JP3963710B2 - Hydrogen-containing gas generator for LP gas and fuel cell system - Google Patents

Hydrogen-containing gas generator for LP gas and fuel cell system Download PDF

Info

Publication number
JP3963710B2
JP3963710B2 JP2001350086A JP2001350086A JP3963710B2 JP 3963710 B2 JP3963710 B2 JP 3963710B2 JP 2001350086 A JP2001350086 A JP 2001350086A JP 2001350086 A JP2001350086 A JP 2001350086A JP 3963710 B2 JP3963710 B2 JP 3963710B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
mass flow
hydrogen
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001350086A
Other languages
Japanese (ja)
Other versions
JP2003146609A (en
Inventor
規寿 神家
晋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001350086A priority Critical patent/JP3963710B2/en
Publication of JP2003146609A publication Critical patent/JP2003146609A/en
Application granted granted Critical
Publication of JP3963710B2 publication Critical patent/JP3963710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measuring Volume Flow (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LPガスが供給されるLPガス受入部と、改質処理部加熱手段により加熱されて、LPガスを水蒸気を用いて改質処理して水素含有ガスを生成する改質処理部と、
前記LPガスの流量を計測するLPガス流量計測手段と、
前記LPガス流量計測手段で計測される前記LPガスの流量に基づいて、前記改質処理部の運転条件を設定する運転条件設定手段を備えたLPガス用水素含有ガス生成装置、及びそれを備えた燃料電池システムに関する。
【0002】
【従来の技術】
上記のような水素含有ガス生成装置は、原燃料ガスを水蒸気により水素ガスと一酸化炭素ガスを含む改質処理ガスに改質処理する改質処理部を備え、さらに、その改質処理ガス中の一酸化炭素ガスを二酸化炭素ガスに変成させることにより変成処理する変成処理部や、その変成処理ガス中の一酸化炭素を選択酸化することにより選択酸化処理する一酸化炭素選択酸化処理部等を備えて構成され、一酸化炭素濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するものであり、このように生成された水素含有ガスは、例えば、燃料電池における発電反応用の燃料ガスとして用いられる。
【0003】
また、このような水素含有ガス生成装置には、改質処理部へ供給される原燃料ガスの体積流量を計測する体積流量計や、改質処理部加熱手段としての燃焼器に供給される燃料ガスの体積流量を計測する体積流量計と、夫々の体積流量計の計測結果に基づいて、改質処理部における運転条件を設定する運転条件設定手段として機能する制御部等が設けられることがある。
【0004】
即ち、この制御部は、例えば燃料電池の電力出力を電力負荷に追従させるように、前記改質処理部に供給する原燃料ガスの流量を調整し、さらに、その改質処理部に供給される原燃料ガスの体積流量を一般的な体積流量計により計測し、その体積流量計の計測結果に基づいて、水蒸気生成部へ供給される水の流量を設定して、改質処理部へ供給される水蒸気の流量を前記運転条件として適切なものに設定することがある。
また、改質処理部を改質処理部加熱手段としての燃焼器で加熱して適切な改質処理温度に維持するために、燃焼器へ供給する燃料ガスの体積流量を調整し、さらに、その燃焼器に供給される燃料ガスの体積流量を一般的な体積流量計により計測し、その体積流量計の計測結果に基づいて、燃焼器へ供給される燃焼用空気の流量を前記運転条件として適切なものに設定することがある。
【0005】
一方、このような燃料電池システムを車輌上若しくは原燃料ガスの供給導管が到達していない僻地等で使用する場合などにおいて、水素含有ガス生成装置を、改質処理部へ供給する原燃料ガス及び燃焼器へ供給する燃料ガスとしてLPガスボンベ等に加圧液化されて貯留されるLPガス(liquefied petroleum gas)を用いるLPガス用水素含有ガス生成装置として構成することがある。
【0006】
【発明が解決しようとする課題】
このようなLPガスは、石油精製などにおいて生成するプロパン及びブタン等の低分子炭化水素ガスを主成分とするものであり、夫々のガス成分の割合が変化する場合がある。特に、LPガスボンベ内のLPガスの残量の減少に伴ってプロパン及びブタンの割合は変化し、具体的には、LPボンベガス使用初期においては、沸点の低いプロパンが殆ど(95%)であるが、LPガスボンベの残量が少なくなると、ブタンの割合が半分近くまで占め、特にイソブタンの割合が非常に高くなる。
【0007】
そして、LPガスを原燃料ガスとしてLPガス用水素含有ガス生成装置に供給する燃料電池システムにおいて、LPガス中のプロパン及びブタンの割合が変化し、さらに、従来の技術の欄で説明したように、制御部が体積流量計により計測したLPガスの体積流量に基づいて、各種運転条件の設定を行なう場合には、下記の表1に示すように、LPガス中に含まれるプロパンとイソブタンとの単位体積当たりの炭素量及び発熱量等が異なることから、改質処理部に供給されるLPガスの炭素量及び発熱量が変化することになり、改質処理部の運転条件の設定が極めて困難となる。
例えば、改質処理部に供給される水蒸気の流量は、改質処理部におけるスチーム・カーボン比を一定にする必要があることから、LPガス流の炭素量の変化に追従させるように設定する必要があり、同様に、燃焼器に供給される燃焼用空気の流量は、燃焼器における空燃比をその燃料ガスの組成にあったものにする必要があることから、LPガスの組成の変化に追従させるように設定する必要があり、そのような制御機構は極めて複雑且つ高価となり問題である。
また、LPガスの発熱量が変化すると、改質処理部を加熱するための燃焼器へ供給するLPガスの体積流量を一定にしていても、燃焼器の燃焼量が変化し、結果、改質処理部の温度が変化することがある。
【0008】
【表1】

