JPH10116619A - Lithium ion secondary battery and its negative electrode - Google Patents

Lithium ion secondary battery and its negative electrode

Info

Publication number
JPH10116619A
JPH10116619A JP9224621A JP22462197A JPH10116619A JP H10116619 A JPH10116619 A JP H10116619A JP 9224621 A JP9224621 A JP 9224621A JP 22462197 A JP22462197 A JP 22462197A JP H10116619 A JPH10116619 A JP H10116619A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
graphite
lithium
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9224621A
Other languages
Japanese (ja)
Other versions
JP3493962B2 (en
Inventor
Masaya Okochi
正也 大河内
Masaki Kitagawa
雅規 北川
Takashi Takeuchi
崇 竹内
Hajime Nishino
肇 西野
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22462197A priority Critical patent/JP3493962B2/en
Publication of JPH10116619A publication Critical patent/JPH10116619A/en
Application granted granted Critical
Publication of JP3493962B2 publication Critical patent/JP3493962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance the safety with a lithium ion secondary battery by forming its negative electrode form a graphite which is capable of storing and emitting lithium ions and whose volume resistivity lies below a specific value, and by preventing a steep rise of the battery temp. even in case the battery is crushed. SOLUTION: A negative electrode plate 2 uses an artificial graphite as active material, followed by adding a binder, and a black mixture prepared in paste form by suspending it in a carboxymethylcellulose water solution is applied to both surfaces of a core consisting of a copper foil and subjected to a drying process, and the obtained product is rolled so that the carbon filling density becomes 1.4g/cc and cut into specified dimensions. The graphite used therein should have a volume resistivity of 5.0×10<-3> Ω.cm or below and be able to store and emit lithium ions. This permits preventing a steep temp. rise of the battery by lessening heat generation due to Joule's heat even in case the battery is crushed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の負極に用いられる炭素材料の、とくに黒鉛に関
するものである。
The present invention relates to a carbon material used for a negative electrode of a lithium ion secondary battery, particularly to graphite.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
の小型・軽量で、高エネルギー密度を有する二次電池に
対する要望が高い。このような点で非水電解液二次電
池、特にリチウム二次電池は高電圧・高エネルギー密度
を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a driving power source for these devices. In this respect, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, are highly expected as batteries having high voltage and high energy density.

【0003】従来、リチウム二次電池としては、正極に
遷移金属酸化物や硫化物、例えば二酸化マンガン、二硫
化モリブデンなどを用い、負極には金属リチウムやリチ
ウム合金を用いた電池系が提案されてきた。しかし負極
に金属リチウムを用いた場合には充電時にリチウムが針
状や苔状に析出し、これがセパレータを貫通して正極と
接触し、内部短絡して電池温度が急激に上昇するなど安
全性に問題があった。
Conventionally, as a lithium secondary battery, a battery system using a transition metal oxide or sulfide such as manganese dioxide or molybdenum disulfide for a positive electrode and using metal lithium or a lithium alloy for a negative electrode has been proposed. Was. However, when metal lithium is used for the negative electrode, lithium precipitates in the form of needles or moss during charging, which penetrates through the separator and contacts the positive electrode, causing internal short-circuiting and a sudden increase in battery temperature, leading to safety problems. There was a problem.

【0004】そこで、負極にリチウムの吸蔵および放出
ができる炭素材料を用いた電池が提案されており、この
場合には充電時に炭素材料の層間にリチウムイオンが吸
蔵されるので、リチウムが負極上に析出することがな
く、電池の安全性が向上するとともに急速充電特性にも
優れるため、現在さかんに研究開発が行われている。
[0004] Therefore, a battery using a carbon material capable of inserting and extracting lithium in the negative electrode has been proposed. In this case, lithium ions are inserted between layers of the carbon material during charging, so that lithium is deposited on the negative electrode. R & D is being actively conducted at present, since it does not precipitate, improves the safety of the battery, and also has excellent rapid charging characteristics.

