Are in equilibrium. FIG. 2 shows that pure H 2 O has a boiling point of 100 ° C. under normal pressure, but needs to be cooled to −33.4 ° C. or lower in order to condense 100% of NH 3 under normal pressure. Therefore, in order to distill the mixed solution of NH 3 and H 2 O under normal pressure and separate it into pure NH 3 and H 2 O, the bottom liquid at 100 ° C.
It is necessary to provide a means for heating as described above and for cooling and condensing NH 3 emerging from the top to -33.4 ° C or lower.

【0005】このような低温下の凝縮手段を避けるため
に蒸留を加圧下で行うことは公知の手段である。たとえ
ば純NH3とH2Oをそれぞれ塔頂,塔底より取り出すさい
に、塔頂蒸気の冷却凝縮温度を20,30,40℃と定めれ
ば、それに対応するNH3の蒸気圧力は8.74,11.9,15.9
kg/cm2の加圧系となり、対応する塔底温度は173.3,18
6.7,200.1℃と上昇する。図3は16.0 kg/cm2の全圧下
におけるNH3,H2Oの2成分系混合物の気液平衡関係を示
すものである。
It is a known means to carry out distillation under pressure in order to avoid such a low-temperature condensation means. For example, when pure NH 3 and H 2 O are taken out from the top and bottom of the column, respectively, if the cooling and condensing temperature of the top vapor is set at 20, 30, 40 ° C., the corresponding NH 3 vapor pressure is 8.74, 11.9, 15.9
kg / cm 2 pressurized system, the corresponding bottom temperature is 173.3, 18
The temperature rises to 6.7 and 200.1 ° C. FIG. 3 shows the vapor-liquid equilibrium relationship of a binary mixture of NH 3 and H 2 O under a total pressure of 16.0 kg / cm 2 .

【0006】[0006]

【発明が解決しようとする課題】このようにNH3とH2Oの
間の沸点差,比揮発度が大なることは蒸留による分離の
容易性を示すが、反面、冷却と加熱手段に対する設備費
とユーティリティ費の増大につながるおそれがある。
The increase in the boiling point difference and the relative volatility between NH 3 and H 2 O indicates the ease of separation by distillation. However, equipment for cooling and heating means is required. Costs and utility costs may increase.

【0007】すなわち常圧下で塔頂より留出するNH3
凝縮,収得する計画を立てれば、その凝縮温度は−33.4
℃となり、凝縮器を供給すべき冷媒温度は−40℃または
それ以下の低温を必要とする。したがって常圧蒸留塔自
体は比較的安価で設置できるが、凝縮器に付属する高価
な冷凍設備を必要としかつその運転費を負担しなければ
ならない。
That is, if a plan is made to condense and obtain NH 3 distilled from the top under normal pressure, the condensing temperature is −33.4
° C, and the temperature of the refrigerant to be supplied to the condenser requires a low temperature of -40 ° C or less. Therefore, the atmospheric distillation column itself can be installed relatively inexpensively, but requires expensive refrigeration equipment attached to the condenser and has to bear the operating cost.

【0008】一方、冷凍設備を排して、冷却は通常の工
業用水あるいは冷水塔よりの循環水を用いるとすれば地
域,季節によっても異なるが、冷却水温は20〜30℃と見
込むのが通例であり、これに対して塔頂より留出するNH
3を凝縮,液化する温度を30〜40℃と仮定すれば対応す
る圧力は12〜16 kg/cm2になる。このときの塔底温度は
上記圧力に応じて187〜200℃と上昇し、その加熱源をス
チームに求めるときは20 kg/cm2を超える高圧ボイラー
を必要とする。したがって冷凍設備をとりやめて低コス
トの常温冷却水を使うことは一方で高圧蒸留塔と高圧ボ
イラーを必要とし、各種法規の規制を受け、それによる
設備の上昇を招くおそれがある。
On the other hand, if the refrigeration equipment is removed and cooling is performed using ordinary industrial water or circulating water from a cooling water tower, the cooling water temperature is generally expected to be 20 to 30 ° C., although it varies depending on the region and season. Whereas NH distilling from the top of the tower
Assuming that the temperature at which 3 is condensed and liquefied is 30-40 ° C, the corresponding pressure will be 12-16 kg / cm 2 . The bottom temperature at this time rises to 187 to 200 ° C. according to the above pressure, and when a heating source is required from steam, a high-pressure boiler exceeding 20 kg / cm 2 is required. Therefore, canceling the refrigeration facility and using low-cost normal-temperature cooling water requires a high-pressure distillation column and a high-pressure boiler, and is subject to various laws and regulations, which may lead to an increase in the facility.

【0009】[0009]

【課題を解決するための手段】上記のようにNH3の含む
水溶液を高濃度の液安と遊離アンモニヤを含まない塔底
液に分離するための手段として設備費,運転費はもちろ
ん安全法規面をも含め満足すべきプロセスは見あたらな
い。このような経済的な課題を解決するのが本発明の目
的である。
As described above, as a means for separating an aqueous solution containing NH 3 into a high-concentration solution and a bottom solution containing no free ammonia, not only equipment costs and operating costs but also safety regulations are required. There is no satisfactory process including the one. It is an object of the present invention to solve such an economic problem.

【0010】前記目的を達成するために本発明において
は常圧蒸留塔を使用し、原液を塔の上段に送り、塔頂よ
り留出するNH3混入蒸気を数段の部分凝縮器を直列に用
いて逐次凝縮温度を下げて未凝細蒸気中のNH3が所定濃
度に達するまで濃縮を続けたのち蒸気圧縮機を用い、所
定圧力まで昇圧したのち常温の冷却水を用いて全凝縮器
により全量凝縮して液安を得んとするものである。
In order to achieve the above object, in the present invention, an atmospheric distillation column is used, and a stock solution is sent to an upper stage of the column, and NH 3 mixed vapor distilled from the top of the column is connected in series with several stages of partial condensers. The condensing temperature was lowered successively using NH 3 in the uncondensed vapor, and the concentration was continued until the concentration reached a predetermined concentration.After that, using a steam compressor, the pressure was raised to a predetermined pressure, and then all the condensers were cooled using normal temperature cooling water. The whole amount is condensed to obtain liquid cheapness.

