JPH10118874A - Minute interval driving mechanism - Google Patents

Minute interval driving mechanism

Info

Publication number
JPH10118874A
JPH10118874A JP30107096A JP30107096A JPH10118874A JP H10118874 A JPH10118874 A JP H10118874A JP 30107096 A JP30107096 A JP 30107096A JP 30107096 A JP30107096 A JP 30107096A JP H10118874 A JPH10118874 A JP H10118874A
Authority
JP
Japan
Prior art keywords
driving
drive mechanism
drive
driving mechanism
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30107096A
Other languages
Japanese (ja)
Inventor
Masaru Tanaka
勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP30107096A priority Critical patent/JPH10118874A/en
Publication of JPH10118874A publication Critical patent/JPH10118874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple, quick response, accurate and high rigidity minute interval driving mechanism which can be manufactured with ease. SOLUTION: Each one of piezoelectric elements 13a to 13d is arranged at each of four corners between a fixed platen 11 with a datum face 11a and an intermediate moving platen 12, constituting a first drive mechanism 10A, and each one of piezoelectric elements 15a to 15d is arranged at each of four corners between the intermediate moving platen 12 and a moving platen 14, constituting a second drive mechanism 10B, providing a strong two-storied structure. The three dimensional driving and positioning of the moving platen 14 become possible by superposing the driving and positioning in a plane parallel with the datum face 11a by inclining the intermediate platen 12 by extending and contracting each piezoelectric element of the first drive mechanism 10A and correcting the inclination of the moving platen by extending and contracting each piezoelectric element of the second drive mechanism 10B, and the three dimensional on the driving and positioning in the direction orthogonal to the datum face 11a by equally extending and contracting two sets of four piezoelectric elements of each driving mechanism simultaneously or only one set.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は精密加工装置や半導
体製造装置などの精密位置決めテーブルとして用いる二
次元又は三次元位置決め装置の微小距離駆動機構に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a minute distance driving mechanism of a two-dimensional or three-dimensional positioning device used as a precision positioning table of a precision processing device, a semiconductor manufacturing device, or the like.

【0002】[0002]

【従来の技術】従来、微小距離駆動機構として図5に示
す公知の技術がある。このものは、弾性体を切り抜きし
て平行ばね要素を形成したガイド枠1に、圧電素子又は
磁歪素子等からなるX軸アクチュエータ4,Y軸アクチ
ュエータ3,Z軸アクチュエータ2を組み込み、各アク
チュエータ2,3,4にそれぞれ目的に応じた信号を送
って伸縮させることにより、X軸方向は7の部分、Y軸
方向は6の部分、Z軸方向は5の部分がそれぞれ平行ば
ねとして歪み基準となる固定端1aに対して移動端1b
を変位させるものである。
2. Description of the Related Art Conventionally, there is a known technique shown in FIG. In this apparatus, an X-axis actuator 4, a Y-axis actuator 3, and a Z-axis actuator 2 made of a piezoelectric element or a magnetostrictive element are incorporated in a guide frame 1 in which a parallel spring element is formed by cutting out an elastic body. By transmitting a signal according to the purpose to each of 3 and 4, and expanding and contracting, a portion of 7 in the X-axis direction, a portion of 6 in the Y-axis direction, and a portion of 5 in the Z-axis direction are used as parallel springs and serve as distortion standards. Moving end 1b with respect to fixed end 1a
Is displaced.

【0003】[0003]