【0005】このとき、正極材料にはLiCoO2やL
iNiO2等のリチウム含有金属酸化物が用いられてい
る。
At this time, LiCoO 2 or L
A lithium-containing metal oxide such as iNiO 2 is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、電池が
押し潰されるという事故が発生した場合、電池側面に外
圧が加わることにより電池内で正極と負極がセパレータ
を突き破って接触し、内部短絡が発生することがあっ
た。そしてこの内部短絡の際、正極と負極とが接触した
部分に大電流が集中するとともに接触抵抗が大きくなる
ためにジュール熱による発熱が起こり、電池温度が急激
に上昇するという課題があった。
However, when an accident occurs in which the battery is crushed, an external pressure is applied to the side surface of the battery, so that the positive electrode and the negative electrode break through the separator in the battery and come into contact with each other, thereby causing an internal short circuit. There was something. At the time of this internal short-circuit, a large current is concentrated on a portion where the positive electrode and the negative electrode are in contact with each other, and the contact resistance is increased, so that heat is generated due to Joule heat, thereby causing a problem that the battery temperature rises rapidly.

【0007】本発明は上記の課題を解決するものであ
り、電池が潰された場合でも電池温度が急激に上昇する
ことのない安全性に優れたリチウムイオン二次電池を提
供することを目的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a highly safe lithium ion secondary battery in which the battery temperature does not rise rapidly even when the battery is crushed. I do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、リチウムイオンの吸蔵および放出が可能な
体積抵抗率が5.0×10-3Ω・cm以下である黒鉛を
負極に用いるものであり、電池内で内部短絡を起こした
場合でも、黒鉛材料の体積抵抗率が低いため、電池温度
が急激に上昇することはない。
In order to achieve the above object, the present invention provides a negative electrode comprising graphite having a volume resistivity of 5.0 × 10 −3 Ω · cm or less capable of inserting and extracting lithium ions. Since the graphite material has a low volume resistivity even when an internal short circuit occurs in the battery, the battery temperature does not rise sharply.

【0009】一方、リチウム二次電池用負極の炭素材料
の物性について特開平6−119925号公報には、熱
分解炭素類、コークス類、ガラス状炭素類、有機高分子
化合物の焼成体、炭素繊維、活性炭、メソカーボンマイ
クロビーズ焼成体などの炭素材料の体積固有抵抗を0.
01〜10Ωcmとすることが開示されており、これに
より容量の大きい炭素材負極を提供できることが示され
ている。
On the other hand, regarding the physical properties of the carbon material of the negative electrode for a lithium secondary battery, Japanese Unexamined Patent Publication (Kokai) No. 6-119925 discloses pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, carbon fibers, and the like. The volume specific resistance of carbon materials such as activated carbon, fired mesocarbon microbeads, etc. is set to 0.
It is disclosed that the thickness is from 0.01 to 10 Ωcm, which indicates that a carbon material negative electrode having a large capacity can be provided.

【0010】しかし、上記公報には電池が潰された場合
の電池の安全性向上に関する目的は一切示されていな
い。本発明は電池の安全性の向上させることを目的とし
て、負極を構成した際の密度になるように黒鉛粉末にか
かる圧力を想定して体積抵抗率の適切な範囲を設定した
ものである。
[0010] However, the above-mentioned publication does not disclose any purpose for improving the safety of the battery when the battery is crushed. In the present invention, an appropriate range of volume resistivity is set for the purpose of improving the safety of the battery, assuming the pressure applied to the graphite powder so as to obtain the density when the negative electrode is formed.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、リチウムイオン二次電池用の負極において、リチウ
ムイオンの吸蔵および放出が可能な体積抵抗率が5.0
×10-3Ω・cm以下である黒鉛を用いており、したが
って電池が押し潰されて内部短絡が発生することがあっ
ても黒鉛の低い体積抵抗によりジュール熱の発生を抑制
することができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, in a negative electrode for a lithium ion secondary battery, a volume resistivity at which lithium ions can be absorbed and released is 5.0.
Since graphite having a density of × 10 −3 Ω · cm or less is used, even when the battery is crushed and an internal short circuit occurs, the generation of Joule heat can be suppressed by the low volume resistance of the graphite.

