JPH10116580A - Sample image displaying method and semiconductor manufacturing method using the method - Google Patents

Sample image displaying method and semiconductor manufacturing method using the method

Info

Publication number
JPH10116580A
JPH10116580A JP27841597A JP27841597A JPH10116580A JP H10116580 A JPH10116580 A JP H10116580A JP 27841597 A JP27841597 A JP 27841597A JP 27841597 A JP27841597 A JP 27841597A JP H10116580 A JPH10116580 A JP H10116580A
Authority
JP
Japan
Prior art keywords
electron
electrons
sample
deep hole
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27841597A
Other languages
Japanese (ja)
Other versions
JP3219030B2 (en
Inventor
Hideo Todokoro
秀男 戸所
Kenji Takamoto
健治 高本
Tadashi Otaka
正 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27841597A priority Critical patent/JP3219030B2/en
Publication of JPH10116580A publication Critical patent/JPH10116580A/en
Application granted granted Critical
Publication of JP3219030B2 publication Critical patent/JP3219030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To observe the bottom parts of a deep hole and a groove with an aspect ratio of a depth/opening diameter is certain value or more and contribute the observation to an inspection in the process of the preparation of a semiconductor element by irradiating high energy electron beam of an optimum intensity according to the depth of the deep hole and detecting generated electron. SOLUTION: Holes and grooves of an aspect ratio 2.5 or more are irradiated with high energy primary electron beam 1. Based on the detection of tertiary electron 5 generated by generated reflection electron 2 and reflection electron 6 passing through a side wall, the bottom part of the hole or the groove is displayed. At this stage, primary electron enters the depth of a sample when energy is too high, reflection electron amount is reduced and tertiary electron is also reduced. Therefore, energy intensity is required to be optimum energy intensity that generated electron amount becomes maximum. In the detection of tertiary electron, tertiary electron is sucked in electric field made by a scintillator and tertiary electron is detected by an electron multiplying tube. Thus, an important deep hole groove can be observed/confirmed in the etching process of a semiconductor element by making it possible to observe the bottom part of a hole of the aspect ratio 2.5 or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子ビームによる表
面形状の観察法に関するもので、特に半導体プロセスで
多用される深孔の底部の形状または残渣物の観察を可能
にする方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a surface shape using an electron beam, and more particularly to a method for observing a shape of a bottom portion of a deep hole or a residue which is frequently used in a semiconductor process.

【0002】[0002]

【従来の技術】電子ビームを試料上に走査し、そこから
発生する二次電子を検出する走査形電子顕微鏡は、生物
学,工学の分野で広く活用されている。特に、半導体産
業では、高集積化が進んだ結果、光学顕微鏡での検査が
不可能になり、走査形電子顕微鏡を活用するようになっ
た。半導体に用いる走査形電子顕微鏡では、絶縁物の帯
電を避けるため1kV以下の低エネルギの電子ビームを
用いるのが一般的である。
2. Description of the Related Art A scanning electron microscope which scans a sample with an electron beam and detects secondary electrons generated therefrom is widely used in the fields of biology and engineering. In particular, in the semiconductor industry, as a result of high integration, inspection with an optical microscope has become impossible, and a scanning electron microscope has been used. In a scanning electron microscope used for a semiconductor, an electron beam having a low energy of 1 kV or less is generally used to avoid charging of an insulator.

【0003】半導体産業での走査形電子顕微鏡の活用
は、完成した半導体の外観検査ばかりでなく、プロセス
途中における検査である。例えば、プロセス途中におけ
る外観の検査,寸法検査,スルーホールの開口検査に用
いられている。
[0003] The use of a scanning electron microscope in the semiconductor industry is not only a visual inspection of a completed semiconductor but also an inspection during a process. For example, it is used for appearance inspection, dimension inspection, and through hole opening inspection during the process.

【0004】[0004]

【発明が解決しようとする課題】半導体素子の高集積化
が進んだ結果、従来の走査形電子顕微鏡を用いる方法で
は、スルーホールの開口検査が不可能になった。
As a result of the progress of high integration of semiconductor devices, it has become impossible to inspect the opening of a through hole by a conventional method using a scanning electron microscope.