Figure 0003963710
【0009】
また、このような問題を回避するためには、原燃料ガスの組成が変化しないように、原燃料ガスとして用いるLPガスを高度精製したものに限定したり、LPガスの組成が大幅に不安定となる前にLPガスボンベを新品に交換することが考えられるが、何れの方法においても原燃料費が高くなるという問題がある。
【0010】
従って、本発明は、上記の事情に鑑みて、LPガスボンベ等から得ることができるLPガスを燃料ガスとして用いるLPガス用水素含有ガス生成装置において、LPガスの組成が変化した場合においても、簡単な構成で適切に出力制御等を行なうことができ、良好な運転状態を維持することができる技術を提供することを目的とする。
【0011】
【課題を解決するための手段】
〔構成1〕
本発明に係るLPガス用水素含有ガス生成装置は、請求項1に記載したごとく、LPガスが供給されるLPガス受入部と、改質処理部加熱手段により加熱されて、前記LPガスを水蒸気を用いて改質処理して水素含有ガスを生成する改質処理部と、
質量流量計により前記LPガスの流量を計測するLPガス流量計測手段と、
前記LPガス流量計測手段で計測される前記LPガスの流量に基づいて、前記改質処理部の運転条件を設定する運転条件設定手段を備えたLPガス用水素含有ガス生成装置において
前記LPガス流量計測手段が、前記LPガス受入部から前記改質処理部へ供給される前記LPガスの質量流量を計測する改質用LPガス質量流量計であり、
前記運転条件設定手段が、前記改質用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記改質処理部に供給する前記水蒸気の流量を前記運転条件として設定する手段であることを特徴とする。
【0012】
〔作用効果〕
本構成のLPガス用水素含有ガス生成装置によれば、改質処理部の運転条件設定のためのLPガス流量計測手段を、ガスの質量流量に比例する量を検出する方式の直接形質量流量計、又はガスの体積流量と密度とを検出して質量流量を測定する方式の間接形質量流量計で構成することで、この質量流量計で計測されるLPガスの質量流量は、下記の表2に示すように、LPガスの炭素量及び発熱量にほぼ比例するものとなるので、その計測された質量流量に基づいて、LPガス用水素含有ガス生成装置の運転条件を、供給されるLPガスの炭素量及び発熱量に適した値に設定することができ、LPガス用水素含有ガス生成装置の運転状態を好ましいものに維持することができる。
【0013】
【表2】
Figure 0003963710
【0014】
さらに、本構成のLPガス用水素含有ガス生成装置によれば、改質処理部へ供給されるLPガスの質量流量を改質用LPガス質量流量計により計測し、運転条件設定手段により、その炭素量にほぼ比例するLPガスの質量流量に従って、改質処理部へ供給するLPガスの炭素量に追従させてスチーム・カーボン比を一定にする必要がある改質処理部へ供給する水蒸気の流量を、運転条件として適切且つ簡単に設定することができる。
【0015】
〔構成
本発明に係るLPガス用水素含有ガス生成装置は、請求項に記載したごとく、上記構成1のLPガス用水素含有ガス生成装置の構成に加えて、前記改質処理部加熱手段が、前記LPガス受入部から供給されたLPガスを燃焼用空気により燃焼させる燃焼器で構成され、
前記LPガス流量計測手段が、前記LPガス受入部から前記燃焼器へ供給される前記LPガスの質量流量を計測する燃焼用LPガス質量流量計であり、
前記運転条件設定手段が、前記燃焼用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記燃焼器に供給する前記燃焼用空気の流量を前記運転条件として設定する手段であることを特徴とする。
【0016】
〔作用効果〕
本構成のLPガス用水素含有ガス生成装置によれば、改質処理部加熱手段としての燃焼器へ供給されるLPガスの質量流量を燃焼用LPガス質量流量計により計測し、運転条件設定手段により、その炭素量及び発熱量にほぼ比例するLPガスの質量流量に従って、燃焼器における空燃比をその燃料ガスの組成にあったものにするように、燃焼器へ供給する燃焼用空気の流量を、運転条件として適切且つ簡単に設定することができる。
【0017】
〔構成3〕
LPガスが供給されるLPガス受入部と、改質処理部加熱手段により加熱されて、前記LPガスを水蒸気を用いて改質処理して水素含有ガスを生成する改質処理部と、
質量流量計により前記LPガスの流量を計測するLPガス流量計測手段と、
前記LPガス流量計測手段で計測される前記LPガスの流量に基づいて、前記改質処理部の運転条件を設定する運転条件設定手段を備えたLPガス用水素含有ガス生成装置において、
前記改質処理部加熱手段が、前記LPガス受入部から供給されたLPガスを燃焼用空気により燃焼させる燃焼器で構成され、
前記LPガス流量計測手段が、前記LPガス受入部から前記燃焼器へ供給される前記L Pガスの質量流量を計測する燃焼用LPガス質量流量計であり、
前記運転条件設定手段が、前記燃焼用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記燃焼器に供給する前記燃焼用空気の流量を前記運転条件として設定する手段であることを特徴とする。
【0018】
〔作用効果〕
本構成のLPガス用水素含有ガス生成装置によれば、改質処理部加熱手段としての燃焼器へ供給されるLPガスの質量流量を燃焼用LPガス質量流量計により計測し、運転条件設定手段により、その炭素量及び発熱量にほぼ比例するLPガスの質量流量に従って、燃焼器における空燃比をその燃料ガスの組成にあったものにするように、燃焼器へ供給する燃焼用空気の流量を、運転条件として適切且つ簡単に設定することができる。
【0019】
〔構成4〕
本発明に係るLPガス用水素含有ガス生成装置は、請求項4に記載したごとく、上記構成1から3何れかに記載のLPガス用水素含有ガス生成装置の構成に加えて、前記質量流量計が熱式質量流量計として構成されていることを特徴とする。
【0020】
〔作用効果〕
本構成のLPガス用水素含有ガス生成装置によれば、質量流量計として、安価且つ簡単に構成することができる熱式質量流量計を用いることができる。
また、一般的に熱式質量流量計は、ガスの流れの中に加熱電熱線を設け、さらにその上流側及び下流側に温度検知器を設けて、加熱伝熱線を通過するガスが加熱されることによって生じる温度変化を測定することによって質量流量を求める方式である。よって、このような熱式質量流量計で混合ガスの質量流量を計測する場合、混合ガスの組成が変わることで比熱が変化すると、計測結果が変化するのであるが、LPガス中のプロパンとイソブタンとは、同族炭化水素(アルカン)で炭素数の差が1つだけなので、単位質量あたりの比熱(質量平均比熱)の差は、下記の表3に示すように、僅か0.6%程度であり、単位体積あたりの比熱(体積平均比熱)よりもその差が小さい。よって、このようなプロパンとイソブタンとを主に含むLPガスは、組成が変化しても比熱は殆ど変化しないので、熱式質量流量計により良好に質量流量を計測することができる。
【0021】
【表3】
Figure 0003963710
【0022】
〔構成
本発明に係るLPガス用水素含有ガス生成装置は、請求項に記載したごとく、上記構成1から4の何れかに記載のLPガス用水素含有ガス生成装置の構成に加えて、前記LPガス受入部が、LPガスボンベに加圧液化されて貯留されているLPガスが、前記LPガスボンベから受け入れるように構成されていることを特徴とする。
【0023】
〔作用効果〕
本構成のLPガス用水素含有ガス生成装置によれば、残量によってLPガス中のプロパン及びブタンの割合が大幅に変化することがあるLPガスボンベからLPガス受入部にLPガスが供給される場合でも、改質処理部へ供給されるLPガスの質量流量を計測して、夫々の運転条件を適切なものに簡単に設定することができ、LPガスボンベの残量に関わらずLPガス用水素含有ガス生成装置の運転状態を好ましいものに維持することができる。
【0024】
〔構成
本発明に係る燃料電池システムは、請求項に記載したごとく、上記構成1からの何れかに記載のLPガス用水素含有ガス生成装置と、前記LPガス用水素含有ガス生成装置から前記水素含有ガスが供給され発電を行なう燃料電池を備えたことを特徴とする。
【0025】
〔作用効果〕
本構成の燃料電池システムは、前述のように、LPガスの組成が変化しても、LPガス用水素含有ガス生成装置の運転条件をLPガスの炭素量及び発熱量に適した値に容易に設定することができるので、例えばLPガス用水素含有ガス生成装置の処理量を燃料電池の電力負荷等に対して安定して追従するように制御することができ、燃料電池システムの運転状態を好ましいものに維持することができる。
【0026】
【発明の実施の形態】
本発明に係るLPガス用水素含有ガス生成装置(以下、本生成装置と呼ぶ。)の実施の形態について、図面に基づいて説明する。
図1に示す本生成装置Pは、燃料電池システム100に設けられ、LPガスボンベ40から受入部41(LPガス受入部の一例)にLPガスボンベ40内に加圧液化されて貯留されているLPガスが原燃料ガスとして供給され、そのLPガスを水蒸気を用いて改質処理して、CO濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するように構成されており、このように生成された水素含有ガスが、燃料電池Gの燃料極10に供給される。
一方、燃料電池Gは、詳細な説明は省略するが、高分子膜を電解質11とする固体高分子型であり、本生成装置Pから燃料極10に供給される水素含有ガス中の水素と、ブロア7から酸素極12に供給される反応用空気中の酸素との電気化学反応により発電するように構成してある。
【0027】
詳しくは、本生成装置Pは、受入部41から流路27を介して供給されたLPガスを脱硫処理する脱硫器1と、供給された水を加熱して水蒸気を生成する水蒸気生成器6と、改質器加熱手段としての燃焼器2aにて加熱されて、脱硫器1から供給される脱硫原燃料ガスを水蒸気生成器6で生成された水蒸気を用いてH2とCOを含むガスに改質処理する改質器2(改質処理部の一例)と、改質器2から供給される改質処理ガス中のCOを水蒸気を用いてCO2に変成させることにより変成処理するCO変成器3と、そのCO変成器3から供給される変成処理ガス中のCOを選択酸化することにより選択酸化処理するCO選択酸化反応器4と、水素含有ガス生成装置の運転条件等の制御を行なう制御部30等を備えて構成されている。
【0028】
また、脱硫器1に供給されるLPガスが流通する流路27には、流路27を流通するLPガスの質量流量を計測する熱式質量流量計24(改質用LPガス質量流量計の一例)と、流路27を流通するLPガスの流量を調整可能な調整弁21とが設けられており、調整弁21は、制御部30により燃料電池Gの電力出力が電力負荷に追従するように調整される。
熱式質量流量計24で計測されるLPガスの質量流量は、LPガスボンベの残量の減少に伴って脱硫器1等に供給されるLPガス中のプロパン及びブタンの成分割合が変化しても、前記成分割合に関わらずLPガスの炭素量及び発熱量にほぼ一定の比例定数で比例するものとなる。
【0029】
さらに、水蒸気生成装置6は、流路29から原料水が供給され、その流路29には、流路29を流通する水の流量を計測する流量計26と、流路29を流通する水の流量を調整可能な調整弁23とが設けられている。
そして、制御部30に構成された運転条件設定手段31は、本生成装置Pの処理量、即ち熱式質量流量計24で計測されるLPガスの質量流量に基づいて、改質器2に供給する水蒸気流量を改質器2の運転条件として設定するべく、流量計26で水の流量を計測しながら調整弁23を働かせて、水蒸気生成装置6の処理量、即ち水蒸気生成装置6に供給する水の流量を設定する。
結果、改質器2に供給される水蒸気流量は、熱式質量流量計24のLPガスの炭素量にほぼ比例する計測結果に基づいて設定されるので、改質器2に供給する水蒸気量を改質器2におけるスチーム・カーボン比が所定の値になるような好ましいものに維持することができる。
【0030】
さらに、改質器2に設けられている燃焼器2aは、燃料電池Gの燃料極10から排出されるオフガス(水素が残留しているガス)と、受入部41から流路28を介して供給されたLPガスとが燃料として供給され、その燃料をブロア7から供給される燃焼用空気を用いて燃焼させて、改質器2を加熱するように構成されている。
そして、燃焼器2aに供給されるLPガスが流通する流路28には、流路28を流通するLPガスの質量流量を計測する熱式質量流量計25(燃焼用LPガス質量流量計の一例)と、流路28を流通するLPガスの流量を調整可能な調整弁22とが設けられている。
この熱式質量流量計25で計測されるLPガスの質量流量も、LPガスボンベの残量の減少に伴って脱硫器1等に供給されるLPガス中のプロパン及びブタンの成分割合が変化しても、前記成分割合に関わらずLPガスの炭素量及び発熱量にほぼ一定の比例定数で比例するものとなる。
そして、制御部30に構成された運転条件設定手段31は、例えば、本生成装置Pの処理量、即ち、熱式質量流量計24で計測されるLPガスの質量流量に基づいて、改質器2の加熱量、即ち燃焼器2aの燃焼量を決定して、燃焼器2aにオフガス以外に補充する必要があるLPガスの質量流量を運転条件として設定し、さらに、熱式質量流量計25で計測される燃焼器2aへのLPガスの質量流量に基づいて、燃焼器2aに燃焼用空気を供給するためのファン7の出力を調整して、燃焼器2aに供給する燃焼用空気の流量を運転条件として設定する。
結果、燃焼器2aに供給される燃焼用空気の流量は、熱式質量流量計25のLPガスの組成の変化に追従する計測結果に基づいて設定されるので、燃焼器における空燃比をそのLPガスの組成にあった好ましいものとすることができ、さらに、燃焼器2aに供給されるLPガスは質量流量が設定されるので、LPガスの組成の変化により燃焼器2aの燃焼量が変化することを抑制することができる。
【0031】
