JPH10120401A - Production of hydrogen - Google Patents
Production of hydrogenInfo
- Publication number
- JPH10120401A JPH10120401A JP8291195A JP29119596A JPH10120401A JP H10120401 A JPH10120401 A JP H10120401A JP 8291195 A JP8291195 A JP 8291195A JP 29119596 A JP29119596 A JP 29119596A JP H10120401 A JPH10120401 A JP H10120401A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- steam
- raw material
- flow rate
- offgas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は水素製造方法に関し、さ
らに詳しくは製油所で副生する炭化水素からなるオフガ
スを原料にして、水蒸気改質法により水素を製造する方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen, and more particularly to a method for producing hydrogen by a steam reforming method using an off-gas made of hydrocarbon by-produced in a refinery as a raw material.
【0002】[0002]
【従来の技術】最近の製油所においては、重質油の処理
に次の傾向が見られる。すなわち、限られた貴重な炭化
水素資源である石油を有効に活用するため、従来は火力
発電所の単なる燃料として消費していた重質油を水素化
分解してLPG,ガソリン,ナフサ,灯油等の軽質留分
に転換し、有効に活用することである。この水素化分解
は、多量に水素を消費するため、既に多く実施されてい
る軽油の深度脱硫とあいまって、今後製油所において、
水素の消費量を大巾に増加させる要因に成ると予想され
る。2. Description of the Related Art In recent refineries, the following tendency is observed in the treatment of heavy oil. In other words, in order to make effective use of petroleum, which is a limited and valuable hydrocarbon resource, heavy oil, which was conventionally consumed only as fuel for thermal power plants, is hydrocracked to produce LPG, gasoline, naphtha, kerosene, etc. Is to convert to light fractions and use them effectively. Since this hydrocracking consumes a large amount of hydrogen, in combination with the deep desulfurization of light oil that has already been carried out,
It is expected to cause a significant increase in hydrogen consumption.
【0003】他方、製油所においては、以上の重質油の
水素化分解処理量の増加にともなって、当然の結果とし
て炭化水素を主成分とする副生ガス(以下,オフガスと
いう)の発生量も多くなる。製油所におけるオフガス
は、炭素数が1〜6程度のパラフィン系を主成分とする
炭化水素及び水素からなる混合ガスであり、しかも発生
装置も複数であるため、組成は常時相当変動している。
従って、このオフガスの有効利用の一つとして、水蒸気
改質法による水素製造装置の原料ガスにする場合は、以
下のような問題がある。On the other hand, in an oil refinery, the amount of by-product gas (hereinafter referred to as off-gas) mainly composed of hydrocarbons is naturally generated with the increase in the amount of hydrocracking of heavy oil. Also increase. The off-gas in a refinery is a mixed gas composed of hydrocarbons and hydrogen mainly composed of paraffin having about 1 to 6 carbon atoms, and the composition is always considerably varied because there are a plurality of generators.
Accordingly, as one of the effective uses of the off-gas, when the raw material gas is used as the raw material gas for the hydrogen production apparatus by the steam reforming method, there are the following problems.
【0004】石油系炭化水素を原料にして、水蒸気改質
法により水素を製造する方法は、一般に次の4工程から
構成される。 脱硫工程:原料炭化水素中の硫黄化合物を、水添して硫
化水素に転換して、酸化亜鉛で吸着して脱硫する工程。 改質工程:脱硫した炭化水素を、ニッケル系触媒上で高
温のスチーム(以下,プロセススチームという)で水蒸
気改質して、水素,一酸化炭素,炭酸ガス及びメタンの
混合ガス(以下,改質ガスという)に改質する工程。 変成工程:改質ガス中の一酸化炭素を、酸化鉄触媒上で
水蒸気との変成反応により、水素に変成する工程。 PSA工程:変成工程を出る水素濃度が70%以上の混
合ガスをPSA(Pressure Swing Adsorption)吸着装置
で処理して、水素以外の成分を吸着して除去し、高純度
の製品水素を得る工程。A method for producing hydrogen by a steam reforming method using a petroleum hydrocarbon as a raw material generally includes the following four steps. Desulfurization step: A step of converting a sulfur compound in a raw material hydrocarbon into hydrogen sulfide by hydrogenation, adsorbing it with zinc oxide and desulfurizing it. Reforming process: Desulfurized hydrocarbon is steam-reformed with high-temperature steam (hereinafter referred to as process steam) over a nickel-based catalyst to obtain a mixed gas of hydrogen, carbon monoxide, carbon dioxide and methane (hereinafter referred to as reforming). (Referred to as gas). Transformation step: A step of transforming carbon monoxide in a reformed gas into hydrogen by a transformation reaction with steam over an iron oxide catalyst. PSA process: A process in which a mixed gas having a hydrogen concentration of 70% or more exiting the shift process is treated with a PSA (Pressure Swing Adsorption) adsorption device to adsorb and remove components other than hydrogen, thereby obtaining high-purity product hydrogen.