【0005】図2を用いて従来の走査形電子顕微鏡で深
孔を観察する場合の問題を説明する。図2には、低エネ
ルギの一次電子1が試料の平面部と孔3を照射している
場合を示してる。平面部で発生した二次電子2は、なん
ら障害物がないことからそのほとんど全数を検出でき
る。同時に反射電子も放出されるが、これも同様に検出
可能である。ところが、孔3を照射している場合には、
発生した二次電子2は孔3の側壁に衝突するため、孔3
の外部に出ることができない。反射電子は二次電子より
エネルギが高いが、側壁を貫通するほどのエネルギはな
いためやはり側壁で止まってしまう。
A problem in observing a deep hole with a conventional scanning electron microscope will be described with reference to FIG. FIG. 2 shows a case where the low energy primary electrons 1 irradiate the plane portion of the sample and the hole 3. Almost all of the secondary electrons 2 generated in the plane portion can be detected because there are no obstacles. Simultaneously, reflected electrons are also emitted, which can be detected as well. However, when irradiating the hole 3,
Since the generated secondary electrons 2 collide with the side wall of the hole 3, the
Can't go outside. The backscattered electrons have higher energy than the secondary electrons, but they do not have enough energy to penetrate the side wall, so they also stop at the side wall.

【0006】図3は孔のアスペクト比(深さ/開孔径)
とその孔から脱出する信号の割合の関係を計算した結果
である。表面(アスペクト比=0)での信号を1とし
た。この計算から従来の走査形電子顕微鏡ではアスペク
ト比:2を超える孔の観察は不可能なことがわかる。
FIG. 3 shows the aspect ratio of a hole (depth / opening diameter).
It is the result of calculating the relationship between and the ratio of the signal that escapes from the hole. The signal on the surface (aspect ratio = 0) was set to 1. From this calculation, it is understood that it is impossible to observe a hole having an aspect ratio of more than 2: with a conventional scanning electron microscope.

【0007】[0007]

【課題を解決するための手段】本発明では、上述の課題
を解決するために、アスペクト比が2.5 以上の深孔、
或いは溝を備えた半導体素子に対し電子線を照射し、試
料像表示を行う方法であって、前記深孔或いは溝の底部
に対する前記電子線の照射に起因して発生する電子を前
記試料上で検出し、該検出に基づいて前記深孔或いは溝
の底部を表示することを特徴とする試料像の表示方法を
提供する。
According to the present invention, in order to solve the above-mentioned problems, a deep hole having an aspect ratio of 2.5 or more is provided.
Alternatively, a method of irradiating a semiconductor element having a groove with an electron beam to display a sample image, wherein electrons generated due to irradiation of the electron beam on the deep hole or the bottom of the groove are formed on the sample. The present invention provides a method of displaying a sample image, wherein the method comprises detecting and detecting the bottom of the deep hole or groove based on the detection.

【0008】図1を用いて、一次電子による深孔観察の
原理を説明する。
The principle of deep hole observation using primary electrons will be described with reference to FIG.

【0009】アスペクト比が2.5 以上の孔や溝に、そ
の照射に起因して試料上で電子を発生させるような一次
電子線で前記孔を照射した場合、図5に示すように、電
子を発生させない一次電子線を照射した場合と比較し
て、高い信号強度を獲得することができる。
When a hole or groove having an aspect ratio of 2.5 or more is irradiated with a primary electron beam which generates electrons on a sample due to the irradiation, the hole or groove has an electron beam as shown in FIG. A higher signal intensity can be obtained as compared with the case of irradiating a primary electron beam that does not generate.

【0010】この電子を試料上に配置された検出器で検
出することで、孔内の像を得ることができる。
By detecting these electrons with a detector arranged on the sample, an image in the hole can be obtained.

【0011】つまりこれまで不可能であった2.5 以上
のアスペクト比の孔や溝の底を観察できるようになる。
In other words, it becomes possible to observe the bottom of a hole or groove having an aspect ratio of 2.5 or more, which has been impossible so far.