【0012】本発明の請求項2に記載の発明は、リチウ
ムイオン二次電池においてリチウム含有遷移金属複合酸
化物を用いた正極板と、リチウムイオンを吸蔵および放
出することができる黒鉛を用いた負極板とを備えてお
り、黒鉛の体積抵抗率を5.0×10-3Ω・cm以下と
するものである。
According to a second aspect of the present invention, there is provided a positive electrode plate using a lithium-containing transition metal composite oxide in a lithium ion secondary battery, and a negative electrode using graphite capable of inserting and extracting lithium ions. And a volume resistivity of graphite of 5.0 × 10 −3 Ω · cm or less.

【0013】本発明の請求項3に記載の発明は、請求項
2に記載のリチウムイオン二次電池に関し、負極板にお
ける黒鉛の充填密度を1.2〜2.0g/ccとするも
のである。
According to a third aspect of the present invention, there is provided the lithium ion secondary battery according to the second aspect, wherein the filling density of graphite in the negative electrode plate is 1.2 to 2.0 g / cc. .

【0014】つぎに本発明の実施例における正極板およ
び負極板をセパレータとともに巻回した極板群を収納し
たリチウムイオン二次電池について説明する。
Next, a description will be given of a lithium ion secondary battery accommodating an electrode plate group in which a positive electrode plate and a negative electrode plate are wound together with a separator in an embodiment of the present invention.

【0015】本発明において黒鉛の体積抵抗率は5.0
×10-3Ω・cm以下とすることが望ましく、黒鉛の抵
抗がこれより大きいと電池が圧潰されてセパレータが破
れ、電池内部で正極板と負極板とが接触した場合、接触
点に大電流が集中して大きいジュール熱を発生し、局部
的に電池の温度が急激に上昇する場合がある。
In the present invention, the volume resistivity of graphite is 5.0.
× desirably in a 10 -3 Ω · cm or less, graphite resistance is larger than this the battery is crushed broken separator, if the positive and negative electrode plates are in contact with the battery, a large current to the contact point Concentrates to generate large Joule heat, and the temperature of the battery may rise sharply locally.

【0016】また黒鉛を用いた極板の体積抵抗率は極板
体積あたりの黒鉛の充填密度により変化する。本来、電
池容器内の限られた体積中に電極材料をいかに多量に詰
め込むかで電池のエネルギー密度は決まるので、充填密
度はできるだけ大きい方が有利である。充填密度が大き
くなると体積抵抗率が小さくなって好ましいが、過大に
なり過ぎると極板内の細孔が少なくなって電解液が浸透
しにくく、リチウムイオンの移動抵抗が大きくなるた
め、電池のハイレート特性が悪くなる。
The volume resistivity of an electrode plate using graphite varies depending on the density of graphite per electrode plate volume. Essentially, the energy density of a battery is determined by how much electrode material is packed into a limited volume in a battery container. Therefore, it is advantageous that the packing density is as large as possible. If the packing density is high, the volume resistivity is small, which is preferable.However, if the packing density is too large, the pores in the electrode plate are reduced, so that the electrolyte does not easily penetrate, and the migration resistance of lithium ions increases. The characteristics deteriorate.

【0017】したがって負極体積あたりの黒鉛の充填密
度は2.0g/cc以下とすることが望ましい。一方充
填密度が小さすぎると体積抵抗率が大きくなるとともに
電池容量が小さくなるので充填密度は1.2g/cc以
上とすることが望ましい。
Therefore, the packing density of graphite per negative electrode volume is desirably 2.0 g / cc or less. On the other hand, if the packing density is too low, the volume resistivity increases and the battery capacity decreases, so that the packing density is desirably 1.2 g / cc or more.