【0011】図1によりその骨子を説明するとNH3の水
溶液の原液1は必要により後に述べる前処理を攪拌槽
2,沈澱槽5により行った後に、また前処理が必要ない
ときは直接に送液ポンプ8により液熱交換器9を経て供
給液10として常圧付近で運転される蒸留塔11の上段
の所定位置に送られる。11の内部は各種充填物あるい
は棚段により構成され、塔頂部12と塔底部13間で所
定の分離を行うに必要な理論段数に相等する気液接触部
が用意されている。13に接続してリボイラー14が設
置され、加熱用スチーム15により塔底液を加熱,蒸発
する。14,15を用いずに直接吹込み用スチーム16
を塔底部13に吹込むことにより11の内部に14によ
るものと同量の上昇蒸気を発生させてもよい。このさい
13の状態はほぼ常圧で100℃付近にあるために、16
はもちろん15に関しても低圧のスチームにて賄うこと
ができる。かくて11の内部では降下する液と上昇する
蒸気との気液接触が各点で向流的に行われ、軽成分のNH
3は蒸気にともなわれ塔頂に向け重成分のH2Oは液として
塔底部に向けて移動が行われる。得られた塔底液17は
常圧,100℃付近の実質的に遊離NH3が消滅した液まで到
達したのち、前記供給液と液熱交換器9において熱交換
を行ったのち排出液18となる。
Referring to FIG. 1, the outline of the solution will be described. An undiluted solution 1 of an aqueous solution of NH 3 is fed after the pretreatment described below is performed in the stirring tank 2 and the precipitation tank 5 if necessary, or directly when the pretreatment is unnecessary. The liquid is fed as a supply liquid 10 through a liquid heat exchanger 9 by a pump 8 to a predetermined position in an upper stage of a distillation column 11 operated near normal pressure. The inside of 11 is composed of various packings or trays, and a gas-liquid contact portion equivalent to the number of theoretical plates necessary for performing predetermined separation between the tower top 12 and the tower bottom 13 is prepared. 13, a reboiler 14 is installed, and the bottom liquid is heated and evaporated by the heating steam 15. Steam 16 for direct injection without using 14 and 15
May be blown into the tower bottom 13 to generate the same amount of ascending steam as by 14 in the interior of 11. At this time, since the state of 13 is almost 100 ° C. at almost normal pressure,
Of course, 15 can be covered by low-pressure steam. Thus, gas-liquid contact between the descending liquid and the ascending vapor is performed at each point in the interior of the counter 11, and the light component NH
3 is accompanied by the vapor, and the heavy component H 2 O moves toward the top of the tower as a liquid and moves toward the bottom of the tower. The obtained bottom liquid 17 reaches a liquid at about 100 ° C. at normal pressure where substantially free NH 3 has disappeared, and after performing heat exchange in the liquid heat exchanger 9 with the above-mentioned liquid feed, the discharged liquid 18 Become.

【0012】一方12より留出する塔頂蒸気19は第1
次部分凝縮器20に導かれ、工業用水,冷水塔戻り水等
の常温,低コストの冷却水により第1次間接冷却面21
によりその一部が凝縮して第1次凝縮液22となり、そ
の他は第1次未凝縮蒸気24として通過する。このさい
の22,24の組成はほぼ気液平衡関係にあり、そのさ
いの凝縮温度により一義的に定まる。たとえば常圧下40
℃においては、22,24のNH3の平衡濃度はX1=24.
4,Y1=94.7 mol%である。得られた24は次に第2
次部分凝縮器25において冷凍機その他の手段で得られ
る低温の冷水,ブライン等によりさらに低温まで冷却さ
れ、その一部は第2次間接冷却面26に凝縮して第2次
凝縮液27となり、残りは第2次未凝縮蒸気28として
25より出る。このときの27,28の組成も第1次と
同様に凝縮温度で定まる。たとえば凝縮温度を10℃に設
定すれば、それに対応する27,28のNH3濃度は計算
上X2=40.0,Y2=99.3 mol%となる。以上のように
して得られた第1次,第2次凝縮液22,27は一括し
て還流液23として12へ送液する。
On the other hand, the overhead vapor 19 distilled off from 12 is the first vapor
The first indirect cooling surface 21 is guided to the next partial condenser 20 and is cooled by ordinary-temperature, low-cost cooling water such as industrial water or return water from a cooling water tower.
A part thereof is condensed to become the first condensed liquid 22, and the other passes as the first uncondensed vapor 24. At this time, the compositions of 22 and 24 are substantially in a gas-liquid equilibrium relationship, and are uniquely determined by the condensation temperature at that time. For example, under normal pressure 40
At ° C., the equilibrium concentration of 22,24 NH 3 is X1 = 24.
4, Y1 = 94.7 mol%. 24 obtained is the second
In the next partial condenser 25, it is further cooled to a low temperature by low-temperature cold water, brine or the like obtained by a refrigerator or other means, and a part thereof is condensed on the second indirect cooling surface 26 to become a second condensate 27. The remainder leaves from 25 as second uncondensed vapor 28. The composition of 27 and 28 at this time is also determined by the condensation temperature as in the first order. For example, if the condensation temperature is set to 10 ° C., the corresponding NH 3 concentrations of 27 and 28 are calculated to be X2 = 40.0 and Y2 = 99.3 mol%. The primary and secondary condensed liquids 22 and 27 obtained as described above are collectively sent to the reflux liquid 23 as 12.

【0013】かくて所定の濃度に到達した第2次未凝縮
蒸気(NH3蒸気)28は蒸気圧縮機29に吸引昇圧さ
れ、吐出側蒸気30は全凝縮器31により常温低コスト
の冷却水により全量液化されて液安32となり、同受器
33に貯えられたのち送液ライン34により系外へ送ら
れる。30の圧力は31で使用される冷却水温度との関
係で定まるが仮に冷却水温度30℃,凝縮液温40℃とすれ
ば、圧力は約16 kg/cm2を必要とする。
The secondary uncondensed vapor (NH 3 vapor) 28 having reached a predetermined concentration is then suctioned and pressurized by a vapor compressor 29, and the discharge-side vapor 30 is supplied to the entire condenser 31 by cooling water at normal temperature and low cost. The whole amount is liquefied to become a liquor 32, stored in the receiver 33, and then sent out of the system by a liquid sending line 34. The pressure of 30 is determined by the relationship with the temperature of the cooling water used at 31. If the temperature of the cooling water is 30 ° C. and the temperature of the condensate is 40 ° C., the pressure needs to be about 16 kg / cm 2 .