上記実施の形態で、質量流量計として比較的安価な熱式質量流量計を使用したが、別に、他の質量流量計、例えば、差圧式質量流量計等の直接形質量流量計や、体積流量計と密時計とを組み合わせた間接形質量流量計等を用いることもできる。
【図面の簡単な説明】
【図1】 燃料電池システムの概略構成図
【符号の説明】
1 脱硫器
2 改質器(改質処理部)
2a 燃焼器(改質処理部加熱手段)
3 CO変成器
4 CO選択酸化反応器
10 燃料極
21 調整弁
22 調整弁
23 調整弁
24 熱式質量流量計(改質用LPガス質量流量計)
25 熱式質量流量計(燃焼用LPガス質量流量計)
26 流量計
31 運転条件設定手段
40 LPガスボンベ
41 受入部(LPガス受入部)
100 燃料電池システム
P 水蒸気生成装置
G 燃料電池[0001]
BACKGROUND OF THE INVENTION
The present invention includes an LP gas receiving unit to which LP gas is supplied, a reforming unit that is heated by a reforming unit heating unit and reforms the LP gas using water vapor to generate a hydrogen-containing gas. ,
LP gas flow rate measuring means for measuring the flow rate of the LP gas;
An LP gas hydrogen-containing gas generating device including operating condition setting means for setting operating conditions of the reforming unit based on the LP gas flow rate measured by the LP gas flow rate measuring means, and The present invention relates to a fuel cell system.
[0002]
[Prior art]
The hydrogen-containing gas generating apparatus as described above includes a reforming processing unit that reforms raw fuel gas into a reforming processing gas containing hydrogen gas and carbon monoxide gas with water vapor, and further includes the reforming processing gas in the reforming processing gas. A conversion treatment unit that converts carbon monoxide gas into carbon dioxide gas, a carbon monoxide selective oxidation treatment unit that selectively oxidizes carbon monoxide in the conversion treatment gas, etc. A hydrogen-containing hydrogen-containing gas having a low carbon monoxide concentration (for example, 10 ppm or less), and the generated hydrogen-containing gas is, for example, a fuel for a power generation reaction in a fuel cell Used as gas.
[0003]
Further, in such a hydrogen-containing gas generation device, a volumetric flow meter that measures the volume flow rate of the raw fuel gas supplied to the reforming processing unit, and a fuel supplied to the combustor as the reforming processing unit heating means A volume flow meter that measures the volume flow rate of gas and a control unit that functions as an operation condition setting unit that sets operation conditions in the reforming processing unit based on the measurement results of the respective volume flow meters may be provided. .
[0004]
That is, the control unit adjusts the flow rate of the raw fuel gas supplied to the reforming processing unit so that the power output of the fuel cell follows the power load, and is further supplied to the reforming processing unit. The volume flow rate of the raw fuel gas is measured with a general volume flow meter, and based on the measurement result of the volume flow meter, the flow rate of water supplied to the steam generation unit is set and supplied to the reforming processing unit. The flow rate of water vapor may be set to an appropriate value as the operating condition.
Further, in order to heat the reforming processing unit with a combustor as a reforming processing unit heating means and maintain the reforming processing temperature at an appropriate reforming processing temperature, the volume flow rate of the fuel gas supplied to the combustor is adjusted, The volume flow rate of the fuel gas supplied to the combustor is measured with a general volume flow meter, and the flow rate of the combustion air supplied to the combustor is appropriately set as the operating condition based on the measurement result of the volume flow meter. May be set to anything.
[0005]
On the other hand, when such a fuel cell system is used on a vehicle or in a remote area where the raw fuel gas supply conduit does not reach, the hydrogen-containing gas generator is supplied with the raw fuel gas and An LP gas hydrogen-containing gas generation device that uses LP gas (liquefied petrolium gas) that is stored under pressure and liquefaction in an LP gas cylinder or the like as fuel gas supplied to the combustor may be configured.
[0006]
[Problems to be solved by the invention]
Such LP gas is mainly composed of low-molecular hydrocarbon gases such as propane and butane produced in petroleum refining and the ratio of each gas component may change. In particular, the proportion of propane and butane changes as the amount of LP gas remaining in the LP gas cylinder decreases. Specifically, in the initial stage of LP cylinder gas use, propane having a low boiling point is almost (95%). When the remaining amount of the LP gas cylinder is reduced, the proportion of butane occupies almost half, and particularly the proportion of isobutane becomes very high.
[0007]
Then, in the fuel cell system that supplies LP gas as raw fuel gas to the hydrogen gas generating apparatus for LP gas, the ratio of propane and butane in LP gas changes, and as described in the section of the prior art In the case where various operating conditions are set based on the volume flow rate of LP gas measured by the volume flow meter by the control unit, as shown in Table 1 below, the propane and isobutane contained in LP gas Since the carbon amount and calorific value per unit volume are different, the carbon amount and calorific value of the LP gas supplied to the reforming unit will change, making it very difficult to set the operating conditions of the reforming unit. It becomes.
For example, the flow rate of water vapor supplied to the reforming process unit needs to be set to follow the change in the carbon content of the LP gas flow because the steam-carbon ratio in the reforming process unit needs to be constant. Similarly, the flow rate of the combustion air supplied to the combustor must follow the change in the composition of the LP gas because the air-fuel ratio in the combustor must match the composition of the fuel gas. Such a control mechanism is very complicated and expensive.
Further, when the amount of heat generated by the LP gas changes, the amount of combustion of the combustor changes even if the volume flow rate of the LP gas supplied to the combustor for heating the reforming unit is constant, resulting in reforming. The temperature of the processing unit may change.
[0008]
[Table 1]