【発明が解決しようとする課題】従来の技術で述べた図
5に示す公知の技術は、ガイド枠1の形状が複雑で加工
し難く製作に手間がかかり、製作費が高くなるとともに
弾性体であるため剛性不足になり易いという問題を有し
ている。本発明は従来の技術の有するこのような問題点
に鑑みなされたものであり、その目的とするところは製
作が容易で剛性の高い微小距離駆動機構を提供しようと
するものである。
According to the known technique shown in FIG. 5 which is described in the prior art, the shape of the guide frame 1 is complicated and difficult to process. Therefore, there is a problem that the rigidity tends to be insufficient. SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art, and has as its object to provide a minute distance driving mechanism which is easy to manufacture and has high rigidity.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の微小距離駆動機構は、基準となる面を有する
固定台と中間移動台との間に伸縮軸を直角にして配設さ
れた少なくとも3個の微小伸縮可能な第1駆動部材と、
前記中間移動台と移動台との間に伸縮軸を直角にして配
設された少なくとも3個の微小伸縮可能な第2駆動部材
と、前記第1駆動部材と第2駆動部材とを同期して制御
する駆動制御手段とからなり、第1及び第2の各駆動部
材を同時にそれぞれ伸縮させ中間移動台を傾斜させると
ともにこの傾斜を補うように移動台を傾斜させることに
よる基準面と平行方向の駆動・位置決めと全駆動部材又
は第1駆動部材或いは第2駆動部材を同時に等量伸縮さ
せることによる基準面と直角方向の駆動・位置決めとを
重量させて三次元の任意の方向に移動台の駆動・位置決
めを可能にしたものである。また第1駆動部材及び第2
駆動部材は圧電素子であるものである。また、第1駆動
部材及び第2駆動部材は磁歪素子であるものである。
In order to achieve the above object, a minute distance driving mechanism according to the present invention is disposed between a fixed base having a reference surface and an intermediate movable base with a telescopic axis at right angles. At least three minutely extendable first drive members;
At least three minutely expandable and contractible second drive members disposed between the intermediate movable table and the movable table with a telescopic axis at right angles, and the first and second drive members are synchronized with each other. A driving control means for controlling the first and second driving members to simultaneously extend and contract, respectively, to tilt the intermediate moving table, and to tilt the moving table so as to compensate for the inclination, thereby driving in a direction parallel to the reference plane.・ Positioning and driving in the direction perpendicular to the reference plane by simultaneously expanding and contracting all the driving members or the first driving member or the second driving member by the same amount. This enables positioning. In addition, the first driving member and the second
The driving member is a piezoelectric element. The first driving member and the second driving member are magnetostrictive elements.

【0005】上述のように構成されている微小距離駆動
機構によれば、第1駆動部材と第2駆動部材、例えば第
1圧電素子と第2圧電素子とを同期して駆動するとこに
より、微小な範囲内において移動台を基準面と平行な面
内と、基準面と直角な方向との三次元方向に任意に高
速,正確に駆動可能で、構造が簡素なだけ故障が少な
く、剛性に優れ製作費が安いという利点を有している。
According to the micro-distance driving mechanism configured as described above, the first driving member and the second driving member, for example, the first piezoelectric element and the second piezoelectric element are driven synchronously, so that The movable table can be arbitrarily driven at high speed and accurately in a three-dimensional direction in a plane parallel to the reference plane and in a direction perpendicular to the reference plane within a simple range. It has the advantage of low production costs.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図1の微小
距離駆動機構の斜視図、図2の断面図、図3の駆動位置
決め制御の動作説明図、図4の駆動制御装置のブロック
線図にもとづいて説明する。尚、全図とも微小距離駆動
機構のカバーは省略されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to a perspective view of a minute distance driving mechanism shown in FIG. 1, a sectional view shown in FIG. 2, an operation explanatory view of driving positioning control shown in FIG. A description will be given based on the diagram. In all the drawings, the cover of the minute distance driving mechanism is omitted.

【0007】図1において、本発明の微小距離駆動機構
10は基準となる面11aを有するほぼ正方形の固定台
11と、これと同形状の中間移動台12との間の四隅部
分に複数個、本実施例では4個の第1駆動部材13a,
13b,13c,13dが固定台11の基準面11aに
対してそれぞれ伸縮軸を直角にして配設されており、固
定台11と中間移動台12とが4個の第1駆動部材13
a,13B,13c,13dを介して上下に強固に連結
された剛性のある第1駆動機構10Aが構成されてい
る。
Referring to FIG. 1, a small distance driving mechanism 10 of the present invention has a plurality of fixed bases 11 each having a substantially square shape having a reference surface 11a, and a plurality of intermediate movable bases 12 having the same shape at four corners. In this embodiment, four first driving members 13a,
13b, 13c, and 13d are disposed with their telescopic axes at right angles to the reference surface 11a of the fixed base 11, and the fixed base 11 and the intermediate movable base 12 are provided with four first driving members 13 respectively.
A first driving mechanism 10A having rigidity is firmly connected vertically through a, 13B, 13c, and 13d.