【0012】[0012]

【発明の実施の形態】図4はアスペクト比が約3で、
1.5μm 深さのSiO2 の孔を観察したときの底から
の信号と表面からの信号の比を一次電子ビームのエネル
ギを変えて測定したものである。すなわち、三次電子の
二次電子の比を測定したものである。電子ビームエネル
ギが100kV前後で最大になっていることがわかる。
一次電子が低エネルギのときは反射電子が、側壁で吸収
されてしまうために三次電子が発生しない。一次電子の
エネルギが高くなると側壁を貫通する反射電子が増加す
るため、三次電子も次第に増加する。ところが、さらに
高エネルギになると、一次電子が試料の奥まで侵入する
ようになり、反射電子の量が減少し、この結果、三次電
子が減少する。この最大値を持つ理由である。この最大
値を示す電子ビームエネルギは孔の深さと材質に関係す
る。深い孔で、高密度の物質であるほど高いエネルギを
必要とする。
FIG. 4 shows an aspect ratio of about 3,
The ratio of the signal from the bottom to the signal from the surface when observing a 1.5 μm deep SiO 2 hole was measured by changing the energy of the primary electron beam. That is, the ratio of tertiary electrons to secondary electrons is measured. It can be seen that the electron beam energy is maximum around 100 kV.
When the primary electrons have low energy, tertiary electrons are not generated because reflected electrons are absorbed by the side walls. As the energy of the primary electrons increases, the number of reflected electrons penetrating the side wall increases, and the number of tertiary electrons also increases gradually. However, when the energy is further increased, the primary electrons penetrate deep into the sample, and the amount of reflected electrons decreases, and as a result, tertiary electrons decrease. That is why we have this maximum. The electron beam energy showing this maximum value depends on the hole depth and the material. Deeper holes, denser materials require higher energy.

【0013】図5は100keVのエネルギを用いて、
深孔を観察したときの、アスペクト比と信号比の関係で
ある。参考に1keVの関係も示してあるが、100k
eVでは、アスペクト比が3を超えても信号比が減少す
ることがなく、さらにアスペクト比の高い孔も観察可能
であることが分かる。
FIG. 5 shows an example using 100 keV energy.
This is the relationship between the aspect ratio and the signal ratio when observing a deep hole. The relationship of 1 keV is also shown for reference,
In eV, it can be seen that the signal ratio does not decrease even if the aspect ratio exceeds 3, and that a hole with a higher aspect ratio can be observed.

【0014】従来の走査形電子顕微鏡のエネルギは50
kV以下で、50kVを超えるような高エネルギを用い
ていない。それはここに示したような原理の観察概念が
なかったためである。ここに、深孔観察を可能にする高
エネルギ一次電子の有効性が初めて示された。
The energy of a conventional scanning electron microscope is 50
No high energy below 50 kV and above 50 kV is used. That is because there was no observation concept of the principle as shown here. Here, the effectiveness of high-energy primary electrons enabling deep hole observation was shown for the first time.

【0015】図6は高エネルギの反射電子で発生した三
次電子の検出法を示したものである。シンチレータ10
と二次電子増倍管12を用いた方法である。シンチレー
タ10に10kVの高電圧を高圧電源13から供給す
る。該高電圧で作られた吸引電界9で試料8の表面で作
られた三次電子を検出する。試料8には、前述した三次
電子を発生させるに充分なエネルギを持った一次電子4
を対物レンズ7で収束して照射する。この図では、一次
電子ビームの走査,走査像の表示回路等は省略した。
FIG. 6 shows a method for detecting tertiary electrons generated by high-energy reflected electrons. Scintillator 10
And a method using the secondary electron multiplier 12. A high voltage of 10 kV is supplied to the scintillator 10 from a high voltage power supply 13. Tertiary electrons generated on the surface of the sample 8 are detected by the attractive electric field 9 generated by the high voltage. The sample 8 contains primary electrons 4 having sufficient energy to generate the above-mentioned tertiary electrons.
Are converged and irradiated by the objective lens 7. In this figure, the scanning of the primary electron beam, the display circuit of the scanned image, and the like are omitted.

【0016】図7は三次電子でなく、側壁を透過した反
射電子を検出する例である。試料8に対して見込角の大
きい反射電子検出器15を対物レンズ7と試料8の間に
設ける。反射電子検出器15はPN接合やショットキー
接合の半導体検出器、または蛍光体を発光させて検出す
る(実施例は半導体を用いた例)方法でよい。反射電子
のエネルギが高いことから半導体検出器の表面層を厚く
し(1−10μm)、検出効率の低下を防いでいる。蛍
光体の場合にも同様に厚くする。蛍光体の厚さはエネル
ギに依存するが10−100μmの厚さである。
FIG. 7 shows an example of detecting not the tertiary electrons but the reflected electrons transmitted through the side wall. A backscattered electron detector 15 having a large viewing angle with respect to the sample 8 is provided between the objective lens 7 and the sample 8. The backscattered electron detector 15 may be a PN-junction or Schottky-junction semiconductor detector or a method of emitting and detecting a phosphor (in the embodiment, an example using a semiconductor). Since the energy of the backscattered electrons is high, the surface layer of the semiconductor detector is made thick (1-10 μm) to prevent a decrease in detection efficiency. The thickness of the phosphor is similarly increased. The thickness of the phosphor depends on the energy, but is 10-100 μm.