Figure 0003963710
[0009]
In order to avoid such problems, the LP gas used as the raw fuel gas is limited to a highly refined one so that the composition of the raw fuel gas does not change, or the composition of the LP gas is significantly unstable. Although it is conceivable to replace the LP gas cylinder with a new one before becoming, any method has a problem that the raw fuel cost becomes high.
[0010]
Therefore, in view of the above circumstances, the present invention is a hydrogen-containing gas generating device for LP gas that uses LP gas that can be obtained from an LP gas cylinder or the like as raw fuel gas, even when the composition of LP gas changes. An object of the present invention is to provide a technique capable of appropriately performing output control or the like with a simple configuration and maintaining a good operation state.
[0011]
[Means for Solving the Problems]
[Configuration 1]
The hydrogen-containing gas generating device for LP gas according to the present invention, as described in claim 1, is heated by an LP gas receiving unit to which LP gas is supplied and a reforming processing unit heating means, and converts the LP gas into water vapor. A reforming processing unit for generating a hydrogen-containing gas by reforming using
LP gas flow rate measuring means for measuring the flow rate of the LP gas with a mass flow meter ;
Based on the flow rate of the LP gas to be measured by the LP gas flow rate measuring means, in the hydrogen-containing gas generator for LP gas having an operating condition setting means for setting the operating conditions of the reforming unit,
The LP gas flow rate measuring means is a reforming LP gas mass flow meter for measuring a mass flow rate of the LP gas supplied from the LP gas receiving unit to the reforming unit;
The operating condition setting means sets the flow rate of the steam supplied to the reforming processing unit as the operating condition based on the mass flow rate of the LP gas measured by the reforming LP gas mass flow meter. It is characterized by being.
[0012]
[Function and effect]
According to the hydrogen-containing gas generation apparatus for LP gas of this configuration, the direct-type mass flow rate of the system that detects the amount proportional to the mass flow rate of the gas as the LP gas flow rate measurement means for setting the operating conditions of the reforming processing unit The mass flow rate of LP gas measured by this mass flow meter is shown in the table below by configuring the meter or an indirect mass flow meter that detects the mass flow rate by detecting the volume flow rate and density of the gas. As shown in FIG. 2, since it is approximately proportional to the amount of carbon and the calorific value of LP gas, the operating conditions of the hydrogen-containing gas generation device for LP gas are determined based on the measured mass flow rate. It can be set to a value suitable for the carbon amount and the calorific value of the gas, and the operation state of the LP-containing hydrogen-containing gas generating device can be maintained at a preferable level.
[0013]
[Table 2]
Figure 0003963710
[0014]
Further, according to the hydrogen gas generating apparatus for LP gas of this configuration, the mass flow rate of the LP gas supplied to the reforming processing unit is measured by the reforming LP gas mass flow meter, and the operating condition setting means The flow rate of steam supplied to the reforming unit that requires a constant steam-carbon ratio to follow the carbon amount of the LP gas supplied to the reforming unit according to the mass flow rate of LP gas that is approximately proportional to the carbon amount Can be set appropriately and simply as operating conditions.
[0015]
[Configuration 2 ]
The LP gas hydrogen-containing gas generating device according to the present invention, as described in claim 2 , in addition to the configuration of the LP gas hydrogen-containing gas generating device of the above configuration 1 , Composed of a combustor that burns LP gas supplied from the LP gas receiving unit with combustion air,
The LP gas flow rate measuring means is a combustion LP gas mass flow meter for measuring a mass flow rate of the LP gas supplied from the LP gas receiving unit to the combustor;
The operation condition setting unit, based on the mass flow rate of the LP gas to be measured by the combustion LP gas mass flow meter, means for setting as the operating conditions are also the flow rate of the combustion air supplied to the combustor It is characterized by being.
[0016]
[Function and effect]
According to the hydrogen gas generating apparatus for LP gas of this configuration, the mass flow rate of the LP gas supplied to the combustor as the reforming unit heating means is measured by the combustion LP gas mass flow meter, and the operating condition setting means Therefore, the flow rate of the combustion air supplied to the combustor is adjusted so that the air-fuel ratio in the combustor is in accordance with the composition of the fuel gas in accordance with the mass flow rate of the LP gas that is substantially proportional to the carbon amount and the calorific value. The operating conditions can be set appropriately and easily.
[0017]
[Configuration 3]
An LP gas receiving unit to which LP gas is supplied, a reforming unit that is heated by a reforming unit heating unit and reforms the LP gas with water vapor to generate a hydrogen-containing gas;
LP gas flow rate measuring means for measuring the flow rate of the LP gas with a mass flow meter;
In the LP gas hydrogen-containing gas generating device comprising the operating condition setting means for setting the operating condition of the reforming unit based on the flow rate of the LP gas measured by the LP gas flow rate measuring means,
The reforming processing unit heating means is composed of a combustor that burns LP gas supplied from the LP gas receiving unit with combustion air,
The LP gas flow rate measuring means is a combustion LP gas mass flow meter for measuring the mass flow rate of the LP gas supplied from the LP gas receiving unit to the combustor ,