【0008】更に中間移動台12とこれと同形状の移動
台14との間の四隅部分にも4個の第2駆動部材15
a,15b,15c,15dが第1駆動部材13a,1
3b,13c,13dと同様に基準面11aに対してそ
れぞれ伸縮軸を直角にして配設されており、中間移動台
12と移動台14とが第2駆動部材15a,15b,1
5c,15dを介して強固に連結された剛性のある第2
駆動機構10Bが第1駆動機構10Aに隣接して構成さ
れている。
Further, four second driving members 15 are also provided at four corners between the intermediate movable table 12 and the movable table 14 having the same shape.
a, 15b, 15c, 15d are the first driving members 13a, 1
Similarly to 3b, 13c and 13d, the telescopic axes are respectively arranged at right angles to the reference plane 11a, and the intermediate movable table 12 and the movable table 14 are connected to the second driving members 15a, 15b, 1
5c, 15d and a rigid second
The drive mechanism 10B is configured adjacent to the first drive mechanism 10A.

【0009】第1駆動部材13a,13b,13c,1
3d及び第2駆動部材15a,15b,15c,15d
は軸方向に伸縮制御可能なものが使用され、例えば公知
の圧電素子又は磁歪素子などの駆動素子を使用すること
ができる。圧電素子はチタン酸バリウム結晶のような材
料からなるセラミックブロックで、ピエゾ効果による歪
の向きを軸方向に揃えた単位素子を電極板を介して複数
個積層した構造のものである。
The first driving members 13a, 13b, 13c, 1
3d and second drive members 15a, 15b, 15c, 15d
A device capable of controlling expansion and contraction in the axial direction is used. For example, a known driving element such as a piezoelectric element or a magnetostrictive element can be used. The piezoelectric element is a ceramic block made of a material such as a barium titanate crystal, and has a structure in which a plurality of unit elements in which the directions of distortion due to the piezo effect are aligned in the axial direction are stacked via an electrode plate.

【0010】そして後述の駆動制御装置20により駆動
信号に基づいた作動電圧を各電極板に印加すれば、その
電圧に応じて圧電素子全体の軸方向長さが正確に制御で
き、その応答性は従来のボールねじなどによるサーボ機
構に比較して1桁以上高い応答性(数100ヘルツから
数キロヘルツ)と剛性とが得られる。
When an operation voltage based on a drive signal is applied to each electrode plate by a drive control device 20, which will be described later, the axial length of the entire piezoelectric element can be accurately controlled according to the voltage, and the responsiveness is improved. Responsiveness (several hundred hertz to several kilohertz) and rigidity higher by one digit or more can be obtained as compared with a conventional servo mechanism using a ball screw or the like.

【0011】また磁歪素子は磁性体が磁化されたときに
僅かに変形する磁歪特性を利用したもので、圧電素子が
素子に印加される電圧に応じて伸縮するのと同じよう
に、素子に印加される磁場の強さに応じて伸縮するもの
であり、素子に巻かれたコイルに流れる電流を制御する
ことにより伸縮を制御する。これにより、圧電素子と同
様な効果を得ることができる。
The magnetostrictive element utilizes a magnetostrictive property in which a magnetic substance is slightly deformed when magnetized, and is applied to the element in the same manner as a piezoelectric element expands and contracts according to a voltage applied to the element. It expands and contracts according to the strength of the applied magnetic field, and controls the expansion and contraction by controlling the current flowing through the coil wound around the element. Thereby, the same effect as that of the piezoelectric element can be obtained.

【0012】次いで本発明の微小距離駆動機構10の駆
動・位置決め制御の原理を、図2,図3のX・Z平面上
における断面図によって説明する。先ず、移動台14の
X方向の駆動・位置決め制御について説明する。図3に
示すように第1駆動機構10Aの4個の駆動素子、例え
ば圧電素子のうち右側の2個13a,13bをαL1
け伸長し、左側の2個13c,13dをαL1 だけ縮小
させる。これにより中間移動体12は点P1を中心にα
θだけ図示する方向(右下がり)に傾斜し、これに伴っ
て第2駆動機構10Bの移動台14が図で仮想線に示す
位置に傾斜する。
Next, the principle of drive / positioning control of the minute distance drive mechanism 10 of the present invention will be described with reference to cross-sectional views on the XZ plane of FIGS. First, the drive / positioning control of the moving table 14 in the X direction will be described. As shown in FIG. 3, four driving elements of the first driving mechanism 10A, for example, two right-side piezoelectric elements 13a and 13b of the piezoelectric element are extended by αL 1 and two left-side elements 13c and 13d are reduced by αL 1 . . As a result, the intermediate moving body 12 becomes α around the point P1.
The movable table 14 of the second drive mechanism 10B is inclined by the angle θ in the illustrated direction (downward to the right).