【0014】[0014]

【作用】上記のように本発明は常圧下におけるNH3〜H2O
の気液平衡関係が図2に示すようにその濃度全域におい
て液相濃度Xに対し気相濃度Yが著しく高いことに着目
し、常圧蒸気塔より留出する蒸気を凝縮温度の異なる2
段階の部分凝縮器を直列に用いて処理することが第1の
工夫である。まず第1段階は低コストの常温の冷却水を
使用し、部分凝縮により一気に95 mol%前後のNH3蒸気
を収得すると共に、続く第2段階において冷水またはブ
ラインを使用して残りの部分凝縮を続け、さらに高濃度
のNH3蒸気を得たのち通常の冷凍用のアンモニヤ圧縮機
と全凝縮器からなるアンモニヤの液化装置を用いて液安
を得んとするものである。そのさい99 mol%を超えるNH
3蒸気を得るさいにも蒸留塔は常圧、大気解放系で運転
可能である。また蒸留塔に要するユーティリイティとし
ては常温の冷却水のほか少量の2次凝縮用の0〜10℃前
後の比較的温度の高い冷水またはブライン及び加熱用の
低圧スチームで足りる。
As described above, the present invention provides NH 3 to H 2 O under normal pressure.
As shown in FIG. 2, the vapor-liquid equilibrium relationship of the gas phase concentration Y is remarkably higher than the liquid-phase concentration X in the entire concentration range as shown in FIG.
The first contrivance is to process using partial condensers in stages in series. Firstly, the first stage uses low-cost ordinary-temperature cooling water, and at a stroke, about 95 mol% of NH 3 vapor is obtained by partial condensation. In the second stage, the remaining partial condensation is performed using cold water or brine. Subsequently, after obtaining NH 3 vapor of a higher concentration, the liquid is obtained by using an ammonia liquefaction apparatus comprising a normal refrigeration ammonia compressor and a total condenser. NH exceeding 99 mol%
3 The distillation column can be operated at normal pressure and open to the atmosphere to obtain steam. As utilities required for the distillation column, in addition to cooling water at room temperature, a small amount of relatively high-temperature cold water of about 0 to 10 ° C. for secondary condensation or brine and low-pressure steam for heating are sufficient.

【0015】以上本発明を構成する常圧蒸留塔と凝縮温
度を変えた2段階の部分凝縮器により高濃度のNH3蒸気
を得たのちこれを圧縮凝縮して液体アンモニヤを得る本
発明の作用についての説明を行った。しかしながらこれ
を実施するにはそれぞれのユーティリイティ条件や適用
法規で態様が大きく変更される。たとえば寒冷地におい
ては冬季は0℃付近の冷却水が容易に得られるので第2
次凝縮器の運転は不要となろう。また工場によっては、
15℃付近の地下水が一定量使える場合には部分凝縮を3
段階に分ける等の適用が効果的である。またアンモニヤ
の圧縮機を中心とする液安の設備は冷凍保安及び高圧取
り扱いに関する厳重な法規が存在しているが、本発明に
おいてはこれを圧縮機と凝縮器を中心とする限定された
範囲に止め、蒸留器および周辺機器は圧力容器の制限外
に置くことができ、全体の設備費の低減に効果を発揮す
る。
The operation of the present invention for obtaining a liquid ammonia by obtaining a high-concentration NH 3 vapor by means of the atmospheric distillation column constituting the present invention and the two-stage partial condenser having a different condensing temperature and then compressing and condensing this NH 3 vapor. Was explained. However, in order to implement this, the mode is largely changed by each utility condition and applicable law. For example, in a cold region, cooling water around 0 ° C. can be easily obtained in winter.
Operation of the secondary condenser will not be necessary. Also, depending on the factory,
If a certain amount of groundwater around 15 ° C can be used, 3
Application such as dividing into stages is effective. In addition, strict regulations regarding refrigeration security and high-pressure handling exist for liquid safety equipment mainly for compressors of ammonia, but in the present invention, this is limited to a limited area mainly for compressors and condensers. Stops, stills and peripherals can be placed outside the limits of the pressure vessel, which helps reduce overall equipment costs.

【0016】次に原アンモニヤ水溶液に、第3成分が存
在するさいの本発明の実施に及ぼす影響を述べる。まず
式(1),(2)は アンモニヤと水との間の平衡関係
(←→)を示す。 NH3(g)+H2O(l)←→NH4OH(l) ・・・・・・・・・・・・・(1) NH4OH(l)←→NH4 +(l)+OH-(l) ・・・・・・・・・・・・・(2) (1)において、NH3(g)は、NH3の気相にある状態で
あり、これが液相のH2O(l)と結合して、液相中にはNH
4OH(l)分子として平衡的に存在していることを示し、
式(2)はこれが電解質のためさらにその一部が液相中
で、NH4 +(l),OH-(l)の正,負イオンに解離して存
在していることを示している。図2における液相のNH3
濃度Xは、(1)におけるNH4OH(l)と(2)のNH
4 +(l)の合計に相当するものであり、一方、Yは、NH3
(g)に対応する分である。
Next, the effect of the presence of the third component in the raw aqueous ammonia solution on the practice of the present invention will be described. First, equations (1) and (2) show the equilibrium relationship (← →) between ammonia and water. NH 3 (g) + H 2 O (l) ← → NH 4 OH (l) (1) NH 4 OH (l) ← → NH 4 + (l) + OH - (L) ... (2) In (1), NH 3 (g) is in a gaseous state of NH 3 , which is a liquid H 2 O Combined with (l), NH in the liquid phase
4 Equivalently present as OH (l) molecules,
In equation (2) this is further partially liquid phase for the electrolyte, NH 4 + (l), OH - positive (l), which indicates that the presence dissociate negative ions. NH 3 in the liquid phase in FIG.
The concentration X is determined by comparing the NH 4 OH (1) in (1) with the NH 4 OH in (2)
4 + (l), while Y is NH 3
This corresponds to (g).

【0017】気液間には、式(1),(2)の平衡が同
時に成立しており、これに従って蒸留塔の内部の各点で
加熱,昇温により、式(1)の左辺にシフトする。塔内
では各点で多段向流的な接触が行われるため、結果とし
て、NH3(g)は塔頂へ、H2O(l)は塔底へと分離して、
それぞれの塔の上下より排出する。
The equilibrium of the equations (1) and (2) is simultaneously established between the gas and the liquid. According to this, at each point inside the distillation column, the temperature is shifted to the left side of the equation (1) by heating and raising the temperature. I do. As a result of multistage countercurrent contact at each point in the column, NH 3 (g) is separated to the top and H 2 O (l) is separated to the bottom,
Discharge from the top and bottom of each tower.

