JPH10115878A - Three dimensional picture projection system using directional screen - Google Patents

Three dimensional picture projection system using directional screen

Info

Publication number
JPH10115878A
JPH10115878A JP8303464A JP30346496A JPH10115878A JP H10115878 A JPH10115878 A JP H10115878A JP 8303464 A JP8303464 A JP 8303464A JP 30346496 A JP30346496 A JP 30346496A JP H10115878 A JPH10115878 A JP H10115878A
Authority
JP
Japan
Prior art keywords
observer
projection system
viewpoint position
image
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8303464A
Other languages
Japanese (ja)
Inventor
Jun Ishikawa
洵 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWA KOGAKU ZOKEI KENKYUSH
ISHIKAWA KOGAKU ZOKEI KENKYUSHO KK
Original Assignee
ISHIKAWA KOGAKU ZOKEI KENKYUSH
ISHIKAWA KOGAKU ZOKEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWA KOGAKU ZOKEI KENKYUSH, ISHIKAWA KOGAKU ZOKEI KENKYUSHO KK filed Critical ISHIKAWA KOGAKU ZOKEI KENKYUSH
Priority to JP8303464A priority Critical patent/JPH10115878A/en
Publication of JPH10115878A publication Critical patent/JPH10115878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Projection Apparatus (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mechanism for automatically aligning the optimum observation viewpoint position of a projection system which uses a directional screen and by which a three-dimensional picture can be observed without exclusive glasses with the viewpoint position of an observer in the projection system, so that a picture can be easily viewed. SOLUTION: The viewpoint position of an observer 9 is found by arithmetic calculation based on the measured value of sitting height, height, or shoulder height, etc., with a sensor, or measuring the eye position based on the picture inputted by a television camera. This system is provided with the mechanism for automatically aligning the viewpoint position with the optimum observation viewpoint position of the projection system so as to eliminate deviation by moving the entire projection system or the constituting part of projectors 6a and 6b, etc., or moving the seat of the observer or a floor where the observer is positioned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は指向性スクリーン
を用いる3次元画像投写システムに関するものである。
The present invention relates to a three-dimensional image projection system using a directional screen.

【0002】[0002]

【従来の技術】従来、スクリーンに投写された3次元画
像を観察するためには偏光フィルム等を用いた専用眼鏡
を装着する必要があり煩わしく、また、画像が暗いため
映写室を暗くする必要があった。
2. Description of the Related Art Conventionally, in order to observe a three-dimensional image projected on a screen, it is necessary to wear special glasses using a polarizing film or the like, which is troublesome, and since the image is dark, it is necessary to darken a projection room. there were.

【0003】[0003]

【発明が解決しようとする課題】従来の技術の欠点を解
決するため特許出願広告昭47−29357から類推
し、複数台のプロジェクターからハーフミラーを介して
指向性反射スクリーンに3次元画像を投写し、スクリー
ンの反射光を裸眼で3次元画像としてかつ明室で観察す
る方法が考えられる。しかしながら、この方法は専用眼
鏡を使用しない便利さがある代りに、視点位置が限定さ
れ、その位置を探す困難さがある。本発明は指向性反射
スクリーンを用いる3次元画像投写システムに於てシス
テムの最適観察視点位置と観察者の視点位置を自動的に
合致させる方法に関するものである。
To solve the drawbacks of the prior art, a three-dimensional image is projected from a plurality of projectors via a half mirror onto a directional reflection screen by analogy with Patent Application Publication No. 47-29357. A method of observing the reflected light of the screen as a three-dimensional image with the naked eye and in a bright room can be considered. However, this method has the convenience of not using special glasses, but has a limited viewpoint position and has difficulty in finding the position. The present invention relates to a method for automatically matching an optimal observation viewpoint position of a system and an observer's viewpoint position in a three-dimensional image projection system using a directional reflection screen.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