【0017】図8は反射電子と三次電子の両方を検出す
るようにした例である。対物レンズの中心を貫通して吸
引電極16が設けられている。この吸引電極16で試料
8で発生した三次元電子を対物レンズ7の磁場内に引込
み上方に引き上げる。上方に引き上げられた三次電子は
シンチレータ10の作る吸引電界9で加速され、シンチ
レータ10に衝突し、シンチレータ10を発光させる。
発光した光はライトガイド11に導かれ、二次電子増倍
管12で増幅され、電気信号に変換される。試料8で発
生した反射電子はエネルギが高いため、吸引電極16で
作る電界ではほとんど偏向を受けず、ほぼ直線的に進
み、反射電子検出器15に入射する。この手法により反
射電子そのものと三次電子を区別して検出できる。両者
の作る走査像は微妙に異なるため、コントラストの良い
方を選ぶ。あるいは加減算等を行いコントラストの改善
を行う等の処理が可能である。
FIG. 8 shows an example in which both reflected electrons and tertiary electrons are detected. A suction electrode 16 is provided through the center of the objective lens. The three-dimensional electrons generated in the sample 8 are drawn into the magnetic field of the objective lens 7 by the suction electrode 16 and are pulled upward. The tertiary electrons pulled upward are accelerated by the attraction electric field 9 created by the scintillator 10, collide with the scintillator 10, and cause the scintillator 10 to emit light.
The emitted light is guided to a light guide 11, amplified by a secondary electron multiplier 12, and converted into an electric signal. Since the backscattered electrons generated by the sample 8 have high energy, they are hardly deflected by the electric field generated by the suction electrode 16, travel substantially linearly, and enter the backscattered electron detector 15. By this method, reflected electrons themselves and tertiary electrons can be distinguished and detected. Since the scanned images created by the two are slightly different, select the one with good contrast. Alternatively, processing such as addition and subtraction to improve contrast can be performed.

【0018】これまでの実施例では、一次電子の入射側
に作られた三次電子,反射電子を検出していたが、試料
が薄い場合には透過した電子が作る三次電子、または透
過した電子を検出してもよい。図9は一次電子と反対側
で作られた三次電子,透過電子を検出する実施例を示し
た。一次電子側での検出法は前述の実施例と同じであ
る。試料8を透過した電子が試料下面で作る三次電子2
0,透過電子19が反射板22に衝突して作る三次電子
21をシンチレータ10,ライトガイド11,二次電子
増倍管12で検出する。一次電子のエネルギが200k
Vであると電子の飛程距離は200μmになることから
半導体産業で使われるSiウエーハをも透過できること
になる。すなわち、試料下面から透過電子,三次電子を
検出することで試料8の表面にある孔の観察が可能にな
る。この検出法では、孔の底ほど下面に抜けるまでの距
離が短くなるため、孔の底の信号が表面に比べて大きく
なる特徴がある。
In the embodiments described above, tertiary electrons and reflected electrons generated on the primary electron incident side are detected. However, when the sample is thin, tertiary electrons generated by transmitted electrons or transmitted electrons are detected. It may be detected. FIG. 9 shows an embodiment for detecting tertiary electrons and transmitted electrons generated on the side opposite to the primary electrons. The detection method on the primary electron side is the same as in the above-described embodiment. Tertiary electrons 2 generated on the lower surface of the sample by electrons transmitted through the sample 8
0, the tertiary electrons 21 generated by the collision of the transmitted electrons 19 with the reflection plate 22 are detected by the scintillator 10, the light guide 11, and the secondary electron multiplier 12. 200k of primary electron energy
At V, the range of electrons becomes 200 μm, so that it can pass through a Si wafer used in the semiconductor industry. That is, by detecting transmitted electrons and tertiary electrons from the lower surface of the sample, it becomes possible to observe holes on the surface of the sample 8. In this detection method, the distance from the bottom of the hole to the lower surface is shorter, so that the signal at the bottom of the hole is larger than that at the surface.