【0018】本発明におけるリチウムイオン二次電池に
使用される非水電解液は、非水溶媒に電解質を溶解する
ことにより調製される。この非水溶媒としては、一般的
にリチウムイオン二次電池に用いられる有機溶媒を単
独、または数種類を組み合わせて用いることができる
が、たとえばエチレンカーボネート(EC)、プロピレ
ンカーボネート(PC)、ブチレンカーボネート(B
C)などの環状カーボネート類、ジメチルカーボネート
(DMC)、ジエチルカーボネート(DEC)、エチル
メチルカーボネート(EMC)などの鎖状カーボネート
類、プロピオン酸メチル、プロピオン酸エチル等の脂肪
族カルボン酸類が好適であり、特に環状カーボネートと
鎖状カーボネートとの混合系または環状カーボネートと
鎖状カーボネートおよび脂肪族カルボン酸エステルとの
混合系がさらに好適である。
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is prepared by dissolving an electrolyte in a non-aqueous solvent. As the non-aqueous solvent, an organic solvent generally used for a lithium ion secondary battery can be used alone or in combination of several kinds. For example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate ( B
Preferred are cyclic carbonates such as C), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), and aliphatic carboxylic acids such as methyl propionate and ethyl propionate. Particularly, a mixed system of a cyclic carbonate and a chain carbonate or a mixed system of a cyclic carbonate, a chain carbonate and an aliphatic carboxylic acid ester is more preferable.

【0019】電解質としては、たとえば過塩素酸リチウ
ム(LiClO4)、六フッ化燐酸リチウム(LiP
6)、ホウフッ化リチウム(LiBF4)、六フッ化砒
素リチウム(LiAsF6)、トリフルオロメタンスル
ホン酸リチウム(LiCF3SO 3)、ビストリフルオロ
メチルスルホニルイミドリチウム〔LiN(CF3
22〕等のリチウム塩を単独で、またはその数種類を
組み合わせて用いることができるが、特に六フッ化燐酸
リチウム(LiPF6)が好適である。
Examples of the electrolyte include lithium perchlorate.
(LiClOFour), Lithium hexafluorophosphate (LiP
F6), Lithium borofluoride (LiBFFour), Hexafluoride
Lithium (LiAsF)6), Trifluoromethanesulfur
Lithium phonate (LiCFThreeSO Three), Bistrifluoro
Lithium methylsulfonylimide [LiN (CFThreeS
OTwo)Two] Alone or several kinds thereof
Can be used in combination, but especially hexafluorophosphoric acid
Lithium (LiPF6) Are preferred.

【0020】電解質の非水溶媒に対する溶解量は、0.
2mol/l〜2mol/l、特に0.5mol/l〜
1.5mol/lとすることが望ましい。
The amount of the electrolyte dissolved in the non-aqueous solvent is 0.1.
2 mol / l to 2 mol / l, especially 0.5 mol / l
It is desirably 1.5 mol / l.

【0021】本発明におけるリチウムイオン二次電池に
使用される正極活物質としては、種々のリチウム含有遷
移金属酸化物(たとえばLiMn24などのリチウムマ
ンガン複合酸化物、LiNiO2などのリチウム含有ニ
ッケル酸化物、LiCoO2などのリチウム含有コバル
ト酸化物およびこれら酸化物のマンガン、ニッケル、コ
バルトの一部を他の遷移金属などで置換したもの、また
はリチウムを含む酸化バナジウムなど)や、カルコゲン
化合物(たとえば二酸化マンガン、二硫化チタン、二硫
化モリブデンなど)等を挙げることができる。中でもリ
チウム含有遷移金属酸化物を用いることが好ましい。
As the positive electrode active material used in the lithium ion secondary battery of the present invention, various lithium-containing transition metal oxides (for example, lithium manganese composite oxide such as LiMn 2 O 4 , lithium-containing nickel such as LiNiO 2) Oxides, lithium-containing cobalt oxides such as LiCoO 2 and the like, manganese, nickel, those in which part of cobalt is replaced by other transition metals, or vanadium oxide containing lithium, etc., and chalcogen compounds (for example, Manganese dioxide, titanium disulfide, molybdenum disulfide, etc.). Among them, it is preferable to use a lithium-containing transition metal oxide.

【0022】また正極には人造黒鉛、カーボンブラック
(たとえばアセチレンブラックなど)またはニッケル粉
末等を導電性材料として用いることができる。
For the positive electrode, artificial graphite, carbon black (eg, acetylene black) or nickel powder can be used as a conductive material.