【0005】前記4工程の中で、技術的にも経済的にも
最も重要な工程は、改質工程であり、特にプロセススチ
ームの流量制御は、次に述べる理由から非常に重要であ
る。水蒸気改質法による水素製造装置においては、改質
炉に供給する反応用のプロセススチームの流量制御は、
原料炭化水素中の炭素のトータルモル数に対するプロセ
ススチームのモル数の比率(以下,スチーム/カーボン
比という)を所定の一定値にすべき運転管理している。[0005] Of the above four steps, the most technically and economically important step is the reforming step, and the control of the flow rate of the process steam is particularly important for the following reasons. In the hydrogen production apparatus by the steam reforming method, the flow rate control of the reaction process steam to be supplied to the reforming furnace is as follows:
The operation is controlled so that the ratio of the number of moles of process steam to the total number of moles of carbon in the raw material hydrocarbon (hereinafter referred to as steam / carbon ratio) is set to a predetermined constant value.
【0006】これは、第1には、水蒸気改質反応におい
ては、スチーム/カーボン比が特定の限界値より少なく
なった場合には、炭化水素の熱分解による炭素析出が改
質触媒上に起り、改質触媒が使用不可能になるためであ
り、第2には、原料炭化水素に対する製品水素の収率
は、前記の各工程における設計条件により左右される
が、なかでも改質工程を出る改質ガス中のメタン濃度に
よって大きく左右される。[0006] First, in the steam reforming reaction, when the steam / carbon ratio becomes smaller than a specific limit value, carbon deposition due to thermal decomposition of hydrocarbons occurs on the reforming catalyst. Second, the yield of product hydrogen with respect to the raw hydrocarbon is dependent on the design conditions in each of the above-mentioned steps. It largely depends on the methane concentration in the reformed gas.
【0007】改質ガス中のメタン濃度は、次のメタン−
スチーム反応の平衡により定まる。 CH4 +H2 O=CO+3H2 この反応の平衡定数は、図3に図示される如く、温度と
ともに対数的に増加する。従って、改質温度は、メタン
濃度を少なくするため、できるだけ高いことが望ましい
が、反応管の耐熱強度等を考慮して850℃前後が採用
される。改質温度が定まれば、平衡定数は一定であり、
従ってプロセススチームの量が多ければメタンの濃度は
減少することが分かる。以上を総合的に考慮してスチー
ム/カーボン比は、最適値が採用される(一般的には3.
0 〜5.0 である) 。[0007] The methane concentration in the reformed gas is as follows:
Determined by the equilibrium of the steam reaction. CH 4 + H 2 O = CO + 3H 2 The equilibrium constant for this reaction increases logarithmically with temperature, as shown in FIG. Therefore, it is desirable that the reforming temperature be as high as possible in order to reduce the methane concentration, but around 850 ° C. is adopted in consideration of the heat resistance of the reaction tube and the like. Once the reforming temperature is determined, the equilibrium constant is constant,
Therefore, it can be seen that the concentration of methane decreases when the amount of process steam is large. In consideration of the above, the optimal value of the steam / carbon ratio is adopted (generally, 3.
0 to 5.0).
【0008】以上から、水蒸気改質方法においては、原
料炭化水素中の炭素のモル数を迅速に測定し、スチーム
/カーボン比を常に最適値に維持することが必要である
ことが分かる。従来、この測定法としては、例えば、特
開昭59−146905号及び特開昭59−14690
7号で開示されているようにガスクロ分析計を用いて、
混合ガス中の各炭化水素化合物の含有量を分析し、得ら
れるガス組成に基づいて、炭素の含有量を求めている。From the above, it can be seen that in the steam reforming method, it is necessary to quickly measure the number of moles of carbon in the raw material hydrocarbon and to always maintain the steam / carbon ratio at an optimum value. Conventionally, this measuring method is described in, for example, JP-A-59-146905 and JP-A-59-14690.