【0013】そこで、これと同時に第2駆動機構10B
の4個の圧電素子のうち右側の2個15a,15bをα
2 だけ縮小し、左側の2個15c,15dをαL2
け伸長させる。こうすれば移動台14の仮想線で示す傾
斜が補正され、移動台14の表面14aはX軸と平行す
なわち基準面11aと平行となる。
Therefore, at the same time, the second drive mechanism 10B
Out of the four piezoelectric elements 15a, 15b on the right
It was reduced by L 2, the left two 15c, to extend the 15d only .alpha.L 2. In this way, the inclination of the movable base 14 indicated by the imaginary line is corrected, and the surface 14a of the movable base 14 is parallel to the X axis, that is, parallel to the reference plane 11a.

【0014】このとき移動台14の基準点P2は移動長
さLX だけX軸方向に変位した位置に位置決めされてい
る。この移動長さLX は次の1式により求めることがで
きる。 LX =L2 ・αθ・・・・・・・1式 但しL2 =P1 ,P2 間の長さである。
[0014] reference point P2 in this case the moving table 14 is positioned at a position displaced by the X-axis direction moving length L X. The movement length L X can be obtained by the following expression 1. L X = L 2 · αθ (1) where L 2 = P 1 and P 2 .

【0015】また、第2駆動機構10Bの圧電素子15
a,15bと15c,15dの伸縮長さαL2 は次の2
式の関係より求めることができる。 αθ=2・αL1 /D=2・αL2 /D2 ・・・・・・2式 但し、αL1 =第1駆動機構10Aの圧電素子13a,
13bと13c,13dの伸縮長さ、D1 =第1駆動機
構10Aの圧電素子の軸間距離、D2 =第2駆動機構1
0Bの圧電素子の軸間距離である。
The piezoelectric element 15 of the second drive mechanism 10B
a, 15b and 15c, telescopic length .alpha.L 2 of 15d are the following 2
It can be obtained from the relationship between the expressions. αθ = 2 · αL 1 / D = 2 · αL 2 / D 2 ······ 2 expression, however, .alpha.L 1 = piezoelectric element 13a of the first drive mechanism 10A,
13b, 13c, and 13d, the length of expansion and contraction, D 1 = the distance between the axes of the piezoelectric elements of the first drive mechanism 10A, and D 2 = the second drive mechanism 1
0B is the distance between the axes of the piezoelectric element.

【0016】以上はX方向の駆動・位置決め制御につい
て述べたがY軸方向の駆動・位置決め制御もほぼ同じ
で、各圧電素子の伸縮の組合わせを変更することで実現
できる。具体的には第1駆動機構10Aの圧電素子の1
3a,13bの組合せを13a,13c、13c,13
dの組合せを13b,13dとし、第2駆動機構10B
の圧電素子の15a,15bの組合せを15a,15
c、15c,15dの組合せを15b,15dとすれば
よい。また、第1駆動機構10A,第2駆動機構10B
のそれぞれ4個で1組の圧電素子を2組又は1組同時に
等量同じ方向に伸縮すればZ軸方向の位置決めが可能で
ある。
Although the drive and positioning control in the X direction has been described above, the drive and positioning control in the Y axis direction is almost the same, and can be realized by changing the combination of expansion and contraction of each piezoelectric element. Specifically, one of the piezoelectric elements of the first drive mechanism 10A
Combinations of 3a and 13b are represented by 13a, 13c, 13c and 13
d is 13b, 13d, and the second drive mechanism 10B
The combination of the piezoelectric elements 15a and 15b
The combination of c, 15c and 15d may be 15b and 15d. Further, a first driving mechanism 10A, a second driving mechanism 10B
If one set of piezoelectric elements is expanded and contracted in the same direction by the same amount in two or one set at a time, positioning in the Z-axis direction is possible.

【0017】よって上述のX,Y,Z方向の移動量を重
量させ、結果として得られた各圧電素子の伸縮量を指令
値として後述の駆動制御装置20によりその制御電圧を
各圧電素子に印加すれば、基準位置P2 は微小距離駆動
機構10の動作範囲内において任意の位置に自由に駆動
位置決め制御可能である。
Therefore, the above-described movement amounts in the X, Y, and Z directions are weighted, and the control voltage is applied to each of the piezoelectric elements by the drive control device 20 described later as a command value with the obtained expansion and contraction amount of each of the piezoelectric elements. Then, the reference position P 2 can be freely driven and positioned at any position within the operation range of the minute distance driving mechanism 10.