【0019】図10は以上説明した観察の原理と検出方
法を用いた走査形電子顕微鏡である。電子源はLaB6
の単結晶で、これを加熱させることで放出される電子を
用いる。放出電子の制御はウエーネルト24で行う。放
出電子は加速電極25で加速される。本実施例での加速
電圧(エネルギ)の最高は200kVである。最上段の
加速電極25に、加速電圧が印加され、各加速電極25
には、分割抵抗34で分割された電圧が印加される。こ
こでは、加速電圧を与えるためのケーブル,電源等は省
略した。加速電極25を含む加速部は高電圧シールド3
5でシールドされている。加速された一次電子4は第1
コンデンサレンズ26,第2コンデンサレンズ27及び
対物レンズ7で縮小される。焦点距離30mmの対物レン
ズを用いると200kVで3nmの分解能が得られる。
電子ビームの開口は第2コンデンサレンズに置かれたア
パーチャ36で決定されている。電子ビームの走査は走
査コイル28で行う。走査した電子ビームが対物レンズ
7のレンズ中心を通るように二段のコイルで構成されて
いる。試料で反射した反射電子は反射電子検出器15
で、三次電子は吸引電極16で対物レンズ7の上方に導
かれ、シンチレータ10,ライトガイド11,二次電子
増倍管12で構成される検出器で検出される。
FIG. 10 shows a scanning electron microscope using the above-described observation principle and detection method. The electron source is LaB 6
Is used, and electrons emitted by heating the single crystal are used. The emission electrons are controlled by the Wehnelt 24. The emitted electrons are accelerated by the acceleration electrode 25. The maximum acceleration voltage (energy) in this embodiment is 200 kV. An accelerating voltage is applied to the uppermost accelerating electrode 25, and each accelerating electrode 25
, A voltage divided by the dividing resistor 34 is applied. Here, cables, power supplies, and the like for applying an acceleration voltage are omitted. The accelerating part including the accelerating electrode 25 is a high voltage shield 3
5 shielded. The accelerated primary electrons 4
It is reduced by the condenser lens 26, the second condenser lens 27 and the objective lens 7. If an objective lens having a focal length of 30 mm is used, a resolution of 3 nm can be obtained at 200 kV.
The aperture of the electron beam is determined by the aperture 36 placed on the second condenser lens. The scanning of the electron beam is performed by the scanning coil 28. It is composed of two-stage coils so that the scanned electron beam passes through the center of the objective lens 7. The backscattered electrons reflected by the sample are reflected by the backscattered electron detector 15.
The tertiary electrons are guided by the suction electrode 16 above the objective lens 7 and are detected by a detector composed of the scintillator 10, the light guide 11, and the secondary electron multiplier 12.

【0020】試料は4インチ以上のウエーハで、XY微
動ステージ29に載せる。試料傾斜微動30で任意方向
への±15度の傾斜が可能である。試料傾斜微動は3本
の柱で構成され、各柱の長さを、計算機で制御する。観
察するウエーハは予備室33内に専用カセット32に入
れて収納されている。観察する場合には、バルブ42を
開け、交換機構を用いてXY微動ステージ29上に載せ
る(図示せず)。試料の同一個所を、傾斜角を変えて観
察することによって、高さを計測することが可能である
(ステレオ測定)。
The sample is placed on an XY fine movement stage 29 with a wafer of 4 inches or more. The sample tilt fine movement 30 can tilt ± 15 degrees in an arbitrary direction. The sample tilt fine movement is composed of three columns, and the length of each column is controlled by a computer. The wafer to be observed is stored in a special cassette 32 in a spare room 33. When observing, the valve 42 is opened and mounted on the XY fine movement stage 29 using an exchange mechanism (not shown). The height can be measured by observing the same portion of the sample at different inclination angles (stereo measurement).