【0018】もし液中に第3成分として硫酸 H2SO4等の
不揮発性の酸が存在すれば、(1)におけるNH4OH(l)
は、式(3)のごとく化学量論的に中和反応し、硫安
(NH4)2 SO4を生じる。 2NH4OH(l)+H2SO4(l)=(NH4)2 SO4(l)+2H2O(l) ・・・・・・・(3) 硫安は液中では正,負イオンに解離して存在している。 (NH4)2 SO4(l)←→2NH4 +(l)+SO4 --(l) ・・・・・・・(4) 大量のNH3に小量のH2SO4が存在する系では、式(1),
(2),(3),(4)の平衡が同時に成立している。
そのさいは、式(3)のようにH2SO41モル量に対し
て、液中のNH4OH 2モル量が定量的に(NH4)2 SO4(l)
として固定され、加熱,蒸留等の操作で組成の変化があ
ったときでも、これは常に安定して液中に留まり、全量
塔底液17として排出される。
If a non-volatile acid such as sulfuric acid H 2 SO 4 is present as a third component in the liquid, NH 4 OH (1) in (1) is used.
Undergoes a stoichiometric neutralization reaction as shown in formula (3) to produce ammonium sulfate (NH 4 ) 2 SO 4 . 2NH 4 OH (l) + H 2 SO 4 (l) = (NH 4 ) 2 SO 4 (l) + 2H 2 O (l) (3) Ammonium sulfate is converted into positive and negative ions in the liquid. It exists dissociated. (NH 4) 2 SO 4 ( l) ← → 2NH 4 + (l) + SO 4 - (l) ······· (4) Small amounts of H 2 SO 4 is present in a large amount of NH 3 In the system, equations (1),
(2), (3), and (4) are simultaneously established.
At this time, as shown in the formula (3), 2 moles of NH 4 OH in the liquid are quantitatively calculated based on 1 mole of H 2 SO 4 (NH 4 ) 2 SO 4 (l)
Even when there is a change in composition due to operations such as heating and distillation, this always remains stably in the liquid, and the entire amount is discharged as the bottom liquid 17.

【0019】従って原液中に不揮発性酸基が存在し、NH
3が塩として固定されている場合に、もしこれを遊離NH3
として分解して回収する必要がある場合には、原液にま
ず不揮発性の強アルカリたとえば苛性ソーダーNaOH,水
酸化カルシウムCa(OH)2等を化学当量以上に添加して塩
を複分解し塩基分を固定し、NH3を外して遊離NH3に転換
する必要がある。式(5)はその一例を示すものであ
る。 (NH4)2 SO4(l)+Ca(OH)2(S)←→ 2NH4OH(l)+CaSO4(S) ・・・・・・・・・・・・・(5) 式(5)にあるCa(OH)2(S),CaSO4(S)は、それぞ
れ水酸化カルシウム,硫酸カルシウムが固相として液中
に懸濁している状態を示す。
Therefore, non-volatile acid groups are present in the stock solution and NH
If the 3 is fixed as a salt, if free this NH 3
If it is necessary to decompose and recover the salt, first add a non-volatile strong alkali such as caustic soda NaOH, calcium hydroxide Ca (OH) 2, etc. to a chemical equivalent or more to the stock solution to double-decompose the salt and remove the base component. fixed, it is necessary to convert the free NH 3 to remove the NH 3. Equation (5) shows one example. (NH 4 ) 2 SO 4 (l) + Ca (OH) 2 (S) ← → 2NH 4 OH (l) + CaSO 4 (S) Equation (5) The Ca (OH) 2 (S) and CaSO 4 (S) in the parentheses indicate the state in which calcium hydroxide and calcium sulfate are suspended in the liquid as solid phases, respectively.

【0020】図1における攪拌槽2,沈澱槽5は、この
ような原液を処理して固定 NH3を遊離 NH3に変える操作
を行うもので、上記(NH4)2 SO4(l)を含む原液1に
は、2において添加アルカリ3であるCa(OH)2(S)の
スラリーが加わり、式(5)に示される複分解反応が右
辺に向けて進行し完結する。CaSO4(S)を懸濁するアル
カリ調整液4は、次に沈澱槽5において重力下で分離し
沈澱スラッジ6と上澄液7に分かれる。底部より排出し
た6はさらに濾過等の公知手段により処分する。かくて
7の中では原液1にあった固定NH3分はすべて遊離NH3
変化して、そのまま蒸留塔へ送られ回収に向けられる。
The stirring tank 2 and the precipitation tank 5 in FIG. 1 perform an operation of treating such a stock solution to convert fixed NH 3 to free NH 3, and convert the above (NH 4 ) 2 SO 4 (l) A slurry of Ca (OH) 2 (S), which is the alkali 3 added in 2, is added to the stock solution 1 containing 2, and the metathesis reaction represented by the formula (5) proceeds toward the right side and is completed. The alkali adjusting solution 4 in which CaSO 4 (S) is suspended is then separated under gravity in a settling tank 5 and separated into a settled sludge 6 and a supernatant 7. 6 discharged from the bottom is further disposed by known means such as filtration. Thus, in 7, all the fixed NH 3 in the stock solution 1 is changed to free NH 3 and sent to the distillation column as it is for recovery.

【0021】さて原液の中で、上記のごとくNH3の一部
が不揮発性酸性基SO4 --,PO4 --等により安定に固定され
る以外に、揮発性の酸性基であるCN-,HS-,HCO3 -,HSO
3 -等と塩を作って緩く固定されている場合がある。たと
えば酸性硫化アンモン(NH4)HSは液中で、式(6)のよ
うにインオ解離平衡下にあるが、液を加熱,昇温するこ
とにより分解した成分が式(7)の右辺へ向かう。 NH4HS(l)←→ NH4 +(l)+HS-(l) ・・・・・・・・・・・・・(6) NH4HS(l)←→ NH3(g)+H2S(g) ・・・・・・・・・・・・・(7) このようにNH3と揮発性の酸であるH2Sは共に気相へ逃散
する。このような場合は液中のNH3を蒸留により完全か
つ高純度で回収するにはまず酸基を完全に固定するに足
りる不揮発性塩基、たとえばNaOH等を投入してH2Sの気
相への移行を止め、不揮発性塩のNa2Sとして液に留める
ための前処理が必要である。式(8)はこの反応を示
す。 NH4HS(l)+2NaOH(l)→NH3(g)+Na2S(l)+2H2O(l) ・・・・・(8) この点はH2S以下の揮発性の酸、たとえばCO2,SO2,HCN
等が存在する場合も、ほぼ同様であり、いづれの場合
においても原液中のNH3分を弱酸分を含まない純度の状
態で塔頂より取り出すことは不可能である。
[0021] Now in the stock solution, a part of the non-volatile acidic groups SO 4 of NH 3 as described above -, PO 4 - in addition to which are stably fixed by such a volatile acid groups CN - , HS -, HCO 3 -, HSO
3 - it may have been loosely secured to create an equal and salt. For example, acidic ammonium sulfide (NH 4 ) HS is in in-dissociation equilibrium in a liquid as shown in formula (6), but the components decomposed by heating and raising the temperature are directed to the right side of formula (7). . NH 4 HS (l) ← → NH 4 + (l) + HS - (l) ············· (6) NH 4 HS (l) ← → NH 3 (g) + H 2 S (g) (7) Thus, both NH 3 and H 2 S, a volatile acid, escape into the gas phase. In such a case, in order to completely recover NH 3 in the liquid by distillation with high purity, a non-volatile base sufficient to completely fix the acid group, such as NaOH, is charged into the H 2 S gas phase. A pre-treatment is required to stop the migration of the compound and keep the solution as a non-volatile salt, Na 2 S. Equation (8) illustrates this reaction. NH 4 HS (l) + 2NaOH (l) → NH 3 (g) + Na 2 S (l) + 2H 2 O (l) (8) This point is a volatile acid below H 2 S, for example CO 2 , SO 2 , HCN
It is almost the same when any of the above is present, and in any case, it is impossible to remove the NH 3 component in the stock solution from the top of the column with a purity not containing a weak acid component.