Using a gas chromatography analyzer as disclosed in No. 7,
The content of each hydrocarbon compound in the mixed gas is analyzed, and the carbon content is determined based on the obtained gas composition.
【0009】この方法は、実際に原料ガスの組成を求め
ている点で、精度は高いが反面、成分数が多い場合に
は、分析に相当時間(一般的には数十分)を要するた
め、サンプル時と測定終了時に時間差を生じること、成
分数が多い場合には、ガスクロ分析計の設備費が高価格
であること、さらにはガスクロ分析計の構造が複雑なた
め、その維持管理が容易でなく、多くの労力を要するこ
と等の不具合がある。This method has a high accuracy in that the composition of the raw material gas is actually obtained. On the other hand, when the number of components is large, the analysis requires a considerable time (generally several tens of minutes). When the number of components is large, the cost of the gas chromatograph is expensive, and the structure of the gas chromatograph is complicated, so the maintenance is easy. However, there is a problem that a lot of labor is required.
【0010】[0010]
【発明が解決しようとする課題】本発明は、以上の従来
技術の問題点を背景にしてなされたものであって、製油
所で副生するオフガスを原料にして、水蒸気改質法によ
り水素を製造する方法において、原料オフガス中のカー
ボン数を迅速に、且つ、維持管理が容易で、少ない設備
費で測定して水素を製造する方法を提供することを課題
とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and uses an off-gas by-produced in a refinery as a raw material to produce hydrogen by a steam reforming method. It is an object of the present invention to provide a method for producing hydrogen by measuring the number of carbons in a raw material off-gas quickly and easily with a low facility cost.
【0011】[0011]
【課題を解決するための手段】前記課題を解決するため
の本発明の要旨とするところは、製油所で副生する主に
炭化水素からなるオフガスを原料にして、水蒸気改質法
により水素を製造する方法において、前記オフガスの流
量及び密度を測定して、前記オフガスの密度と1モル当
たりカーボン数の相関関係から1モル当たりカーボン数
を求め、この1モル当たりカーボン数と前記流量から前
記オフガス中のトータルカーボン数を演算し、このトー
タルカーボン数とスチーム/カーボン比からプロセスス
チームの流量を求め、プロセススチームの流量制御を行
うことを特徴とする水素製造方法にある。Means for Solving the Problems The gist of the present invention for solving the above-mentioned problems is that hydrogen is produced by a steam reforming method using off-gas mainly composed of hydrocarbons produced as a by-product in a refinery. In the manufacturing method, the flow rate and the density of the off-gas are measured, and the number of carbons per mole is determined from the correlation between the density of the off-gas and the number of carbons per mole, and the off-gas is determined from the number of carbons per mole and the flow rate. The hydrogen production method is characterized in that a total carbon number in the inside is calculated, a flow rate of the process steam is obtained from the total carbon number and a steam / carbon ratio, and a flow rate of the process steam is controlled.
【0012】本出願人は、製油所で副生する数種類のオ
フガスの特性を鋭意検討した結果、図2に図示されるよ
うに、原料オフガスの密度(kg/Nm3 ) と1モル当たり
の平均カーボン数(kg Mol−C /kg Mol−Gas)との関係
にリニアな相関関係があることが分かった。従って、何
等かの方法で原料オフガスの密度を測定できれば、この
相関関係を用いて、次の(1) 式により原料オフガス中の
トータルカーボン数を求めることができる。 TC=AC×(F/22.4) (1) ここで、TC:原料オフガス中のトータルカーボンモル
数(kg Mol−C /H) AC:原料オフガスの平均カーボンモル数(kg Mol−C
/kg Mol−Gas) F:原料オフガスの流量(Nm3 /H )As a result of intensive studies on the characteristics of several types of offgas produced in a refinery, as shown in FIG. 2, the density of the raw material offgas (kg / Nm 3 ) and the average It was found that there was a linear correlation with the number of carbon atoms (kg Mol-C / kg Mol-Gas). Therefore, if the density of the raw material off-gas can be measured by any method, the total number of carbons in the raw material off-gas can be obtained by the following equation (1) using this correlation. TC = AC × (F / 22.4) (1) Here, TC: total number of carbon moles in the raw material offgas (kg Mol−C / H) AC: average carbon mole number of the raw material offgas (kg Mol−C)
/ Kg Mol-Gas) F: Flow rate of raw material off-gas (Nm 3 / H)
【0013】(1) 式により、原料オフガス中の炭素の含
有量が分かれば、スチーム/カーボン比(S/C)から
次の(2) 式により、プロセススチームの流量(PS:kg
/H)が求められる。 PS=TC×(S/C)×18.01 (2) 本発明で用いる原料オフガスの密度測定法としては、迅
速で且つ正確に測定できる方法であれば、特に限定され
ないが、振動管式密度計が好適である。この密度計は被
測定ガス流路中に薄肉円筒体からなる振動体を設け、外
部から電磁気的に振動し、被測定ガスとの共振振動数を
測定する方法である。被測定ガスの密度が増加すると、
共振振動数は減少する現象を利用している。この振動管
式密度計は、測定時間の遅れが無いこと、構造が比較的
簡単であるため、信頼性が高く、且つ設備費も安価であ
るため、好適な測定方法であるが、この他には翼車式ガ
ス密度計等も使用可能である。If the carbon content in the raw material off-gas is known from the equation (1), the flow rate of the process steam (PS: kg) is calculated from the steam / carbon ratio (S / C) according to the following equation (2).