(イ)複数台のプロジェクター1a、1b、を位置制御
の可能な自動ステージ4で移動できる構造とする。 (ロ)センサーで計測した観察者5の位置を基に、制御
装置でシステムの最適観察視点位置を観察者の視点位置
と合致させるためのプロジェクター移動量を演算し、自
動ステージ4でプロジェクター1a、1b、を移動す
る。このとき、プロジェクターだけでなくハーフミラー
2とスクリーン3の両者、または一方を同時に移動して
も良い。 (ハ)観察者9を位置制御の可能な自動ステージ10で
少なくとも上下方向に移動できる構造とする。 (ニ)センサーで計測した観察者9の位置を元に、制御
装置で観察者9の視点高さをシステムの最適観察視点位
置と合致させるための観察者の移動量を演算し、自動ス
テージ10で観察者9を移動する。 (ホ)観察者の視点位置の左右方向および前後方向につ
いても位置制御を行うと更に高精度の視点合わせが可能
になる。
(A) A structure in which a plurality of projectors 1a and 1b can be moved by an automatic stage 4 capable of position control. (B) Based on the position of the observer 5 measured by the sensor, the controller calculates a projector movement amount for matching the optimal observation viewpoint position of the system with the observer's viewpoint position. 1b. At this time, not only the projector but also the half mirror 2 and / or the screen 3 may be moved at the same time. (C) A structure in which the observer 9 can be moved at least in the vertical direction by the automatic stage 10 capable of position control. (D) Based on the position of the observer 9 measured by the sensor, the controller calculates the amount of movement of the observer for matching the viewpoint height of the observer 9 with the optimal observation viewpoint position of the system, and calculates the automatic stage 10. To move the observer 9. (E) If position control is performed also in the left-right direction and the front-back direction of the observer's viewpoint position, the viewpoint can be adjusted with higher accuracy.

【0005】[0005]