【0022】本発明を実施するさいに原液中に揮発性塩
基のHCO3 -,CO3 --が存在するさいにはこのアンモニウム
塩は蒸留塔の内外で複雑な挙動をするので、特にその対
応が必要である。液中にCO2に比して多量のNH3が存在す
るときは、式(9),(10)によりCO2には2当量のNH3
が配位しているが、加熱により(10)の左辺に向かって
分解が進み、NH3(g)は気相に抜け、まず重炭酸アンモ
ン(NH4)HCO3(l)が残る。さらに加熱,分解が進み、
式(9)の左辺に向け気相NH3(g)とCO2(g)が移行す
る。 CO2(g)+NH3(g)+H2O(l)←→(NH4)HCO3(l) ・・・・・・・・・・(9) (NH4)HCO3(l)+NH3(g)←→(NH4)2 CO3(l) ・・・・・・・・・・(10) たとえば[0012]に述べたように、常圧蒸留塔の塔
底温度を100℃に設定すれば、その付近では式(10)に
続き式(9)において、(NH4)2CO3,(NH4)HCO3は左方
向に分解し、生じたNH3(g),CO2(g)は気相に移って
塔内を上昇する。一方塔内温度は塔頂で約60℃であり、
上昇してくるCO2(g)はNH3(g)と共に下降液に一部補
足されて塔内を降下するため、最終的に塔内に分布する
液、蒸気中のNH3,CO2の組成はかなり複雑となり、塔底
液,塔頂ガスはそれに追従する。
When the volatile bases HCO 3 - and CO 3 - are present in the stock solution when the present invention is carried out, the ammonium salt has a complicated behavior inside and outside the distillation column. is required. When a large amount of NH 3 present in comparison with the CO 2 is in a liquid, wherein (9), NH 3 in 2 equivalents to CO 2 (10)
However, the decomposition proceeds toward the left side of (10) by heating, NH 3 (g) escapes to the gas phase, and firstly, ammonium bicarbonate (NH 4 ) HCO 3 (l) remains. Further heating and decomposition progress,
Gas phase NH 3 (g) and CO 2 (g) move toward the left side of equation (9). CO 2 (g) + NH 3 (g) + H 2 O (l) ← → (NH 4 ) HCO 3 (l) (9) (NH 4 ) HCO 3 (l) + NH 3 (g) ← → (NH 4 ) 2 CO 3 (l) ··························································································································································· In the vicinity, (NH 4 ) 2 CO 3 and (NH 4 ) HCO 3 are decomposed to the left in equation (9) following equation (10) and the resulting NH 3 (g), CO 2 (g) moves to the gas phase and rises in the tower. On the other hand, the temperature in the tower is about 60 ° C at the top of the tower,
The rising CO 2 (g) is partially captured by the descending liquid together with NH 3 (g) and descends in the column, so that NH 3 and CO 2 in the liquid and vapor finally distributed in the column are vaporized. The composition becomes considerably complicated, and the bottom liquid and the top gas follow it.

【0023】上記のように原NH3液にCO2がアンモニウム
塩として存在するときは、塔頂より得られるNH3の純度
の低下の外に塔頂より留出する炭酸アンモン蒸気による
問題が生ずる場合がある。固体の炭酸アンモニウム塩は
その物性として50℃の前後より温度上昇と共に気化して
NH3(g)とCO2(g)を生ずるが、逆に発生した混合蒸気
は30℃以下の冷却により固体の(NH4)CO3(S)や(NH4)
HCO3(S)に戻る性質がある。式(11)はこのような炭
酸アンモンの昇華現象を示す。 (NH4)CO3(S),(NH4)HCO3(S)←→ NH3(g)+CO2(g)+ H2O ・・・・・・・・・・(11) 本発明を実施するさいに、式(11)の右辺へ分解し、蒸
留塔を出たNH3(g),CO2(g)は第1次,第2次凝縮器
において40℃,10℃といった低温にさらされて蒸気圧縮
機に吸引される。さのさい第2次凝縮器より蒸気圧縮機
の低圧側において蒸気は10℃前後の低温となるため蒸気
中のNH3(g)とCO2(g)が、式(11)の左辺に逆進行
し、固体炭酸アンモニウム塩が発生し、そのまま固体と
して第2次凝縮器出口より圧縮機吹込側の間で昇華,析
出して成長が続きやがてはその部分を閉塞する可能性が
ある。したがってこの場合には、原液に式(12)に示す
化学当量以上のNaOH 等の不揮発アルカリを添加してCO2
等の塩基性分を中和固定して不揮発性の塩とするための
前処理を行ったのち、蒸留塔に供給しその全量を塔底よ
り排出する必要がある。 (NH4)CO3(l)+2NaOH(l)=Na2CO3(l)+2H2O(l)+2NH3(g) ・・・・・・・・・・・・・(12) 以上は揮発性のアンモニウム塩として炭酸塩の例を擧げ
たが、同量の昇華現象を起こす弱酸性アンモニウム塩が
原液に存在するさいは、安定運転のために(12)のよう
な事前処理が必要である。
As described above, when CO 2 is present as an ammonium salt in the raw NH 3 liquid, a problem occurs due to ammonium carbonate vapor distilled off from the top in addition to the decrease in the purity of NH 3 obtained from the top. There are cases. Solid ammonium carbonate evaporates with increasing temperature from around 50 ° C as its physical properties.
NH 3 (g) and CO 2 (g) are generated, but the mixed vapor generated in reverse is solid (NH 4 ) CO 3 (S) or (NH 4 ) by cooling below 30 ° C.
It has the property of returning to HCO 3 (S). Equation (11) shows such a sublimation phenomenon of ammonium carbonate. (NH 4 ) CO 3 (S), (NH 4 ) HCO 3 (S) ← → NH 3 (g) + CO 2 (g) + H 2 O (11) The present invention When performing the above, NH 3 (g) and CO 2 (g) decomposed to the right side of the equation (11) and exiting the distillation column are cooled to a low temperature of 40 ° C. and 10 ° C. in the primary and secondary condensers. And is sucked into the vapor compressor. On the low pressure side of the steam compressor from the secondary condenser, the temperature of the steam is about 10 ° C., so NH 3 (g) and CO 2 (g) in the steam are reversed to the left side of equation (11). As a result, a solid ammonium carbonate salt is generated, and sublimates and precipitates as a solid between the outlet of the secondary condenser and the compressor blowing side as it is, so that the growth may be continued and the portion may be eventually closed. Therefore, in this case, the non-volatile alkali such as chemical equivalent or more NaOH shown in equation (12) to the stock solution was added CO 2
It is necessary to carry out a pretreatment for neutralizing and fixing a basic component such as a non-volatile salt to form a non-volatile salt, and then supply the same to a distillation column and discharge the entire amount from the bottom of the column. (NH 4 ) CO 3 (l) + 2NaOH (l) = Na 2 CO 3 (l) + 2H 2 O (l) + 2NH 3 (g) (12) As an example of volatile ammonium salts, carbonates have been mentioned. However, when weak acid ammonium salts that cause the same amount of sublimation are present in the stock solution, pretreatment such as (12) is required for stable operation. is there.