【0021】高集積された半導体素子では、高アスペク
ト比の深孔の加工のエッチング工程が重要であることは
すでに述べた。高アスペクト比の深孔の加工のエッチン
グは非常に難しく、エッチング条件の決定のためには深
孔の底を観察し、エッチングの進行状況を確認する必要
がある。図11はこの確認のフローを示したもので、確
認の結果によって再エッチングする等のフィードバック
をし、工程を完全なものにする。こうして決まったエッ
チング条件は、その後の工程に継続する。この確認をあ
る一定期間ごとに行うことで、より工程を安定させるこ
とができる。このエッチングの確認に走査形電子顕微鏡
は非常に有効で高集積素子の製造の歩留まり改善に寄与
できる。特に、これまで述べた三次電子を利用する高エ
ネルギ走査形電子顕微鏡は有効である。
It has already been mentioned that in a highly integrated semiconductor device, an etching step for processing a deep hole having a high aspect ratio is important. It is very difficult to etch a deep hole having a high aspect ratio, and it is necessary to observe the bottom of the deep hole and check the progress of the etching to determine the etching conditions. FIG. 11 shows a flow of this confirmation, and feedback such as re-etching is performed according to the result of the confirmation, thereby completing the process. The etching conditions determined in this way are continued in the subsequent steps. By performing this check at regular intervals, the process can be further stabilized. The scanning electron microscope is very effective in confirming this etching, and can contribute to the improvement of the production yield of highly integrated devices. In particular, the high-energy scanning electron microscope utilizing tertiary electrons described above is effective.

【0022】図12は上述の確認工程をより簡便にする
ための装置で、マイクロ波エッチング装置38と高エネ
ルギ走査電子顕微鏡37の試料室を共通とし、試料をエ
ッチング装置試料台39から走査形電子顕微鏡XY微動
ステージに移動させるだけで、エッチングと検査を交互
に行うことができる。マイクロ波エッチング装置の真空
度は10-4トールで、走査形電子顕微鏡と同程度である
が、活性なガスを用いているため、本実施例では中間室
41を設け、中間室用バルブ40を交互に開閉すること
で、活性ガスが走査形電子顕微鏡装置に流入しないよう
にしている。この図では排気系は省略している。
FIG. 12 shows an apparatus for simplifying the above-mentioned confirmation step. The sample chambers of the microwave etching apparatus 38 and the high-energy scanning electron microscope 37 are made common, and the sample is transferred from the etching apparatus sample table 39 to the scanning electron microscope. Etching and inspection can be performed alternately simply by moving to the microscope XY fine movement stage. The degree of vacuum of the microwave etching apparatus is 10 -4 Torr, which is almost the same as that of the scanning electron microscope. However, since an active gas is used, the intermediate chamber 41 is provided in this embodiment, and the valve 40 for the intermediate chamber is provided. By alternately opening and closing, the active gas is prevented from flowing into the scanning electron microscope apparatus. In this figure, the exhaust system is omitted.

【0023】[0023]

【発明の効果】以上説明したごとく本発明の観察原理に
よれば、従来観察できなかったアスペクト比2.5 以上
の深孔を観察することができる。これは例えば半導体素
子作成のプロセスにおいてインラインで検査できること
を意味しこの効果は非常に大きい。
As described above, according to the observation principle of the present invention, it is possible to observe deep holes having an aspect ratio of 2.5 or more, which could not be observed conventionally. This means that, for example, in-line inspection can be performed in the process of manufacturing a semiconductor device, and this effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の観察原理を説明する図。FIG. 1 is a diagram illustrating an observation principle of the present invention.

【図2】従来の観察方法を説明する図。FIG. 2 is a diagram illustrating a conventional observation method.

【図3】従来法による孔からの信号強度とアスペクト比
の関係を示す図。
FIG. 3 is a diagram showing a relationship between a signal intensity from a hole and an aspect ratio according to a conventional method.

【図4】加速電圧(エネルギ)を上げることによって孔
の底からの信号の増加の実測結果を示す図。
FIG. 4 is a diagram showing a measurement result of an increase in a signal from the bottom of a hole by increasing an acceleration voltage (energy).

【図5】本発明を用いたときの信号強度とアスペクト比
の関係を示す図。
FIG. 5 is a diagram showing a relationship between signal intensity and aspect ratio when the present invention is used.

【図6】孔の底からの反射電子で発生した三次電子の検
出法を説明した図。
FIG. 6 is a diagram illustrating a method for detecting tertiary electrons generated by reflected electrons from the bottom of a hole.

【図7】孔の底からの反射電子を観察する方法を説明す
る図。
FIG. 7 is a view for explaining a method of observing reflected electrons from the bottom of a hole.

【図8】反射電子,三次電子の両方を同時に観察する方
法を説明する図。
FIG. 8 is a view for explaining a method for simultaneously observing both reflected electrons and tertiary electrons.

【図9】試料を透過した電子を検出する図。FIG. 9 is a diagram for detecting electrons transmitted through a sample.