【0018】図4は第1駆動機構10Aと第2駆動機構
10Bとの各圧電素子を伸縮制御する駆動制御装置20
のブロック線図である。移動量入力部21は目標とする
X・Y・Z方向の微小移動量を入力する部分、各圧電素
子の伸縮量算出部22は入力された移動量から、各圧電
素子のそれぞれの伸縮量(L)を算出する部分、L/E
変換部23は求めた各圧電素子の伸縮量(L)をこれを
実現するための電圧量(E)に変換する部分、供給電圧
出力部24はL/E変換部23からの信号にもとづいて
微小距離駆動機構10の各圧電素子に直流電圧を出力す
る部分である。
FIG. 4 shows a drive control device 20 for controlling expansion and contraction of each piezoelectric element of the first drive mechanism 10A and the second drive mechanism 10B.
FIG. The movement amount input unit 21 inputs a target minute movement amount in the X, Y, and Z directions, and the expansion and contraction amount calculation unit 22 of each piezoelectric element calculates the expansion and contraction amount of each piezoelectric element from the input movement amount. L) calculation part, L / E
The conversion unit 23 converts the obtained expansion / contraction amount (L) of each piezoelectric element into a voltage amount (E) for realizing this. The supply voltage output unit 24 is based on a signal from the L / E conversion unit 23. This is a portion for outputting a DC voltage to each piezoelectric element of the minute distance drive mechanism 10.

【0019】従って、上述の駆動制御装置20を使用す
れば目標とするX・Y・Z方向の移動量さえ入力すれ
ば、自動的に各圧電素子が伸縮して移動台14の表面1
4aを目標とする移動位置に駆動・位置決めすることが
できる。
Therefore, if the target movement amount in the X, Y, and Z directions is input by using the above-described drive control device 20, each piezoelectric element automatically expands and contracts, and
4a can be driven and positioned at a target movement position.

【0020】[0020]

【発明の効果】本発明の微小距離機構は上述のとおり構
成されているので、次に記載する効果を奏する。基準面
を有する固定台と中間移動台、及び中間移動台と移動台
とを圧電素子又は磁歪素子で連結した2階建て駆動構造
としたので、構造が単純なだけ製作が容易で故障が少な
く、正確かつ高剛性・高応答性の微小距離駆動機構が得
られる。
Since the minute distance mechanism of the present invention is constituted as described above, the following effects are obtained. Since the fixed base and the intermediate base with the reference plane, and the two-stage drive structure in which the intermediate base and the mobile base are connected by the piezoelectric element or the magnetostrictive element, the structure is simple and the manufacturing is easy and the failure is small, An accurate, high-rigidity, high-response minute distance drive mechanism can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微小距離駆動機構の斜視図である。FIG. 1 is a perspective view of a minute distance driving mechanism of the present invention.

【図2】本発明の微小距離駆動機構のX・Y・Z平面上
における断面図である。
FIG. 2 is a cross-sectional view on the X, Y, and Z planes of the minute distance driving mechanism of the present invention.

【図3】本発明の微小距離駆動機構のX・Y・Z平面上
における動作説明用断面図である。
FIG. 3 is a cross-sectional view for explaining the operation of the minute distance driving mechanism according to the present invention on the X, Y, and Z planes.

【図4】駆動制御装置のブロック線図である。FIG. 4 is a block diagram of a drive control device.

【図5】従来の技術の微小距離駆動機構の断面図であ
る。
FIG. 5 is a cross-sectional view of a conventional minute distance driving mechanism.

【符号の説明】[Explanation of symbols]