/ H) is required. PS = TC × (S / C) × 18.01 (2) The method for measuring the density of the raw material off-gas used in the present invention is not particularly limited as long as it can be measured quickly and accurately. It is suitable. This density meter is a method in which a vibrating body made of a thin cylindrical body is provided in a flow path of a gas to be measured and electromagnetically vibrates from the outside to measure a resonance frequency with the gas to be measured. When the density of the gas to be measured increases,
The phenomenon that the resonance frequency decreases is used. This vibrating tube type densitometer is a suitable measuring method because there is no delay in the measuring time, the structure is relatively simple, the reliability is high, and the equipment cost is inexpensive. Can also use an impeller gas density meter.
【0014】[0014]
【発明の実施の形態】本発明の実施の形態について、図
面に基づいて説明する。図1は本発明の実施の形態を示
す制御系統図である。図において、1は原料オフガスの
加熱炉であり、原料オフガスを水添脱硫に必要な温度3
50℃前後まで予熱して脱硫塔2に供給する。脱硫塔2
においては、原料オフガス中の硫黄化合物は、水添され
て硫化水素になり、次いで酸化亜鉛触媒に吸着されるこ
とで所定濃度まで脱硫される。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a control system diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a heating furnace for raw material off-gas, which is used for heating the raw material off-gas to a temperature 3
It is preheated to about 50 ° C. and supplied to the desulfurization tower 2. Desulfurization tower 2
In, the sulfur compound in the raw material off-gas is hydrogenated to hydrogen sulfide and then adsorbed on a zinc oxide catalyst to be desulfurized to a predetermined concentration.
【0015】一方、プロセスガスや燃焼ガスの廃熱を利
用して、廃熱ボイラーで発生したプロセススチームは、
過熱器12において、改質炉3の炉室を出る高温燃焼ガ
スで過熱されてから、前記の脱硫された原料オフガスと
合流して混合され、改質炉3の改質触媒が充填された反
応管4に入り、燃料Fの燃焼熱で反応熱が供給され、8
50℃前後まで加熱されて、水素,一酸化炭素,炭酸ガ
ス及びメタンからなる改質ガスになって、後段の変成工
程に移行する。On the other hand, the process steam generated in the waste heat boiler using the waste heat of the process gas or the combustion gas is:
In the superheater 12, the reaction is superheated by the high-temperature combustion gas exiting the furnace chamber of the reforming furnace 3, then combined with the desulfurized raw material off-gas and mixed, and filled with the reforming catalyst of the reforming furnace 3. After entering the pipe 4, the reaction heat is supplied by the heat of combustion of the fuel F,
It is heated to about 50 ° C. to become a reformed gas composed of hydrogen, carbon monoxide, carbon dioxide, and methane.