【0024】[0024]

【実施例1】図1のフローシートにおいて、NH3分 20.8
mol%,残りH2Oのアンモニヤ水溶液100.0 kmol/hを4
5.0℃にて前処理を行わずに送液ポンプ8により液熱交
換器9に送り、約60℃まで昇温したのち蒸留塔11に送
液する。蒸留塔の塔体は理論段数15段に相当する分離
性能を有する規則充填物からなり、還流液は最上段に、
原液はその1段下へ送液する。塔底部には約16.3kmol/
h(280kg/h)の 2.0 kg/cm2 の飽和蒸気,16が吹き
込まれる。塔底の加熱は16のみで行い、リボイラー1
4は設置しない。これにより塔底部より上昇する蒸気に
より、供給液10が塔内を降下するさいに溶解している
NH3は、追い出され塔底で0.1 %molになるように塔の理
論段数および10と16の量比が計算されている。この
とき塔底液17は、続いて前記9に導かれ、7と熱交換
を行ったのち排出液18となる。一方、塔頂部12より
NH3を含んで留出する約60℃の塔頂蒸気19は、第1次
部分凝縮器20に至り、21に供給される30℃前後の冷
却水の水量調節により約40℃に保たれつつ部分凝縮が行
われ、第1次凝縮液22と第1次未凝縮蒸気24とに分
かれる。この凝縮温度に対応する24のNH3濃度は94〜9
5%モルに達する。24は引続き第2次部分凝縮器25
に導かれ、第1次と同様に26に1〜2℃の冷却水を送
って流量調節しつつ凝縮温度10.0℃を維持しながら部分
凝縮を進め、第2次凝縮液27と第2次未凝縮蒸気28
に分ける。このとき得られる28のNH3濃度は99.0〜99.
3%モルに達する。それぞれの凝縮液22と27はいづ
れも塔頂部へ還流液23として還流されるが、一方28
はアンモニヤの蒸気圧縮機29に送られ昇圧される。吐
出側より得られる吐出側蒸気30は、全凝縮器31で常
温の冷却水により冷却されて全量凝縮し、液安32とし
て液安受器33に収納される。
In the flow sheet of Embodiment 1 FIG 1, NH 3 minutes 20.8
mol%, residual H 2 O aqueous ammonia solution 100.0 kmol / h 4
The solution is sent to the liquid heat exchanger 9 by the solution sending pump 8 at 5.0 ° C. without performing the pretreatment, and the solution is heated to about 60 ° C. and then sent to the distillation column 11. The column body of the distillation column is composed of an ordered packing having a separation performance equivalent to 15 theoretical plates, and the reflux liquid is at the uppermost stage,
The stock solution is sent one stage below. About 16.3kmol /
h (280 kg / h), 2.0 kg / cm 2 of saturated steam, 16 is blown. Heating of the bottom of the tower is performed only with 16 and reboiler 1
4 is not installed. Thereby, the feed liquid 10 is dissolved by the vapor rising from the bottom of the tower when the feed liquid 10 descends in the tower.
The theoretical number of columns in the column and the ratio between 10 and 16 are calculated so that NH 3 is expelled and 0.1% mol at the bottom of the column. At this time, the bottom liquid 17 is subsequently led to the above-mentioned 9 and exchanges heat with 7 to become a discharged liquid 18. On the other hand, from the tower top 12
The overhead vapor 19 of about 60 ° C. distilled off including NH 3 reaches the primary partial condenser 20, and is maintained at about 40 ° C. by adjusting the amount of cooling water supplied to 21 at about 30 ° C. Partial condensation is performed, and the liquid is separated into a primary condensed liquid 22 and a primary uncondensed vapor 24. The NH 3 concentration of 24 corresponding to this condensation temperature is 94-9
Reaches 5% mol. 24 is a secondary partial condenser 25
In the same manner as in the first stage, the cooling water of 1 to 2 ° C. is sent to 26 to advance the partial condensation while controlling the flow rate while maintaining the condensation temperature of 10.0 ° C., and the second condensate 27 and the second Condensed steam 28
Divided into NH 3 concentration of 28 obtained at this time is 99.0 to 99.
Reaches 3% mole. Each of the condensates 22 and 27 is returned to the top of the column as a reflux 23, while
Is sent to an ammonia vapor compressor 29 and is pressurized. The discharge-side vapor 30 obtained from the discharge side is cooled by room-temperature cooling water in the total condenser 31 and condensed in its entirety.

【0025】表1には設定された仕様と運転結果を、表
2にはエネルギー負荷の解析を示す。
Table 1 shows the set specifications and operation results, and Table 2 shows an analysis of the energy load.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明は以上説明したように構成されて
おり、以下に記載されるような効果を奏する。
The present invention is configured as described above and has the following effects.