【図10】本発明の観察の原理と検出手法で、しかもウ
エーハ状態で観察できるように本発明の実施例を説明し
た図。
FIG. 10 is a view for explaining an embodiment of the present invention so that observation can be performed in a wafer state by the observation principle and the detection method of the present invention.

【図11】走査形電子顕微鏡を用いたエッチング条件の
決定フローを示す図。
FIG. 11 is a diagram showing a flow of determining an etching condition using a scanning electron microscope.

【図12】マイクロ波エッチングと走査形電子顕微鏡の
試料室を共通にしてエッチング条件の決定を容易にする
装置の概念図。
FIG. 12 is a conceptual diagram of an apparatus that facilitates determination of etching conditions by using a common sample chamber for microwave etching and a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1…一次電子(低エネルギ)、2…二次電子、3…孔、
4…一次電子(高エネルギ)、5…三次電子、6…反射
電子、7…対物レンズ、8…試料、9…吸引電界、10
…シンチレータ、11…ライトガイド、12…二次電子
増倍管、13…高圧電源、15…反射電子検出器、16
…吸引電極、17…吸引電源、18…アース電極、19
…透過電子、20…透過電子による三次電子、21…反
射板で作られる三次電子、22…反射板、24…ウエー
ネルト、25…加速電極、26…第1コンデンサレン
ズ、27…第2コンデンサレンズ、28…走査コイル、
29…XY微動ステージ、30…試料傾斜微動、31…
試料室、32…カセット、33…予備室、34…分割抵
抗、35…高電圧シールド、36…アパーチャ。
1 ... primary electron (low energy), 2 ... secondary electron, 3 ... hole,
4: Primary electrons (high energy), 5: Tertiary electrons, 6: Reflected electrons, 7: Objective lens, 8: Sample, 9: Attraction electric field, 10
... Scintillator, 11 ... Light guide, 12 ... Secondary electron multiplier, 13 ... High voltage power supply, 15 ... Backscattered electron detector, 16
... suction electrode, 17 ... suction power supply, 18 ... ground electrode, 19
... Transmitted electrons, 20: Tertiary electrons due to transmitted electrons, 21: Tertiary electrons formed by a reflector, 22 ... Reflector, 24 ... Wehnelt, 25 ... Accelerator electrode, 26 ... First condenser lens, 27 ... Second condenser lens, 28 scanning coil,
29 ... XY fine movement stage, 30 ... Sample tilt fine movement, 31 ...
Sample chamber, 32 cassette, 33 preliminary chamber, 34 divided resistance, 35 high voltage shield, 36 aperture.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アスペクト比が2.5 以上の深孔、或いは
溝を備えた半導体素子に対し電子線を照射し、試料像表
示を行う方法であって、前記深孔或いは溝の底部に対す
る前記電子線の照射に起因して発生する電子を前記試料
上で検出し、該検出に基づいて前記深孔或いは溝の底部
を表示することを特徴とする試料像表示方法。
1. A method for irradiating a semiconductor element having a deep hole or a groove having an aspect ratio of 2.5 or more with an electron beam to display a sample image, wherein the method comprises the steps of: A sample image display method, comprising: detecting electrons generated due to irradiation with an electron beam on the sample; and displaying the bottom of the deep hole or groove based on the detection.
【請求項2】請求項1において、前記電子線は前記深
孔,溝或いはその両方を含む領域に走査され、前記深
孔,溝或いはその両方の底部への電子線の照射に起因し
て発生する電子、及び前記深孔或いは溝以外の部分から
発生する2次電子或いは反射電子に基づいて前記走査領
域を表示することを特徴とする試料像表示方法。
2. The method according to claim 1, wherein the electron beam is scanned in a region including the deep hole, the groove, or both, and the electron beam is generated due to the irradiation of the electron beam to the bottom of the deep hole, the groove, or both. And displaying the scanning area based on electrons generated and secondary electrons or reflected electrons generated from portions other than the deep hole or the groove.
【請求項3】請求項1または2において、前記深孔或い
は溝の底部に対する電子線の照射に起因して発生する電
子は、前記深孔或いは溝の側壁から前記試料内部を通過
し、前記試料上へ貫通する電子を含むことを特徴とする
試料像表示方法。
3. The sample according to claim 1, wherein the electrons generated by the irradiation of the bottom of the deep hole or the groove with the electron beam pass through the inside of the sample from the side wall of the deep hole or the groove. A method for displaying a sample image, characterized by including electrons penetrating upward.
【請求項4】請求項1または2において、前記深孔或い
は溝の底部に対する電子線の照射に起因して発生する電
子は、前記深孔或いは溝の側壁から前記試料内部を通過
し、前記試料上へ貫通する電子が、その試料上で発生さ
せる2次電子を含むことを特徴とする試料像表示方法。
4. The sample according to claim 1, wherein electrons generated by irradiation of the bottom of the deep hole or groove with an electron beam pass through the inside of the sample from a side wall of the deep hole or groove, and A method of displaying a sample image, wherein the electrons penetrating upward include secondary electrons generated on the sample.
【請求項5】アスペクト比が2.5 以上の深孔エッチン
グ工程を必要とする半導体素子製造工程において、エッ
チング工程後、走査形電子顕微鏡で検査を実行し、その
結果によりエッチング条件を決定する半導体素子の製造
方法。
5. In a semiconductor device manufacturing process which requires a deep hole etching process having an aspect ratio of 2.5 or more, an inspection is performed by a scanning electron microscope after the etching process, and the etching condition is determined based on the result. Device manufacturing method.
JP27841597A 1997-10-13 1997-10-13 Sample image display method and semiconductor manufacturing method using the display method Expired - Lifetime JP3219030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27841597A JP3219030B2 (en) 1997-10-13 1997-10-13 Sample image display method and semiconductor manufacturing method using the display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27841597A JP3219030B2 (en) 1997-10-13 1997-10-13 Sample image display method and semiconductor manufacturing method using the display method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27225890A Division JP3285092B2 (en) 1990-10-12 1990-10-12 Scanning electron microscope and sample image forming method using scanning electron microscope