【0023】一方、負極に用いる黒鉛としては、メソフ
ェーズピッチを焼成して得られるメソフェーズ小球体の
高温処理を施したものや人造黒鉛、天然黒鉛などの黒鉛
材料が好適である。
On the other hand, as the graphite used for the negative electrode, those obtained by subjecting mesophase spherules obtained by firing mesophase pitch to high-temperature treatment and graphite materials such as artificial graphite and natural graphite are suitable.

【0024】[0024]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。図1に本発明の効果を示すために試作
した円筒形電池の構造を示す。この電池の寸法は、直径
20mm、総高70mmである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of a prototype cylindrical battery to demonstrate the effects of the present invention. The dimensions of this battery are 20 mm in diameter and 70 mm in total height.

【0025】(実施例1)図1において正極板1は、炭
酸リチウム(Li2Co3)と四酸化三コバルト(Co3
4)を混合して空気中において900℃で焼成したコ
バルト酸リチウム(LiCoO2)を活物質とし、これ
に導電剤としてアセチレンブラックを3重量%混合した
後、結着剤としてポリ四フッ化エチレン樹脂の水性ディ
スパージョンを7重量%練合してペースト状とした合剤
を、アルミニウム箔からなる芯材の両面に塗着、乾燥し
圧延した後、幅57mm,長さ520mmの大きさに切
り出したものである。またその端部に正極リード片4を
スポット溶接している。
Example 1 In FIG. 1, a positive electrode plate 1 was made of lithium carbonate (Li 2 Co 3 ) and tricobalt tetroxide (Co 3
O 4 ) and lithium cobalt oxide (LiCoO 2 ) fired at 900 ° C. in air as an active material, and 3% by weight of acetylene black as a conductive agent, and then polytetrafluoride as a binder A mixture made into a paste by kneading a 7% by weight aqueous dispersion of ethylene resin is applied to both sides of a core material made of aluminum foil, dried and rolled, and then reduced to a size of 57 mm in width and 520 mm in length. It is cut out. The positive electrode lead piece 4 is spot-welded to the end.

【0026】負極板2は、人造黒鉛(平均粒径25μ
m)を活物質とし、結着剤として活物質に対して5重量
%のスチレンブタジエンゴムを混合した後、カルボキシ
メチルセルロース水溶液に懸濁させてペースト状とした
合剤を、銅箔からなる芯材の両面に塗着、乾燥したのち
炭素の充填密度が1.4g/ccになるように圧延し
て、厚さ0.2mm,幅59mm,長さ550mmの大
きさに切り出したものである。またこの負極板2の端部
には負極リード片5をスポット溶接している。
The negative electrode plate 2 is made of artificial graphite (average particle size 25 μm).
m) as an active material, and 5% by weight of styrene butadiene rubber with respect to the active material as a binder, mixed, and then suspended in an aqueous solution of carboxymethylcellulose to form a paste-like mixture. Is coated and dried on both sides of the sample, and then rolled so that the packing density of carbon becomes 1.4 g / cc, and cut into a size of 0.2 mm in thickness, 59 mm in width and 550 mm in length. A negative electrode lead piece 5 is spot-welded to an end of the negative electrode plate 2.

【0027】セパレータ3はポリプロピレン樹脂からな
る多孔性フィルムを、正極板1および負極板2よりも幅
広く裁断して用いた。
The separator 3 was formed by cutting a porous film made of a polypropylene resin more widely than the positive electrode plate 1 and the negative electrode plate 2.

【0028】正極板1および負極板2をセパレータを介
在させて全体を渦巻状に巻回して極板群を構成した。
The whole of the positive electrode plate 1 and the negative electrode plate 2 was spirally wound with a separator interposed therebetween to form an electrode plate group.