【発明の実施の形態】本発明の実施方法を例をあげて説
明すると、ヒトの左右の眼の間隔だけ離して並べた右眼
用プロジェクター1aおよび左眼用プロジェクター1b
の投写光をハーフミラー2で反射させ、指向性スクリー
ン3に投写する。そのとき、プロジェクターのピントは
通常スクリーンに合せる。指向性スクリーンは通常、回
帰性スクリーンと呼ばれる反射光が光源方向に戻るスク
リーンを用いる。上記のシステムでは、スクリーンの反
射光はプロジェクターのレンズ方向に回帰するので、プ
ロジェクター1aおよび1bのレンズの、ハーフミラー
2に関して対称の点が最適観察視点位置となる。いま、
プロジェクター1bの画像の最適観察視点位置に観察者
の左眼を、そして、1aの最適観察視点位置に右眼をそ
れぞれ置くと画像は極めて明るく、左眼にはプロジェク
ター1bの画像、右眼にはプロジェクター1aの画像が
見える。このシステムは光学系にレンチキュラーレンズ
等の収差の大きい素子が入らないため、プロジェクター
1a、1b、に立体画像を入力すると極めて質の高い立
体画像を観察することができる。このシステムに於いて
スクリーンをプロジェクターの光軸方向に設置すること
もできる。すなわち、図2のようにプロジェクター6
a、6b、を下方にスクリーン8を上方に設置すると、
前記と同様、プロジェクター6aおよび6bのレンズ
の、ハーフミラー7に関して対称の点が最適観察視点と
なり、ここに観察者9の視点を合わせれば良い。この配
置の場合、像の見える位置11を空間に設けることがで
きるので、ジオラマ12等との組合わせ展示が可能であ
る。指向性スクリーンを用いるシステムに於てはプロジ
ェクターを多数台使うことも可能であり、多方向から撮
影した画像を同時に投写すれば、観察者が左に動けば左
方から見た画像、右に動けば右方から見た画像が観察で
き、より高水準の多眼式3次元表示となる。このように
指向性スクリーンを用いる3次元画像投写システムは質
の高い画像を表示するが、システムの最適観察視点位置
と観察者の視点位置を合せることが、不馴れな場合に難
しいと言う問題を持っている。左右方向および前後方向
については、体をよくホールドする椅子に観察者を着席
させることによって大部分解決するが、各人の身長もし
くは座高差による視点高さのばらつきについては対策が
必要と考えられる。この問題は視点高さを、直接計測、
もしくは身体の部位の位置からの演算により求め、シス
テムの最適観察視点位置との差異を自動修正することに
よって解決される。視点高さを求める方法の例として
は、光線センサーの投光器13と受光器14を観察者の
所に位置させ、座高もしくは身長を測る方法や、超音波
センサーの発信機18と受信機19を頭上に設けて測る
方法や、ヘッドホン27などの装具の位置を3次元また
は2次元測定器28で測る、といった方法で頭頂部の高
さを出し、この値から、平均的な頭頂部から視点までの
距離を引いて視点位置を割出す方法がある。このとき、
身長差による頭頂部から視点までの距離の差に対応する
ため、測定した座高あるいは身長の絶対値により補正を
行うとより正確となる。また、着帽者が多いような場合
は肩の高さを測る方法もある。もう一つの方法として、
テレビカメラ23で観察者24を写し、画像処理の特徴
抽出により眼の位置を求めることもできる。上記のよう
にして得た観察者の視点高さと、システムの最適観察視
点位置との差は次のように自動修正する。第1図のよう
に観察者の位置が一定している場合、自動ステージ4で
プロジェクター1a、1b、を平行移動し、観察者の視
点にシステムの最適観察視点を合せる。この場合、必要
に応じてハーフミラー2とスクリーン3の両方または一
方を同時に移動してもよい。第2図のように画像11と
ジオラマ12が組み合わされている場合、システムの一
要素のみを移動すると画像とジオラマにずれが生じ、ま
た、システム全体を移動するのは容易ではない。そこ
で、自動ステージ10にて観察者9の高さを移動し、シ
ステムの最適観察視点位置に観察者の視点位置の方を合
わせると良い。何れの方法についても、最初の自動修正
は観察者が定位置についたとき、たとえば着席時に行う
と良く、その後は常時でも一定時間間隔で行なっても良
い。以上のような方法により問題は解決するが、左右方
向や前後方向についても画像計測等の方法でずれを検出
し自動修正を行なうと一層高精度となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of implementing the present invention will be described by taking an example. A projector 1a for the right eye and a projector 1b for the left eye which are arranged at a distance between the left and right eyes of a human.
Is reflected by the half mirror 2 and is projected on the directional screen 3. At that time, the focus of the projector is usually adjusted to the screen. As the directional screen, a screen called a recurrent screen, in which reflected light returns toward the light source, is usually used. In the above system, the reflected light from the screen returns to the direction of the lens of the projector, and therefore, a point symmetrical with respect to the half mirror 2 of the lenses of the projectors 1a and 1b is the optimum observation viewpoint position. Now
When the observer's left eye is placed at the optimal observation viewpoint position of the image of the projector 1b, and the right eye is placed at the optimal observation viewpoint position of 1a, the image is extremely bright. The image of the projector 1a can be seen. In this system, since an element having a large aberration such as a lenticular lens does not enter the optical system, when a stereoscopic image is input to the projectors 1a and 1b, an extremely high-quality stereoscopic image can be observed. In this system, the screen can be set in the optical axis direction of the projector. That is, as shown in FIG.
When a and 6b are placed below and the screen 8 is placed above,
As described above, the point of symmetry of the lenses of the projectors 6a and 6b with respect to the half mirror 7 becomes the optimum observation viewpoint, and the viewpoint of the observer 9 may be adjusted here. In the case of this arrangement, since the position 11 where the image can be seen can be provided in the space, it is possible to exhibit in combination with the diorama 12 and the like. In a system using a directional screen, it is possible to use a large number of projectors. If images taken from multiple directions are projected at the same time, if the observer moves to the left, the image viewed from the left can move to the right. For example, an image viewed from the right can be observed, and a higher-level multi-view three-dimensional display can be obtained. As described above, the three-dimensional image projection system using the directional screen displays a high-quality image, but has a problem that it is difficult to match the optimal observation viewpoint position of the system with the observer's viewpoint position when it is unfamiliar. ing. In the left-right direction and the front-back direction, most of the problems can be solved by seating the observer in a chair that holds the body well. The problem is that the viewpoint height is directly measured,
Alternatively, the problem is solved by calculating from the position of the body part and automatically correcting the difference from the optimal observation viewpoint position of the system. Examples of the method of obtaining the viewpoint height include a method of positioning the projector 13 and the light receiver 14 of the light sensor at the observer and measuring the sitting height or height, and a method of measuring the transmitter 18 and the receiver 19 of the ultrasonic sensor overhead. The height of the top of the head is obtained by a method of measuring the position of the equipment such as the headphones 27 with a three-dimensional or two-dimensional measuring device 28, and from this value, the average height from the top of the head to the viewpoint is measured. There is a method of calculating the viewpoint position by subtracting the distance. At this time,
In order to cope with the difference in the distance from the top of the head to the viewpoint due to the height difference, the correction will be more accurate if corrected based on the measured sitting height or the absolute value of the height. If there are many people wearing hats, there is a method of measuring the height of the shoulder. Alternatively,
The observer 24 can be photographed by the television camera 23, and the position of the eye can be obtained by extracting features of image processing. The difference between the observer's viewpoint height obtained as described above and the optimal observation viewpoint position of the system is automatically corrected as follows. When the position of the observer is constant as shown in FIG. 1, the projectors 1a and 1b are moved in parallel by the automatic stage 4, and the optimal observation viewpoint of the system is adjusted to the viewpoint of the observer. In this case, if necessary, both or one of the half mirror 2 and the screen 3 may be moved at the same time. In the case where the image 11 and the diorama 12 are combined as shown in FIG. 2, if only one element of the system is moved, the image and the diorama are shifted, and it is not easy to move the entire system. Therefore, it is preferable to move the height of the observer 9 on the automatic stage 10 and adjust the observer's viewpoint position to the optimal observation viewpoint position of the system. Regardless of the method, the first automatic correction may be performed when the observer is in a fixed position, for example, when the observer is seated, and thereafter may be performed constantly or at regular time intervals. Although the problem can be solved by the above-described method, the accuracy can be further improved by detecting a deviation in the left-right direction and the front-back direction by a method such as image measurement and performing automatic correction.