The operating condition setting means is a means for setting the flow rate of the combustion air supplied to the combustor as the operating condition based on the mass flow rate of the LP gas measured by the combustion LP gas mass flow meter. It is characterized by being.
[0018]
[Function and effect]
According to the hydrogen gas generating apparatus for LP gas of this configuration, the mass flow rate of the LP gas supplied to the combustor as the reforming unit heating means is measured by the combustion LP gas mass flow meter, and the operating condition setting means Therefore, the flow rate of the combustion air supplied to the combustor is adjusted so that the air-fuel ratio in the combustor is in accordance with the composition of the fuel gas in accordance with the mass flow rate of the LP gas that is substantially proportional to the carbon amount and the calorific value. The operating conditions can be set appropriately and easily.
[0019]
[Configuration 4]
The hydrogen-containing gas generating device for LP gas according to the present invention, as described in claim 4, in addition to the configuration of the hydrogen-containing gas generating device for LP gas according to any one of the first to third configurations, Is configured as a thermal mass flow meter.
[0020]
[Function and effect]
According to the hydrogen-containing gas generating apparatus for LP gas of this configuration, a thermal mass flow meter that can be configured inexpensively and easily can be used as the mass flow meter.
In general, a thermal mass flow meter is provided with heating heating wires in the gas flow, and further provided with temperature detectors on the upstream and downstream sides thereof, so that the gas passing through the heating heat transfer wires is heated. This is a method for obtaining a mass flow rate by measuring a temperature change caused by the above. Therefore, when measuring the mass flow rate of the mixed gas with such a thermal mass flow meter, if the specific heat changes due to the change in the composition of the mixed gas, the measurement result changes, but the propane and isobutane in the LP gas change. Means that the difference in specific heat per unit mass (mass average specific heat) is only about 0.6%, as shown in Table 3 below. Yes, the difference is smaller than the specific heat per unit volume (volume average specific heat). Therefore, since the specific heat of such LP gas mainly containing propane and isobutane hardly changes even if the composition changes, the mass flow rate can be measured well with a thermal mass flow meter.
[0021]
[Table 3]
Figure 0003963710
[0022]
[Configuration 5 ]
According to the hydrogen-containing gas generating device for LP gas according to the present invention, as described in claim 5 , in addition to the configuration of the hydrogen-containing gas generating device for LP gas according to any one of the above configurations 1 to 4, the LP gas The receiving portion is configured to receive LP gas stored in the LP gas cylinder by being pressurized and liquefied from the LP gas cylinder.
[0023]
[Function and effect]
According to the hydrogen gas generating apparatus for LP gas of this configuration, when LP gas is supplied to the LP gas receiving unit from an LP gas cylinder in which the ratio of propane and butane in the LP gas may change significantly depending on the remaining amount However, by measuring the mass flow rate of the LP gas supplied to the reforming unit, each operating condition can be easily set to an appropriate one, and it contains hydrogen for LP gas regardless of the remaining amount of the LP gas cylinder. The operating state of the gas generator can be maintained at a preferable level.
[0024]
[Configuration 6 ]
The fuel cell system according to the present invention, as set forth in claim 6, the LP gas hydrogen-containing gas generator according to any one of 5 the above configuration 1, the hydrogen from the LP gas containing hydrogen gas generator It is provided with a fuel cell that is supplied with contained gas and generates power.
[0025]
[Function and effect]
As described above, the fuel cell system of this configuration can easily set the operating condition of the hydrogen-containing gas generating device for LP gas to a value suitable for the carbon amount and the calorific value of LP gas even if the composition of LP gas changes. Since it can be set, for example, it is possible to control the processing amount of the hydrogen-containing gas generating device for LP gas so as to stably follow the power load of the fuel cell, and the operating state of the fuel cell system is preferable. Can be kept on things.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a hydrogen-containing gas generating device for LP gas (hereinafter referred to as the present generating device) according to the present invention will be described with reference to the drawings.
The generator P shown in FIG. 1 is provided in the fuel cell system 100, and LP gas stored in the LP gas cylinder 40 by being pressurized and liquefied in the LP gas cylinder 40 from the LP gas cylinder 40 to the receiving unit 41 (an example of the LP gas receiving unit). Is supplied as raw fuel gas, and the LP gas is reformed using steam to generate a hydrogen-rich hydrogen-containing gas with a low CO concentration (for example, 10 ppm or less). The generated hydrogen-containing gas is supplied to the fuel electrode 10 of the fuel cell G.
On the other hand, the fuel cell G is a solid polymer type having a polymer membrane as an electrolyte 11, although detailed description is omitted, and hydrogen in a hydrogen-containing gas supplied from the generating device P to the fuel electrode 10, Electricity is generated by an electrochemical reaction with oxygen in the reaction air supplied from the blower 7 to the oxygen electrode 12.
[0027]