【0029】任意の濃度のNH3水溶液より、濃度99.0 mo
l%またはそれ以上の液安を回収する。そのさい使用す
る蒸留塔は常圧付近で運転され各部分は0〜100℃前後
の範囲であり、圧力容器による各種法規の適用を受けな
い。
From an NH 3 aqueous solution of an arbitrary concentration, a concentration of 99.0 mo
Recover 1% or more of the liquid. At that time, the distillation column used is operated at about normal pressure, and each part is in the range of about 0 to 100 ° C., and is not subject to various regulations by the pressure vessel.

【0030】塔頂蒸気を塔本体と同様に常圧下で2段階
の部分凝縮器を導いて高濃度のNH3蒸気を得るがその第
1段では、低コストの常温冷却水を用いて部分凝縮法に
より、大幅な水分除去を行ったのち、続く第2段では0
℃付近の冷水を小量用いることにより残存水分が1%ま
たはそれ以下の高濃度のNH3蒸気が得られる。表2の例
では第2次凝縮器の熱負荷は第1次の1/2以下、全系
の1/3以下である。そのための設備費とユーティリテ
ィー費は通常の1段階のみの部分凝縮法に比べると大幅
に低下する。
The top vapor is guided to a two-stage partial condenser under normal pressure in the same manner as the main body of the tower to obtain high-concentration NH 3 vapor. In the first stage, partial condensation is performed using low-cost ordinary-temperature cooling water. After a large amount of water removal by the method,
By using a small amount of cold water at around ° C., high-concentration NH 3 vapor having a residual moisture of 1% or less can be obtained. In the example of Table 2, the heat load of the secondary condenser is 以下 or less of the primary and 1 / or less of the entire system. The equipment and utility costs for this are significantly lower than in a conventional one-stage partial condensation process.

【0031】原液中にCO3 --,HCO3 -等の揮発性弱酸基の
アンモニウム塩が存在し、蒸留塔内部でNH3,CO2等に分
解し、続く凝縮器,圧縮機等の内部で炭酸アンモニウム
塩の固体として昇華析出し、閉塞するおそれのある場合
は予め原液に不揮発性アルカリ、たとえばNaOH等を加え
て炭酸基をNa2CO3等の不揮発塩として液中に固定する前
処理を行った上、蒸留塔に供給し、これを全量塔底液と
して排出することにより、安定かつ安全運転が達成され
る。
[0031] During stock CO 3 -, HCO 3 - ammonium salt of a volatile weak acid groups are present, such as, decomposed into NH 3, CO 2, etc. within the distillation column, followed by a condenser, internal compressor or the like If there is a risk of sublimation precipitation as a solid of ammonium carbonate and clogging, a pretreatment of adding a non-volatile alkali such as NaOH to the stock solution in advance to fix the carbonate group in the solution as a non-volatile salt such as Na 2 CO 3 After that, a stable and safe operation is achieved by feeding the mixture to a distillation column and discharging the entire amount thereof as a bottom liquid.

【0032】第2次部分凝縮器より所定濃度のNH3蒸気
を得た後、これを蒸気圧縮機で昇圧したのち常温の冷却
水を用いる全凝縮器により液体アンモニヤを収得する。
この部分のみが高圧系となるが、公知で多用されている
アンモニヤを冷媒とする冷凍装置の主要部分をそのまま
採用することができ、諸法規を満たした安全性の高い設
備を安価で調達することができる。
After obtaining a predetermined concentration of NH 3 vapor from the secondary partial condenser, the pressure is increased by a vapor compressor, and then a liquid ammonia is obtained by a total condenser using cooling water at normal temperature.
Only this part is a high-pressure system, but the main part of the well-known and widely used refrigeration system using ammonia as a refrigerant can be adopted as it is, and highly safe equipment that meets various regulations can be procured at low cost. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プロセス全体の流れを示すフローシートであ
る。
FIG. 1 is a flow sheet showing a flow of an entire process.

【図2】アンモニヤ水の2成分系気液平衡関係を示す図
で、全圧が760mmHgのものである。
FIG. 2 is a diagram showing a two-component system vapor-liquid equilibrium relationship of ammonia water, with a total pressure of 760 mmHg.

【図3】図2と同じく、全圧15.0 kg/cm2のものであ
る。
FIG. 3 is the same as in FIG. 2, with a total pressure of 15.0 kg / cm 2 .

【符号の説明】[Explanation of symbols]