【0029】次にこの極板群の下側に下部絶縁リング6
を装着し、直径20mm、高さ70mmの電池ケース7
に収納して負極リード片5を電池ケース7にスポット溶
接した。また極板群の上側には上部絶縁リング8を装着
し、電池ケース7の上部に溝入れしたのち、非水電解液
を注入した。電解液にはエチレンカーボネート(EC)
とジメチルカーボネート(DMC)を体積比で1:1で
混合し、1mol/lの六フッ化リン酸リチウム(Li
PF6)を溶解させたものを用いた。あらかじめガスケ
ットが組み込まれた組立封口板9と正極リード片4をス
ポット溶接した後、組立封口板9を電池ケース7に装着
し、本実施例の電池Aとした。
Next, a lower insulating ring 6 is provided below the electrode plate group.
Battery case 7 with a diameter of 20 mm and a height of 70 mm
And the negative electrode lead piece 5 was spot-welded to the battery case 7. Further, an upper insulating ring 8 was mounted on the upper side of the electrode plate group, a groove was formed in the upper part of the battery case 7, and then a non-aqueous electrolyte was injected. Ethylene carbonate (EC) as electrolyte
And dimethyl carbonate (DMC) at a volume ratio of 1: 1 and 1 mol / l of lithium hexafluorophosphate (Li)
Was used to dissolve the PF 6). After the assembly sealing plate 9 in which the gasket was previously assembled and the positive electrode lead piece 4 were spot-welded, the assembly sealing plate 9 was mounted on the battery case 7 to obtain a battery A of the present example.

【0030】(実施例2)負極材として平均粒径が15
μmの人造黒鉛を用いた以外は(実施例1)と同様な方
法で電池を構成し、実施例2における電池Bとした。
Example 2 A negative electrode material having an average particle size of 15
A battery was formed in the same manner as in (Example 1) except that artificial graphite having a thickness of μm was used, and was referred to as Battery B in Example 2.

【0031】(実施例3)負極材の密度を1.9g/c
cとしたこと以外は(実施例1)と同様な方法で電池を
構成し、実施例3における電池Cとした。
Example 3 The density of the negative electrode material was 1.9 g / c.
A battery was formed in the same manner as in (Example 1) except that c was used, and battery C in Example 3 was obtained.

【0032】(実施例4)負極材の密度を1.2g/c
cとしたこと以外は(実施例1)と同様な方法で電池を
構成し、実施例4における電池Dとした。
Example 4 The density of the negative electrode material was 1.2 g / c.
A battery was formed in the same manner as in (Example 1) except that c was used, and battery D in Example 4 was obtained.

【0033】(比較例1)負極材として平均粒径が6μ
mの人造黒鉛を用いた以外は(実施例1)と同様な方法
で電池を構成し、比較例1における電池Eとした。
(Comparative Example 1) A negative electrode material having an average particle size of 6 μm
A battery was constructed in the same manner as in Example 1 except that m artificial graphite was used.

【0034】(比較例2)負極材として平均粒径が20
μmの天然黒鉛を用いた以外は(実施例1)と同様な方
法で電池を構成し、比較例2における電池Fとした。
(Comparative Example 2) A negative electrode material having an average particle diameter of 20
A battery was formed in the same manner as in (Example 1) except that natural graphite having a thickness of μm was used, and the battery was designated as Battery F in Comparative Example 2.

【0035】(比較例3)負極材として平均粒径が7μ
mの天然黒鉛を用いた以外は(実施例1)と同様な方法
で電池を構成し、比較例3における電池Gとした。
(Comparative Example 3) The average particle size of the negative electrode material was 7 μm.
A battery was constructed in the same manner as in (Example 1) except that m natural graphite was used.

【0036】(比較例4)負極材の密度を2.1g/c
cとしたこと以外は(実施例1)と同様な方法で電池を
構成し、比較例4における電池Hとした。
(Comparative Example 4) The density of the negative electrode material was 2.1 g / c.
A battery was formed in the same manner as in (Example 1) except that c was used, and the battery was designated as Battery H in Comparative Example 4.

【0037】(比較例5)負極材の密度を1.0g/c
cとしたこと以外は(実施例1)と同様な方法で負極板
を作成したが、この負極板は黒鉛の密度を小さくするた
めに黒鉛の量を減らしており、十分な初期容量が得られ
なかった。
(Comparative Example 5) The density of the negative electrode material was set to 1.0 g / c.
A negative electrode plate was prepared in the same manner as in (Example 1) except that c was used. However, the amount of graphite was reduced in this negative electrode plate to reduce the density of graphite, and a sufficient initial capacity was obtained. Did not.