Specifically, the generation device P includes a desulfurizer 1 that desulfurizes LP gas supplied from the receiving unit 41 through the flow path 27, and a steam generator 6 that generates water vapor by heating the supplied water. The desulfurization raw fuel gas heated by the combustor 2a as the reformer heating means and supplied from the desulfurizer 1 is converted into a gas containing H 2 and CO using the water vapor generated by the steam generator 6. Reformer 2 (an example of a reforming processing unit) for quality treatment, and a CO converter for converting by changing CO in the reforming gas supplied from the reformer 2 into CO 2 using steam 3, a CO selective oxidation reactor 4 that selectively oxidizes CO by selectively oxidizing CO in the shift gas supplied from the CO converter 3, and a control that controls the operating conditions of the hydrogen-containing gas generator The unit 30 and the like are provided.
[0028]
Further, in the flow path 27 through which the LP gas supplied to the desulfurizer 1 circulates, a thermal mass flow meter 24 (of a reforming LP gas mass flow meter) that measures the mass flow rate of the LP gas flowing through the flow path 27 An example) and an adjustment valve 21 capable of adjusting the flow rate of LP gas flowing through the flow path 27 are provided, and the adjustment valve 21 is configured so that the power output of the fuel cell G follows the power load by the control unit 30. Adjusted to
The mass flow rate of LP gas measured by the thermal mass flow meter 24 is changed even if the component ratios of propane and butane in the LP gas supplied to the desulfurizer 1 and the like change as the remaining amount of the LP gas cylinder decreases. Regardless of the component ratio, it is proportional to the carbon amount and the calorific value of the LP gas with a substantially constant proportional constant.
[0029]
Furthermore, the water vapor generating device 6 is supplied with raw material water from a flow path 29, and the flow path 29 has a flow meter 26 for measuring the flow rate of water flowing through the flow path 29 and water flowing through the flow path 29. An adjustment valve 23 capable of adjusting the flow rate is provided.
Then, the operating condition setting means 31 configured in the control unit 30 supplies the reformer 2 based on the processing amount of the generator P, that is, the mass flow rate of the LP gas measured by the thermal mass flow meter 24. In order to set the steam flow rate to be operated as the operating condition of the reformer 2, the regulating valve 23 is operated while the flow rate of water is measured by the flow meter 26, and is supplied to the processing amount of the steam generation device 6, that is, the steam generation device 6. Set the water flow rate.
As a result, the steam flow rate supplied to the reformer 2 is set based on a measurement result that is substantially proportional to the carbon content of the LP gas of the thermal mass flow meter 24. The steam / carbon ratio in the reformer 2 can be maintained at a preferable value so as to be a predetermined value.
[0030]
Further, the combustor 2 a provided in the reformer 2 supplies an off-gas (a gas in which hydrogen remains) discharged from the fuel electrode 10 of the fuel cell G and the receiving portion 41 through the flow path 28. The reformed gas is supplied as fuel, and the fuel is combusted using the combustion air supplied from the blower 7 to heat the reformer 2.
A thermal mass flow meter 25 (an example of a combustion LP gas mass flow meter) that measures the mass flow rate of LP gas flowing through the flow channel 28 is provided in the flow channel 28 through which LP gas supplied to the combustor 2a flows. ) And an adjustment valve 22 capable of adjusting the flow rate of the LP gas flowing through the flow path 28.
The mass flow rate of the LP gas measured by the thermal mass flow meter 25 also changes the component ratio of propane and butane in the LP gas supplied to the desulfurizer 1 and the like as the remaining amount of the LP gas cylinder decreases. However, regardless of the ratio of the components, it is proportional to the carbon amount and the calorific value of LP gas with a substantially constant proportional constant.
And the operating condition setting means 31 comprised in the control part 30 is based on the throughput of this production | generation apparatus P, ie, the mass flow rate of LP gas measured with the thermal mass flowmeter 24, for example, a reformer 2, that is, the combustion amount of the combustor 2 a is determined, and the mass flow rate of LP gas that needs to be supplemented to the combustor 2 a other than off-gas is set as an operating condition. Based on the measured mass flow rate of LP gas to the combustor 2a, the output of the fan 7 for supplying combustion air to the combustor 2a is adjusted, and the flow rate of combustion air supplied to the combustor 2a is adjusted. Set as operating conditions.
As a result, the flow rate of the combustion air supplied to the combustor 2a is set based on the measurement result following the change in the LP gas composition of the thermal mass flow meter 25, so the air-fuel ratio in the combustor is set to the LP The LP gas supplied to the combustor 2a is set to have a mass flow rate, so that the combustion amount of the combustor 2a changes due to the change in the LP gas composition. This can be suppressed.
[0031]
In the above embodiment, a relatively inexpensive thermal mass flow meter is used as the mass flow meter. However, another mass flow meter, for example, a direct mass flow meter such as a differential pressure mass flow meter, a volume flow rate, etc. An indirect mass flow meter that combines a meter and a fine clock can also be used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a fuel cell system.
1 Desulfurizer 2 Reformer (reformation processing section)
2a Combustor (reforming treatment section heating means)
3 CO converter 4 CO selective oxidation reactor 10 Fuel electrode 21 Regulating valve 22 Regulating valve 23 Regulating valve 24 Thermal mass flow meter (LP gas mass flow meter for reforming)
25 Thermal mass flow meter (LP gas mass flow meter for combustion)
26 Flowmeter 31 Operating condition setting means 40 LP gas cylinder 41 Receiving part (LP gas receiving part)
100 Fuel Cell System P Water Vapor Generator G Fuel Cell