【0016】以上の脱硫工程及び改質工程におけるプロ
セススチームの流量制御方法について説明する。原料オ
フガスは、原料供給管路5を経由して加熱炉1に供給さ
れるが、管路5には温度補正用の温度計6及び圧力補正
用の圧力計7が取付けられている。8は前記した振動管
式密度計であり、供給管路5からサンプルガスを抜き出
し、前記の方法で密度を測定する。測定結果は演算器9
に入力され、温度,圧力が補正されて、カーボンモル数
演算用のガス密度(kg/Nm3 ) が求められる。A method for controlling the flow rate of process steam in the above desulfurization step and reforming step will be described. The raw material off-gas is supplied to the heating furnace 1 via a raw material supply pipe 5, and a thermometer 6 for temperature correction and a pressure gauge 7 for pressure correction are attached to the pipe 5. Reference numeral 8 denotes the above-described vibrating tube type densitometer, which extracts a sample gas from the supply line 5 and measures the density by the above-described method. The measurement result is calculated by the calculator 9
The gas density (kg / Nm 3 ) for calculating the number of carbon moles is obtained by correcting the temperature and pressure.
【0017】10は原料オフガス流量制御用の流量指示
調節計であり、装置負荷に応じて原料オフガスの流量を
制御し、その流量値は演算器9に入力される。演算器9
においては、以上の入力されたオフガスの密度及び流量
値と、図2に図示されるオフガスの密度とカーボンモル
数の相関関係を用いて、測定時点における改質炉3の反
応管4に入るトータルカーボンモル数を(1) 式により演
算する。Numeral 10 is a flow rate controller for controlling the flow rate of the raw material off-gas, which controls the flow rate of the raw material off-gas in accordance with the load of the apparatus. Arithmetic unit 9
In the above, using the input off-gas density and flow rate value and the correlation between the off-gas density and carbon mole number shown in FIG. 2, the total amount entering the reaction tube 4 of the reforming furnace 3 at the time of measurement is calculated. The number of moles of carbon is calculated by equation (1).
【0018】装置内の廃熱ボイラーで発生したプロセス
スチームは、図示はされないスチームドラムを出て、プ
ロセススチーム供給管路11を経て、過熱器12に入
り、改質炉3の炉室を出る高温の燃焼ガスで過熱されて
から、反応管4に入る。この際、管路11に取付けられ
る圧力計13及び温度計14で、プロセススチームの圧
力及び温度を測定し、演算器9に入力してスチームの流
量補正に用いられる。15はプロセススチーム用の流量
指示調節計であり、前記の(2) 式により計算された流量
が設定値として演算器9から入力されて、プロセススチ
ームを流量制御するThe process steam generated by the waste heat boiler in the apparatus exits a steam drum (not shown), enters a superheater 12 through a process steam supply line 11, and exits a high temperature exiting the furnace chamber of the reforming furnace 3. After entering the reaction tube 4 after being superheated by the combustion gas. At this time, the pressure and the temperature of the process steam are measured by the pressure gauge 13 and the thermometer 14 attached to the pipeline 11 and input to the calculator 9 to be used for the steam flow rate correction. Reference numeral 15 denotes a flow rate controller for process steam. The flow rate calculated by the above equation (2) is input from the calculator 9 as a set value to control the flow rate of the process steam.
【0019】[0019]
【実施例】A製油所のオフガスの組成変動時に於ける最
大密度、中間密度、最小密度の密度とカーボン数の測定
結果は、次の通りである。 ガス組成 (mol%) 最小 中間 最大 H2 38.8 22.9 9.2 CH4 19.0 25.2 29.1 C2 H6 22.8 29.4 35.9 C3 H8 13.3 14.5 16.2 C4 H10 4.4 5.6 6.6 C5 H12 1.7 2.4 3.0 計 100.0 100.0 100.0 分子量 20.33 24.73 28.79 ガス密度 Kg/Nm3 0.91 1.10 1.28 平均カーボンモル数 Kg Mol-C/Kg Mol-Gas 1.31 1.62 1.91 備考;密度とC数の関係を図2に、A点、B点、C点と
して図示する。EXAMPLES The measurement results of the maximum density, intermediate density, minimum density and the number of carbons in the off-gas composition change of the refinery A are as follows. Gas composition (mol%) Minimum Intermediate Maximum H 2 38.8 22.9 9.2 CH 4 19.0 25.2 29.1 C 2 H 6 22.8 29.4 35.9 C 3 H 8 13.3 14.5 16.2 C 4 H 10 4.4 5.6 6.6 C 5 H 12 1.7 2.4 3.0 Total 100.0 100.0 100.0 Molecular weight 20.33 24.73 28.79 Gas density Kg / Nm 3 0.91 1.10 1.28 Average number of moles of carbon Kg Mol-C / Kg Mol-Gas 1.31 1.62 1.91 Remarks; This is shown as a point.