10 微小距離駆動機構 10A 第1駆動機構 10B 第2駆動機構 11 固定台 11a 基準面 12 中間移動台 13a〜13d 第1駆動機構の圧電素子 14 移動台 14a 表面 15a〜15d 第2駆動機構の圧電素子 DESCRIPTION OF SYMBOLS 10 Micro-distance drive mechanism 10A 1st drive mechanism 10B 2nd drive mechanism 11 Fixed base 11a Reference surface 12 Intermediate movable base 13a-13d Piezoelectric element of first drive mechanism 14 Mobile base 14a Surface 15a-15d Piezoelectric element of second drive mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/12 H01L 41/08 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 41/12 H01L 41/08 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基準となる面を有する固定台と中間移動
台との間に伸縮軸を直角にして配設された少なくとも3
個の微小伸縮可能な第1駆動部材と、前記中間移動台と
移動台との間に伸縮軸を直角にして配設された少なくと
も3個の微小伸縮可能な第2駆動部材と、前記第1駆動
部材と第2駆動部材とを同期して制御する駆動制御手段
とからなり、第1及び第2の各駆動部材を伸縮させ三次
元の任意の方向に移動台の駆動・位置決めを可能にした
ことを特徴とする微小距離駆動機構。
1. An at least three telescopic shaft disposed between a fixed base having a reference surface and an intermediate movable base with a telescopic axis at a right angle.
A plurality of first minutely extendable first drive members, at least three minutely extendable second drive members disposed between the intermediate movable table and the movable table with an extendable axis perpendicular to the first movable member; Drive control means for controlling the drive member and the second drive member in synchronization with each other, allowing the first and second drive members to expand and contract to enable driving and positioning of the movable table in an arbitrary three-dimensional direction. A minute distance driving mechanism.
【請求項2】 第1駆動部材及び第2駆動部材は圧電素
子である請求項1に記載の微小距離駆動機構。
2. The minute distance driving mechanism according to claim 1, wherein the first driving member and the second driving member are piezoelectric elements.
【請求項3】 第1駆動部材及び第2駆動部材は磁歪素
子である請求項1に記載の微小距離駆動機構。
3. The minute distance driving mechanism according to claim 1, wherein the first driving member and the second driving member are magnetostrictive elements.
JP30107096A 1996-10-25 1996-10-25 Minute interval driving mechanism Pending JPH10118874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30107096A JPH10118874A (en) 1996-10-25 1996-10-25 Minute interval driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30107096A JPH10118874A (en) 1996-10-25 1996-10-25 Minute interval driving mechanism

Publications (1)

Publication Number Publication Date
JPH10118874A true JPH10118874A (en) 1998-05-12

Family

ID=17892516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30107096A Pending JPH10118874A (en) 1996-10-25 1996-10-25 Minute interval driving mechanism

Country Status (1)

Country Link
JP (1) JPH10118874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054082A1 (en) * 2002-12-10 2004-06-24 Sony Corporation Polymer actuator
CN1293988C (en) * 2003-06-05 2007-01-10 发那科株式会社 Microscopic positioning device and tool position/orientation compensating method
JP2009224459A (en) * 2008-03-14 2009-10-01 Bondtech Inc Positioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054082A1 (en) * 2002-12-10 2004-06-24 Sony Corporation Polymer actuator
US7511402B2 (en) 2002-12-10 2009-03-31 Sony Corporation Polymer actuator
CN1293988C (en) * 2003-06-05 2007-01-10 发那科株式会社 Microscopic positioning device and tool position/orientation compensating method
JP2009224459A (en) * 2008-03-14 2009-10-01 Bondtech Inc Positioning device

Similar Documents

Publication Publication Date Title
US5089740A (en) Displacement generating apparatus
US7218032B2 (en) Micro position-control system
US4575942A (en) Ultra-precision two-dimensional moving apparatus
JP2005168154A (en) Plane motor
JPH0741207B2 (en) Micro actuator
JPH09265933A (en) Non-inclined plate actuator used in micro-positioning device
JPH10118874A (en) Minute interval driving mechanism
JP4976844B2 (en) Multi-degree-of-freedom drive device and imaging device
JP2001116867A (en) Xy stage
JPH02123985A (en) Linear actuator
JPS62138071A (en) Linear motor
JP2004140946A (en) Actuator
JPH0455355B2 (en)
JP3137717B2 (en) Moving stage device
JPS61285424A (en) Optical beam deflector
JPS61183981A (en) Piezoelectric displacement device
JPS6156836A (en) Precise positioning table
JPH01267492A (en) Two-dimensional piezoelectric micro-movement device
JPH02241373A (en) Piezoelectric actuator
JPH0746909B2 (en) Positioning device
JPH02206376A (en) Electrostatic type multidimensional actuator
JPS6142268A (en) Feeder
Li et al. A multi-slider linear actuator using modulated electrostatic attraction and inertia effect
KR101677989B1 (en) Precise processing stage apparatus
JPS637175A (en) Fine displacement table apparatus