【0006】[0006]

【発明の効果】本発明により専用眼鏡をかけずに明室で
高画質の3次元画像が見られる特長を持った指向性反射
スクリーンを用いる3次元画像投写システムの、ほぼ唯
一の欠点であった観察視点位置の見つけづらさが解決さ
れ実用性が向上した。
According to the present invention, a three-dimensional image projection system using a directional reflection screen having a feature that a high-quality three-dimensional image can be viewed in a bright room without wearing special glasses is almost the only drawback. The difficulty in finding the observation viewpoint position was solved, and the practicality was improved.

【0007】[0007]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の3次元画像投写システムに於て、プロ
ジェクターの投写光がハーフミラーにて反射された方向
に指向性スクリーンを設置した構成図。
FIG. 1 is a configuration diagram of a three-dimensional image projection system of the present invention in which a directional screen is installed in a direction in which projection light of a projector is reflected by a half mirror.

【図2】本発明の3次元画像投写システムに於て、プロ
ジェクターの投写光がハーフミラーを透過した方向に指
向性スクリーンを設置した構成図。
FIG. 2 is a configuration diagram of a three-dimensional image projection system according to the present invention, in which a directional screen is installed in a direction in which projection light from a projector has passed through a half mirror.

【図3】本発明の、自動ステージの移動量を指示する方
法として、光線センサーにより観察者の頭頂部位置を計
測し、そのデータから制御装置により自動ステージの移
動量を指示する装置の構成図。
FIG. 3 is a block diagram of an apparatus for measuring the position of the top of the observer using a light beam sensor and instructing the amount of movement of the automatic stage by a control device from the data as a method of indicating the amount of movement of the automatic stage of the present invention. .

【図4】本発明の、観察者の頭頂部位置の計測に超音波
センサーを用いる方式の構成図。
FIG. 4 is a configuration diagram of a method of using an ultrasonic sensor to measure the position of the top of the head of an observer according to the present invention.

【図5】本発明の、テレビカメラで取り込んだ観察者の
顔の画像から、画像計測にて視点位置を計測する方式の
構成図。
FIG. 5 is a configuration diagram of a method of measuring a viewpoint position by image measurement from an image of an observer's face captured by a television camera according to the present invention.

【図6】本発明の、観察者の装着したヘッドホンの位置
を計測し、観察者の頭部位置を測定する方式の構成図。
FIG. 6 is a configuration diagram of a method for measuring the position of headphones worn by an observer and measuring the position of the head of the observer according to the present invention.