Claims (6)

LPガスが供給されるLPガス受入部と、改質処理部加熱手段により加熱されて、前記LPガスを水蒸気を用いて改質処理して水素含有ガスを生成する改質処理部と、
質量流量計により前記LPガスの流量を計測するLPガス流量計測手段と、
前記LPガス流量計測手段で計測される前記LPガスの流量に基づいて、前記改質処理部の運転条件を設定する運転条件設定手段を備えたLPガス用水素含有ガス生成装置において
前記LPガス流量計測手段が、前記LPガス受入部から前記改質処理部へ供給される前記LPガスの質量流量を計測する改質用LPガス質量流量計であり、
前記運転条件設定手段が、前記改質用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記改質処理部に供給する前記水蒸気の流量を前記運転条件として設定する手段であるLPガス用水素含有ガス生成装置。
An LP gas receiving unit to which LP gas is supplied, a reforming unit that is heated by a reforming unit heating unit and reforms the LP gas with water vapor to generate a hydrogen-containing gas;
LP gas flow rate measuring means for measuring the flow rate of the LP gas with a mass flow meter ;
Based on the flow rate of the LP gas to be measured by the LP gas flow rate measuring means, in the hydrogen-containing gas generator for LP gas having an operating condition setting means for setting the operating conditions of the reforming unit,
The LP gas flow rate measuring means is a reforming LP gas mass flow meter for measuring a mass flow rate of the LP gas supplied from the LP gas receiving unit to the reforming unit;
The operating condition setting means sets the flow rate of the steam supplied to the reforming processing unit as the operating condition based on the mass flow rate of the LP gas measured by the reforming LP gas mass flow meter. A hydrogen-containing gas generator for LP gas.
前記改質処理部加熱手段が、前記LPガス受入部から供給されたLPガスを燃焼用空気により燃焼させる燃焼器で構成され、
前記LPガス流量計測手段が、前記LPガス受入部から前記燃焼器へ供給される前記LPガスの質量流量を計測する燃焼用LPガス質量流量計であり、
前記運転条件設定手段が、前記燃焼用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記燃焼器に供給する前記燃焼用空気の流量を前記運転条件として設定する手段である請求項1に記載のLPガス用水素含有ガス生成装置。
The reforming processing unit heating means is composed of a combustor that burns LP gas supplied from the LP gas receiving unit with combustion air,
The LP gas flow rate measuring means is a combustion LP gas mass flow meter for measuring a mass flow rate of the LP gas supplied from the LP gas receiving unit to the combustor;
The operation condition setting unit, based on the mass flow rate of the LP gas to be measured by the combustion LP gas mass flow meter, means for setting as the operating conditions are also the flow rate of the combustion air supplied to the combustor The hydrogen-containing gas generator for LP gas according to claim 1 .
LPガスが供給されるLPガス受入部と、改質処理部加熱手段により加熱されて、前記LPガスを水蒸気を用いて改質処理して水素含有ガスを生成する改質処理部と、An LP gas receiving unit to which LP gas is supplied, a reforming unit that is heated by a reforming unit heating unit and reforms the LP gas with water vapor to generate a hydrogen-containing gas;
質量流量計により前記LPガスの流量を計測するLPガス流量計測手段と、LP gas flow rate measuring means for measuring the flow rate of the LP gas with a mass flow meter;
前記LPガス流量計測手段で計測される前記LPガスの流量に基づいて、前記改質処理部の運転条件を設定する運転条件設定手段を備えたLPガス用水素含有ガス生成装置において、In the LP gas hydrogen-containing gas generating device comprising the operating condition setting means for setting the operating condition of the reforming unit based on the flow rate of the LP gas measured by the LP gas flow rate measuring means,
前記改質処理部加熱手段が、前記LPガス受入部から供給されたLPガスを燃焼用空気により燃焼させる燃焼器で構成され、The reforming processing unit heating means is composed of a combustor that burns LP gas supplied from the LP gas receiving unit with combustion air,
前記LPガス流量計測手段が、前記LPガス受入部から前記燃焼器へ供給される前記LPガスの質量流量を計測する燃焼用LPガス質量流量計であり、The LP gas flow rate measuring means is a combustion LP gas mass flow meter for measuring a mass flow rate of the LP gas supplied from the LP gas receiving unit to the combustor;
前記運転条件設定手段が、前記燃焼用LPガス質量流量計で計測される前記LPガスの質量流量に基づいて、前記燃焼器に供給する前記燃焼用空気の流量を前記運転条件として設定する手段であるLPガス用水素含有ガス生成装置。The operating condition setting means is a means for setting the flow rate of the combustion air supplied to the combustor as the operating condition based on the mass flow rate of the LP gas measured by the combustion LP gas mass flow meter. A hydrogen-containing gas generator for LP gas.
前記質量流量計が熱式質量流量計として構成されている請求項1から3の何れか1項に記載のLPガス用水素含有ガス生成装置。  The hydrogen-containing gas generating device for LP gas according to any one of claims 1 to 3, wherein the mass flow meter is configured as a thermal mass flow meter. 前記LPガス受入部が、LPガスボンベに加圧液化されて貯留されているLPガスが、前記LPガスボンベから受け入れるように構成されている請求項1から4の何れか1項に記載のLPガス用水素含有ガス生成装置。The LP gas receiving unit according to any one of claims 1 to 4 , wherein the LP gas receiving unit is configured to receive LP gas stored in the LP gas cylinder under pressure and liquefaction from the LP gas cylinder. Hydrogen-containing gas generator. 請求項1からの何れか1項に記載のLPガス用水素含有ガス生成装置と、前記LPガス用水素含有ガス生成装置から前記水素含有ガスが供給され発電を行なう燃料電池を備えた燃料電池システム。6. A fuel cell comprising: the hydrogen-containing gas generator for LP gas according to any one of claims 1 to 5 ; and a fuel cell that generates electricity by being supplied with the hydrogen-containing gas from the hydrogen-containing gas generator for LP gas. system.
JP2001350086A 2001-11-15 2001-11-15 Hydrogen-containing gas generator for LP gas and fuel cell system Expired - Lifetime JP3963710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350086A JP3963710B2 (en) 2001-11-15 2001-11-15 Hydrogen-containing gas generator for LP gas and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350086A JP3963710B2 (en) 2001-11-15 2001-11-15 Hydrogen-containing gas generator for LP gas and fuel cell system