Publications (2)

Publication Number Publication Date
JPH10116580A true JPH10116580A (en) 1998-05-06
JP3219030B2 JP3219030B2 (en) 2001-10-15

Family

ID=17597032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27841597A Expired - Lifetime JP3219030B2 (en) 1997-10-13 1997-10-13 Sample image display method and semiconductor manufacturing method using the display method

Country Status (1)

Country Link
JP (1) JP3219030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165106A (en) * 2005-12-13 2007-06-28 Sanyu Electron Co Ltd Image generating method and apparatus
JP2010097844A (en) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology Scanning electron microscope and its using method
US8222600B2 (en) 2009-05-24 2012-07-17 El-Mul Technologies Ltd. Charged particle detection system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165106A (en) * 2005-12-13 2007-06-28 Sanyu Electron Co Ltd Image generating method and apparatus
JP2010097844A (en) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology Scanning electron microscope and its using method
US8222600B2 (en) 2009-05-24 2012-07-17 El-Mul Technologies Ltd. Charged particle detection system and method

Also Published As

Publication number Publication date
JP3219030B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP3285092B2 (en) Scanning electron microscope and sample image forming method using scanning electron microscope
KR100499427B1 (en) Objective lens for a charged particle beam device
US5525806A (en) Focused charged beam apparatus, and its processing and observation method
JP3434165B2 (en) Scanning electron microscope
JP3774953B2 (en) Scanning electron microscope
JP2919170B2 (en) Scanning electron microscope
US8466415B2 (en) Methods for performing circuit edit operations with low landing energy electron beams
US20030127604A1 (en) Scanning electron microscope
JP3966350B2 (en) Scanning electron microscope
JPH07134964A (en) Electron beam device provided with height measuring means for sample
JP3515063B2 (en) Scanning electron microscope
JP3219030B2 (en) Sample image display method and semiconductor manufacturing method using the display method
JP2000299078A (en) Scanning electron microscope
WO2018143054A1 (en) Charged particle detector and charged particle beam device
JP3132796B2 (en) Method for observing semiconductor device and scanning electron microscope used therefor
JP4179390B2 (en) Scanning electron microscope
JP3014369B2 (en) Electron beam device equipped with sample height measuring means
JP2007180035A (en) Method and apparatus for inspecting circuit pattern
JP3992021B2 (en) Scanning electron microscope
JP2007005327A (en) Scanning electron microscope
JPH09161712A (en) Sample machining device by ion beam
JP2000277048A (en) Observation device and method of surface of object using charged particle beam
JP2022071081A (en) Electron beam ion generation device and electron beam ion generation method
JP2000182557A (en) Charged particle beam device
JPH0619963B2 (en) Scanning electron microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10