【発明の効果】以上説明した構成と作用を有する本発明
によれば、原料オフガスの組成が変動しても、迅速に測
定できるオフガスの密度とカーボンモル数の相関関係を
利用して、原料オフガス中のカーボンモル数を容易に決
定できるので、水蒸気改質法の運転管理において、最も
重要であるスチーム/カーボン比の制御を時間遅れなく
行うことができる効果が得られる。According to the present invention having the structure and operation described above, even if the composition of the raw material offgas varies, the raw material offgas can be measured quickly by utilizing the correlation between the density of the offgas and the number of carbon moles. Since the number of moles of carbon in the medium can be easily determined, the most important control of the steam / carbon ratio in the operation management of the steam reforming method can be performed without delay.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施の形態を示す制御系統図。FIG. 1 is a control system diagram showing an embodiment of the present invention.
【図2】オフガスの密度とカーボンモル数の相関図。FIG. 2 is a correlation diagram between off-gas density and carbon mole number.
【図3】スチーム−メタン反応の平衡定数。FIG. 3 shows equilibrium constants of a steam-methane reaction.
1;加熱炉、2;脱硫塔、3;改質炉、4;反応管、
5;原料供給管路、6;温度計、7;圧力計、8;密度
計、9;演算器、10;原料ガス流量調節計、11;プ
ロセススチーム供給管路、12;過熱器、13;圧力
計、14;温度計、15;プロセススチーム流量調節
計。1; heating furnace, 2; desulfurization tower, 3; reforming furnace, 4; reaction tube,
5; raw material supply line, 6; thermometer, 7; pressure gauge, 8; density meter, 9; computing unit, 10; raw material gas flow controller, 11; process steam supply line, 12; superheater, 13; Pressure gauge, 14; thermometer, 15; process steam flow controller.
Claims (1)
フガスを原料にして、水蒸気改質法により水素を製造す
る方法において、前記オフガスの流量及び密度を測定し
て、前記オフガスの密度と1モル当たりカーボン数の相
関関係から1モル当たりカーボン数を求め、この1モル
当たりカーボン数と前記流量から前記オフガス中のトー
タルカーボン数を演算し、このトータルカーボン数とス
チーム/カーボン比からプロセススチームの流量を求
め、プロセススチームの流量制御を行うことを特徴とす
る水素製造方法。1. A method for producing hydrogen by a steam reforming method using an off-gas mainly composed of hydrocarbon by-produced in a refinery as a raw material, wherein a flow rate and a density of the off-gas are measured, and a density of the off-gas is measured. And the number of carbons per mole are determined from the correlation between the number of carbons per mole and the total number of carbons in the off-gas from the number of carbons per mole and the flow rate. A method for producing hydrogen, comprising determining a flow rate of steam and controlling a flow rate of process steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8291195A JPH10120401A (en) | 1996-10-15 | 1996-10-15 | Production of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8291195A JPH10120401A (en) | 1996-10-15 | 1996-10-15 | Production of hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10120401A true JPH10120401A (en) | 1998-05-12 |
Family
ID=17765696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8291195A Pending JPH10120401A (en) | 1996-10-15 | 1996-10-15 | Production of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10120401A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099551A1 (en) * | 2001-06-04 | 2002-12-12 | Micro Motion, Inc. | Steam to carbon ratio control in steam reforming of hydrocarbons |
JP2004059337A (en) * | 2002-07-25 | 2004-02-26 | Tokyo Gas Co Ltd | Control system for hydrogen production plant and apparatus and process for hydrogen production |
CN102768168A (en) * | 2007-09-26 | 2012-11-07 | 气体产品与化学公司 | Method for determining carbon content of a hydrocarbon-containing mixture |
WO2013002752A1 (en) | 2011-06-27 | 2013-01-03 | Air Products And Chemicals, Inc. | Method of operating a catalytic steam-hydrocarbon reformer |
US9409773B2 (en) | 2014-11-10 | 2016-08-09 | Air Products And Chemicals, Inc. | Steam-hydrocarbon reforming process |
US9933408B2 (en) | 2014-11-10 | 2018-04-03 | Air Products And Chemicals, Inc. | Method for characterizing the hydrocarbon content of a reformate stream |
JP2021150083A (en) * | 2020-03-17 | 2021-09-27 | 東京瓦斯株式会社 | Fuel cell system and fuel cell system operation method |
-
1996
- 1996-10-15 JP JP8291195A patent/JPH10120401A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099551A1 (en) * | 2001-06-04 | 2002-12-12 | Micro Motion, Inc. | Steam to carbon ratio control in steam reforming of hydrocarbons |