Publications (2)

Publication Number Publication Date
JP2003146609A JP2003146609A (en) 2003-05-21
JP3963710B2 true JP3963710B2 (en) 2007-08-22

Family

ID=19162662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350086A Expired - Lifetime JP3963710B2 (en) 2001-11-15 2001-11-15 Hydrogen-containing gas generator for LP gas and fuel cell system

Country Status (1)

Country Link
JP (1) JP3963710B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207052A (en) * 2002-12-25 2004-07-22 Yazaki Corp Fuel gas supplying method to fuel cell system and its apparatus
JP4870909B2 (en) * 2004-01-23 2012-02-08 大阪瓦斯株式会社 Fuel cell power generator
EP1784883B1 (en) * 2004-07-28 2012-12-12 Ceramic Fuel Cells Limited Fuel cell system
JP5102938B2 (en) * 2005-03-29 2012-12-19 三洋電機株式会社 Fuel cell power generation system and starting method thereof
JP5781810B2 (en) * 2011-03-31 2015-09-24 大阪瓦斯株式会社 Fuel cell system
EP2750232B1 (en) * 2011-08-25 2019-04-17 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating the same
JP5991631B2 (en) * 2012-03-08 2016-09-14 パナソニックIpマネジメント株式会社 Hydrogen generator, operating method thereof, and fuel cell system
JP2013189884A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Reformed gas supply device
JP7024380B2 (en) * 2017-12-21 2022-02-24 株式会社アイシン Fuel cell system

Also Published As

Publication number Publication date
JP2003146609A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US6290913B1 (en) Apparatus for reducing concentration of carbon monoxide
KR100466381B1 (en) Fuel reforming system
US6884533B2 (en) Utilization based power plant control system
JP4619753B2 (en) Fuel cell operation control method and system therefor
JP3963710B2 (en) Hydrogen-containing gas generator for LP gas and fuel cell system
JP4533747B2 (en) Fuel control for steam generation in fuel processor in low temperature fuel cell power plant
JP4325270B2 (en) Operation control method of fuel cell power generator
JPWO2005018035A1 (en) FUEL CELL POWER GENERATION SYSTEM, METHOD FOR DETECTING DEGRADATION OF THE REFORMER, AND FUEL CELL POWER GENERATION METHOD
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
JP2006049056A (en) Fuel cell system and control method
JP3782665B2 (en) Method of operating a steam reforming plant of hydrocarbons, in particular methanol, and corresponding plant
WO2012091033A1 (en) Fuel cell system
JP5705577B2 (en) Fuel cell system
JP2004288505A (en) Reforming device for fuel cell
JP4945878B2 (en) Hydrogen generator
JP2002179404A (en) Operation control system for fuel reformer
JP4791698B2 (en) Reformed fuel cell system and operation control method for reformed fuel cell system
JP2008010260A (en) Starting method of fuel cell system
JP2007109590A (en) Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell
JP2009080944A (en) Device for generating fuel cell power
US7717970B2 (en) Fuel reforming device
JP5687052B2 (en) Fuel cell system
JP2005150044A (en) Control method of water flow rate for reforming steam
JP2001180906A (en) Hydrogen producing equipment
JP2005259495A (en) Reformer for fuel cell, fuel cell system using it, and operation control method of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Ref document number: 3963710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

EXPY Cancellation because of completion of term