1 原液 8 送液ポンプ 2 攪拌槽 9 液熱交換器 3 添加アルカリ 10 供給液 4 アルカリ調整液 11 蒸留塔 5 沈降槽 12 塔頂部 6 沈澱スラッジ 13 塔底部 7 上澄液 14 リボイラー 15 加熱用スチーム 25 第2次部分
凝縮器 16 吹込用スチーム 26 第2次間接
冷却面 17 塔底液 27 第2次凝縮
液 18 排出液 28 第2次未凝
縮蒸気 19 塔頂蒸気 29 蒸気圧縮機 20 第1次部分凝縮器 30 吐出側蒸気 21 第1次間接冷却面 31 全凝縮器 22 第1次凝縮液 32 液安(液体
アンモニヤ) 23 還流液 33 液安受器 24 第1次未凝縮蒸気 34 液安送液ラ
イン
1 Stock solution 8 Feeding pump 2 Stirring tank 9 Liquid heat exchanger 3 Additive alkali 10 Feed solution 4 Alkali adjusting solution 11 Distillation tower 5 Settlement tank 12 Tower top 6 Settling sludge 13 Tower bottom 7 Supernatant 14 Reboiler 15 Heating steam 25 Secondary partial condenser 16 Injection steam 26 Secondary indirect cooling surface 17 Bottom liquid 27 Secondary condensate 18 Effluent 28 Secondary uncondensed vapor 19 Top vapor 29 Steam compressor 20 Primary part Condenser 30 Discharge side steam 21 Primary indirect cooling surface 31 Total condenser 22 Primary condensate liquid 32 Liquid safety (liquid ammonia) 23 Reflux liquid 33 Liquid safety receiver 24 Primary uncondensed vapor 34 Liquid safety liquid line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニヤを含む水溶液を常圧付近で運
転される蒸留塔11の上段に送り、塔内を降下させる間
に塔底部13より上昇する蒸気と向流的に接触させ、液
に溶解するアンモニヤを放散させて蒸気と共に塔頂部1
2より排出させ、一方降下する脱アンモニヤ液は塔底に
導き、塔底液17として排出させる間に、前記塔頂蒸気
19は第1次部分凝縮器20に導いて常温の冷却水を用
いる間接冷却面で第1次部分凝縮を行い、得られた第1
次凝縮液22は塔頂付近に還流し、残りの第1次未凝縮
蒸気24は第2次部分凝縮器25に導き、第1次凝縮温
度以下の低温下で第2次部分凝縮を行い、得られた第2
次凝縮液27は第1次と同様に塔頂付近に還流し、残り
の第2次未凝縮蒸気28は蒸気圧縮機29に送って所定
圧力に昇圧した後、常温の冷却水を用いる全凝縮器31
により加圧下で凝縮してアンモニヤを主成分とする液安
32を回収する方法。
1. An aqueous solution containing ammonia is sent to an upper stage of a distillation column 11 operated at about normal pressure, and is brought into countercurrent contact with steam rising from a column bottom 13 while descending in the column to dissolve in the liquid. To disperse the ammonia, and to the top 1
2, while the falling deammonified liquid is led to the bottom of the tower and discharged as bottom liquid 17, the top vapor 19 is led to the primary partial condenser 20 to use indirect cooling water at normal temperature. The first partial condensation is performed on the cooling surface, and the obtained first
The secondary condensate 22 is refluxed near the top of the tower, and the remaining primary uncondensed vapor 24 is led to a secondary partial condenser 25 to perform secondary partial condensation at a temperature lower than the primary condensation temperature, The second obtained
The secondary condensate 27 recirculates near the top of the column in the same manner as the primary, and the remaining secondary uncondensed vapor 28 is sent to a vapor compressor 29 to increase the pressure to a predetermined pressure, and then the total condensation using cooling water at normal temperature Container 31
To recover the liquid 32 mainly containing ammonia by condensing under pressure.
【請求項2】 請求項1においてアンモニヤを含む水溶
液中に炭酸アンモニウム塩等の常圧下で50℃付近より分
解して気相に放散する一方で、それ等が30℃以下で気相
より固体に凝結,昇華する性質をもつ当該水溶液を処理
するさいに、NaOH等の不揮発性アルカリを添加して液中
のアンモニヤ塩を遊離アンモニヤと不揮発性塩とに変化
させ、必要により生じた沈澱を除去した後に蒸留塔に供
給することを特徴とする液安を回収する方法。
2. The method according to claim 1, wherein the ammonium carbonate or the like decomposes in an aqueous solution containing ammonia under atmospheric pressure from about 50 ° C. and emits into a gaseous phase, while it decomposes into a solid at 30 ° C. or lower. When the aqueous solution having the property of coagulation and sublimation was treated, a non-volatile alkali such as NaOH was added to convert the ammonium salt in the solution into free ammonium and a non-volatile salt, and a precipitate formed as necessary was removed. A method for recovering liquor, which is supplied to a distillation column later.
JP29781096A 1996-10-21 1996-10-21 Recovery of liquid ammonia from aqueous solution Pending JPH10120415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29781096A JPH10120415A (en) 1996-10-21 1996-10-21 Recovery of liquid ammonia from aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29781096A JPH10120415A (en) 1996-10-21 1996-10-21 Recovery of liquid ammonia from aqueous solution

Publications (1)

Publication Number Publication Date
JPH10120415A true JPH10120415A (en) 1998-05-12

Family

ID=17851465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29781096A Pending JPH10120415A (en) 1996-10-21 1996-10-21 Recovery of liquid ammonia from aqueous solution

Country Status (1)

Country Link
JP (1) JPH10120415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132560A1 (en) * 2011-03-31 2012-10-04 住友精化株式会社 Method for purifying ammonia and ammonia purification system
CN102954669A (en) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 Liquid ammonia production method
CN103523844A (en) * 2013-11-04 2014-01-22 内蒙古金石镁业有限公司 Ammonia stilling system and process
CN104926012A (en) * 2015-06-30 2015-09-23 长沙华时捷环保科技发展有限公司 Treatment process for high-concentration ammonium-nitrogen waste water
CN114455687A (en) * 2022-03-17 2022-05-10 北京中科康仑环境科技研究院有限公司 Method for recovering oil-free ammonia water from oil-containing ammonia-containing wastewater by deamination

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132560A1 (en) * 2011-03-31 2012-10-04 住友精化株式会社 Method for purifying ammonia and ammonia purification system
CN102954669A (en) * 2011-08-25 2013-03-06 中国石油化工股份有限公司 Liquid ammonia production method
CN102954669B (en) * 2011-08-25 2014-11-19 中国石油化工股份有限公司 Liquid ammonia production method
CN103523844A (en) * 2013-11-04 2014-01-22 内蒙古金石镁业有限公司 Ammonia stilling system and process
CN104926012A (en) * 2015-06-30 2015-09-23 长沙华时捷环保科技发展有限公司 Treatment process for high-concentration ammonium-nitrogen waste water
CN104926012B (en) * 2015-06-30 2017-03-22 长沙华时捷环保科技发展股份有限公司 Treatment process for high-concentration ammonium-nitrogen waste water
CN114455687A (en) * 2022-03-17 2022-05-10 北京中科康仑环境科技研究院有限公司 Method for recovering oil-free ammonia water from oil-containing ammonia-containing wastewater by deamination

Similar Documents

Publication Publication Date Title
US20190201837A1 (en) Regenerative recovery of sulfur dioxide from effluent gases
AU2013256233B2 (en) Regenerative recovery of contaminants from effluent gases
US9238191B2 (en) CO2 recovery system and CO2 recovery method
US8052763B2 (en) Method for removing dissolved solids from aqueous waste streams
US9884289B2 (en) Regenerative recovery of contaminants from effluent gases
US7998248B2 (en) Process for the dehydration of gases
US4181506A (en) Method for recovering concentrated sulphur dioxide from waste gases containing sulphur dioxide
JPH10120415A (en) Recovery of liquid ammonia from aqueous solution
US4140751A (en) Process for pressure stripping of sulfur dioxide from buffered solutions
US4201752A (en) Process for the selective removal of sulfur dioxide from effluent gases
JP4169924B2 (en) Method and apparatus for concentrating dilute hydrochloric acid aqueous solution
US3984518A (en) Process feed and effluent treatment systems
CN106927485B (en) Method for preparing high-purity ammonia by taking residual ammonia water as raw material
JPS6183291A (en) Treatment of surplus ammonia water
CA1115933A (en) Process for pressure stripping of sulfur dioxide from buffered solutions
JPH0251955B2 (en)
PL163960B1 (en) Method of isolating ethylene oxide
PL231139B1 (en) Method for processing oil gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061128