US6758101B2 (en) | 2001-06-04 | 2004-07-06 | Micro Motion, Inc. | Steam to carbon ratio control in steam reforming of hydrocarbons |
JP2004059337A (en) * | 2002-07-25 | 2004-02-26 | Tokyo Gas Co Ltd | Control system for hydrogen production plant and apparatus and process for hydrogen production |
CN102768168A (en) * | 2007-09-26 | 2012-11-07 | 气体产品与化学公司 | Method for determining carbon content of a hydrocarbon-containing mixture |
EP2042850A3 (en) * | 2007-09-26 | 2014-10-15 | Air Products and Chemicals, Inc. | Method for determining carbon content of a hydrocarbon-containing mixture |
CN102768168B (en) * | 2007-09-26 | 2015-05-06 | 气体产品与化学公司 | Method for determining carbon content of a hydrocarbon-containing mixture |
WO2013002752A1 (en) | 2011-06-27 | 2013-01-03 | Air Products And Chemicals, Inc. | Method of operating a catalytic steam-hydrocarbon reformer |
CN103619753A (en) * | 2011-06-27 | 2014-03-05 | 气体产品与化学公司 | Method of operating a catalytic steam-hydrocarbon reformer |
US9409773B2 (en) | 2014-11-10 | 2016-08-09 | Air Products And Chemicals, Inc. | Steam-hydrocarbon reforming process |
US9933408B2 (en) | 2014-11-10 | 2018-04-03 | Air Products And Chemicals, Inc. | Method for characterizing the hydrocarbon content of a reformate stream |
JP2021150083A (en) * | 2020-03-17 | 2021-09-27 | 東京瓦斯株式会社 | Fuel cell system and fuel cell system operation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aljbour et al. | Bench-scale gasification of cedar wood–Part I: Effect of operational conditions on product gas characteristics | |
US20100152900A1 (en) | Optimizing refinery hydrogen gas supply, distribution and consumption in real time | |
JP2000185904A (en) | Self-heating type reformation of supplied hydrocarbon material containing higher hydrocarbon | |
KR101753425B1 (en) | Method and apparatus for producing a treated hydrocarbon containing stream for use as a feed to a hydrogen plant having a steam methane reformer | |
US10308508B2 (en) | Method and apparatus for producing a hydrogen-containing product | |
CN103025852A (en) | Hydrocarbon treatment method and apparatus | |
Gaber et al. | Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases | |
Loipersböck et al. | Hydrogen production from biomass: The behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage | |
Zuber et al. | Test of a hydrodesulfurization catalyst in a biomass tar removal process with catalytic steam reforming | |
JPH10120401A (en) | Production of hydrogen | |
EA001722B1 (en) | Process for steam reforming of a hydrocarbon feedstock | |
Zannah et al. | Refinery Off-Gas as Feed to a Hydrogen Production Facility: Performance Lifting of the Steam Reforming Technique | |
JP4011572B2 (en) | Gas reforming equipment | |
CN103619753A (en) | Method of operating a catalytic steam-hydrocarbon reformer | |
Waller et al. | Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation | |
US9409773B2 (en) | Steam-hydrocarbon reforming process | |
JP2003146609A (en) | Apparatus for producing hydrogen-containing gas using lp gas and fuel cell system | |
JP4162938B2 (en) | Hydrogen production plant control device, hydrogen production device, and hydrogen production method | |
US3692480A (en) | Method for controlling a sulfur recovery process | |
Schuetzle et al. | The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass | |
EP3241805A1 (en) | Method and apparatus for producing a hydrogen-containing product | |
Harkness et al. | Hydrogen sulfide waste treatment by microwave plasma dissociation | |
US20240116756A1 (en) | Process and System for Water-Gas Shift Conversion of Synthesis Gas with High CO Concentration | |
JPH06248275A (en) | Apparatus for producing substitute natural gas | |
JP2003223916A (en) | Catalyst degradation detection equipment, catalyst degradation detecting method, and fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040825 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090903 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120903 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130903 |