【0038】以上の実施例1〜4および比較例1〜5の
黒鉛の体積抵抗率を4端子法の粉体抵抗測定装置(三菱
化学(株)MCP−PD41)を用いて、JIS−K7
194に準じ測定した。なお粉体の抵抗測定時に粉体に
かける圧力はそれぞれの負極材が負極板を構成する密度
になるように調整した。
The graphites of Examples 1 to 4 and Comparative Examples 1 to 5 were measured for the volume resistivity using a four-terminal powder resistance measuring apparatus (MCP-PD41, Mitsubishi Chemical Corporation) according to JIS-K7.
194 was measured. The pressure applied to the powder at the time of measuring the resistance of the powder was adjusted so that each negative electrode material had a density constituting a negative electrode plate.

【0039】本発明における電池A,B,C,Dと比較
例としての電池E,F,G,Hを50セルずつ用意し、
20℃で充電電圧4.2V、充電時間2時間、制限電流
800mAの定電圧・定電流充電を行い、電池の圧潰試
験を行った。
Batteries A, B, C, and D according to the present invention and batteries E, F, G, and H as comparative examples were prepared by 50 cells each.
The battery was subjected to constant voltage and constant current charging at 20 ° C. with a charging voltage of 4.2 V, a charging time of 2 hours, and a limiting current of 800 mA, and a crush test of the battery was performed.

【0040】電池の圧潰試験は、直径6mmの円柱の丸
棒を用いて、この丸棒が電池の外寸が最も長くなる方向
に対して垂直になる方向から電池の中央部に押しつけ
て、電池の厚みが半分になるまで潰した。またハイレー
ト特性は低電流(200mA)での放電容量と高電流
(2000mA)での放電容量との比をとり評価した。
(表1)に圧潰試験による電池の発火率と、黒鉛の体積
抵抗率と、負極炭素材の密度と、低電流と高電流での容
量比(高電流での容量/低電流での容量)との関係を各
実験例ごとに示す。
In the crush test of the battery, a cylindrical round bar having a diameter of 6 mm was used, and the round bar was pressed against the center of the battery from a direction perpendicular to the direction in which the outer dimension of the battery became the longest. Was crushed until the thickness became half. The high rate characteristics were evaluated by taking the ratio of the discharge capacity at a low current (200 mA) to the discharge capacity at a high current (2000 mA).
(Table 1) shows the firing rate of the battery by the crush test, the volume resistivity of graphite, the density of the negative electrode carbon material, and the capacity ratio at low current and high current (capacity at high current / capacity at low current). Is shown for each experimental example.

【0041】[0041]

【表1】 [Table 1]

【0042】(表1)より本発明における電池A,B,
C,Dの発火率を比較例の電池E、F、G、Hと比較す
ると本発明における電池による効果は明らかである。体
積抵抗率が5×10-3Ω・cm以下の黒鉛を用いた電池
A、B、C、Dは電池の圧潰試験を行っても電池温度が
急上昇することはなかった。一方比較例4の電池Hは急
激な温度上昇はないが黒鉛の密度が2.0以上あるため
に電池のハイレート特性が悪く実用には耐えがたい。
According to Table 1, the batteries A, B, and
When the firing rates of C and D are compared with those of the batteries E, F, G and H of the comparative example, the effect of the battery according to the present invention is clear. Batteries A, B, C, and D using graphite having a volume resistivity of 5 × 10 −3 Ω · cm or less did not show a sharp rise in battery temperature even when a battery crush test was performed. On the other hand, the battery H of Comparative Example 4 did not have a sharp rise in temperature, but had a graphite density of 2.0 or more, so the high-rate characteristics of the battery were poor, and it was difficult to withstand practical use.

【0043】[0043]

【発明の効果】以上のように、本発明のリチウムイオン
二次電池は体積抵抗率が5×10-3Ω・cm以下の黒鉛
を用いて構成したものであるので、電池が潰された場合
でもジュール熱による発熱が小さく電池の急激な温度上
昇を防止することができる。
As described above, the lithium ion secondary battery of the present invention is formed using graphite having a volume resistivity of 5 × 10 −3 Ω · cm or less. However, heat generation due to Joule heat is small, and a rapid temperature rise of the battery can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるリチウムイオン二次
電池の断面図
FIG. 1 is a cross-sectional view of a lithium ion secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 正極リード片 5 負極リード片 6 下部絶縁リング 7 電池ケース 8 上部絶縁リング 9 組立封口板 Reference Signs List 1 positive electrode plate 2 negative electrode plate 3 separator 4 positive electrode lead piece 5 negative electrode lead piece 6 lower insulating ring 7 battery case 8 upper insulating ring 9 assembly sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西野 肇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hajime Nishino 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの吸蔵および放出が可能
な体積抵抗率が5.0×10-3Ω・cm以下である黒鉛
を含むリチウムイオン二次電池用負極。
1. A negative electrode for a lithium ion secondary battery containing graphite whose volume resistivity capable of inserting and extracting lithium ions is 5.0 × 10 −3 Ω · cm or less.
【請求項2】 リチウム含有遷移金属複合酸化物を用い
た正極板と、リチウムイオンを吸蔵および放出すること
ができる黒鉛を用いた負極板とを備えており、前記黒鉛
の体積抵抗率が5.0×10-3Ω・cm以下であるリチ
ウムイオン二次電池。
2. A positive electrode plate using a lithium-containing transition metal composite oxide, and a negative electrode plate using graphite capable of inserting and extracting lithium ions, wherein the graphite has a volume resistivity of 5. A lithium ion secondary battery having a resistance of 0 × 10 −3 Ω · cm or less.
【請求項3】 負極板における黒鉛の充填密度が1.2
〜2.0g/ccである請求項2記載のリチウムイオン
二次電池。
3. The graphite packing density of the negative electrode plate is 1.2.
The lithium ion secondary battery according to claim 2, wherein the weight is 2.0 g / cc to 2.0 g / cc.
JP22462197A 1996-08-22 1997-08-21 Lithium ion secondary battery Expired - Lifetime JP3493962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22462197A JP3493962B2 (en) 1996-08-22 1997-08-21 Lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22091496 1996-08-22
JP8-220914 1996-08-22
JP22462197A JP3493962B2 (en) 1996-08-22 1997-08-21 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH10116619A true JPH10116619A (en) 1998-05-06
JP3493962B2 JP3493962B2 (en) 2004-02-03

Family

ID=26523979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22462197A Expired - Lifetime JP3493962B2 (en) 1996-08-22 1997-08-21 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3493962B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837648B1 (en) 2004-03-31 2008-06-13 히다치 막셀 가부시키가이샤 Non-aqueous secondary battery and electronic apparatus containing the same
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
JP2014517454A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JPWO2018097213A1 (en) * 2016-11-22 2019-10-17 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837648B1 (en) 2004-03-31 2008-06-13 히다치 막셀 가부시키가이샤 Non-aqueous secondary battery and electronic apparatus containing the same
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
JP2014517454A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JPWO2018097213A1 (en) * 2016-11-22 2019-10-17 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11183679B2 (en) 2016-11-22 2021-11-23 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP3493962B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JP4695748B2 (en) Nonaqueous battery electrolyte and nonaqueous secondary battery
KR100470287B1 (en) Nonaqueous electrolytic secondary battery
JPH04328278A (en) Nonaqueous electrolyte secondary battery
JPH0864237A (en) Nonaqueous electrolyte battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JPH10312811A (en) Nonaqeous electrolyte secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
JPH11283667A (en) Lithium ion battery
JP3493962B2 (en) Lithium ion secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
KR100321132B1 (en) Lithium ion secondary cell and its cathode
JP2007172947A (en) Nonaqueous electrolyte secondary battery
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JP2001196094A (en) Non-aqueous electrolytic secondary battery
CN117293269A (en) negative electrode
JP4240422B2 (en) Organic electrolyte secondary battery
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
JP4080110B2 (en) Non-aqueous electrolyte battery
JP2002246023A (en) Lithium secondary battery
JP4938923B2 (en) Secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 11

EXPY Cancellation because of completion of term