【符号の説明】[Explanation of symbols]

1a 右眼画像用プロジェクター 1b 左眼画像用プロジェクター 2 ハーフミラー 3 指向性スクリーン 4 自動ステージ 5 観察者 6a 右眼画像用プロジェクター 6b 左眼画像用プロジェクター 7 ハーフミラー 8 指向性スクリーン 9 観察者 10 自動ステージ 11 像の見える位置 12 ジオラマ 13 光線センサーの投光器 14 光線センサーの受光器 15 光線 16 観察者 17 制御装置 18 超音波センサーの発信器 19 超音波センサーの受信器 20 超音波 21 観察者 22 制御装置 23 テレビカメラ 24 観察者 25 画像処理装置 26 制御装置 27 ヘッドホン 28 3次元あるいは2次元測定器 29 観察者 30 制御装置 Reference Signs List 1a Right-eye image projector 1b Left-eye image projector 2 Half mirror 3 Directional screen 4 Automatic stage 5 Observer 6a Right-eye image projector 6b Left-eye image projector 7 Half mirror 8 Directional screen 9 Observer 10 Automatic stage REFERENCE SIGNS LIST 11 image viewing position 12 diorama 13 light sensor light transmitter 14 light sensor light receiver 15 light beam 16 observer 17 control device 18 ultrasonic sensor transmitter 19 ultrasonic sensor receiver 20 ultrasonic 21 observer 22 control device 23 Television camera 24 Observer 25 Image processing device 26 Control device 27 Headphones 28 3D or 2D measuring device 29 Observer 30 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】センサーあるいは画像計測により測定した
観察者の視点位置と投写システムの最適観察視点位置と
の差異を、投写システムの全体もしくはプロジェクター
などの部分構成要素を移動することにより自動的に合致
させる機構を備えた、指向性スクリーンを用いる3次元
画像投写システム。
The difference between an observer's viewpoint position measured by a sensor or image measurement and an optimum observation viewpoint position of a projection system is automatically matched by moving the whole projection system or a partial component such as a projector. A three-dimensional image projection system using a directional screen, which is provided with a mechanism for causing the image to be projected.
【請求項2】センサーあるいは画像計測により測定した
観察者の視点位置と投写システムの最適観察視点位置と
の差異を、観察者の着座した座席あるいは観察者の位置
する床を移動することにより自動的に合致させる機構を
備えた、指向性スクリーンを用いる3次元画像投写シス
テム。
2. The difference between the observer's viewpoint position measured by a sensor or image measurement and the optimum observation viewpoint position of the projection system is automatically determined by moving the observer's seat or the observer's floor. A three-dimensional image projection system using a directional screen, provided with a mechanism for matching the image.
JP8303464A 1996-10-09 1996-10-09 Three dimensional picture projection system using directional screen Pending JPH10115878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8303464A JPH10115878A (en) 1996-10-09 1996-10-09 Three dimensional picture projection system using directional screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303464A JPH10115878A (en) 1996-10-09 1996-10-09 Three dimensional picture projection system using directional screen

Publications (1)

Publication Number Publication Date
JPH10115878A true JPH10115878A (en) 1998-05-06

Family

ID=17921288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303464A Pending JPH10115878A (en) 1996-10-09 1996-10-09 Three dimensional picture projection system using directional screen

Country Status (1)

Country Link
JP (1) JPH10115878A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010194A (en) * 1998-06-19 2000-01-14 Minolta Co Ltd Picture display method and device
JP2000122176A (en) * 1998-08-11 2000-04-28 Minolta Co Ltd Information presentation method and device therefor
US6926409B2 (en) 2002-08-09 2005-08-09 Olympus Corporation Projection viewing system
DE102005047712A1 (en) * 2005-09-27 2007-03-29 X3D Technologies Gmbh Autostereoscopic arrangement for use in passenger car, has autostereoscopic display with control electronics for inspecting viewer located on seat, and determination unit for determining head position of viewer based on position of seat
US7236278B2 (en) 2003-03-28 2007-06-26 Olympus Corporation Projection optical apparatus
US7317565B2 (en) 2002-07-16 2008-01-08 Olympus Corporation Projection viewing system
JP2010002894A (en) * 2008-05-23 2010-01-07 Nanao Corp Stereoscopic image display system
CN101923249A (en) * 2009-06-16 2010-12-22 三星电子株式会社 Display device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010194A (en) * 1998-06-19 2000-01-14 Minolta Co Ltd Picture display method and device
JP2000122176A (en) * 1998-08-11 2000-04-28 Minolta Co Ltd Information presentation method and device therefor
US7317565B2 (en) 2002-07-16 2008-01-08 Olympus Corporation Projection viewing system
US6926409B2 (en) 2002-08-09 2005-08-09 Olympus Corporation Projection viewing system
US7236278B2 (en) 2003-03-28 2007-06-26 Olympus Corporation Projection optical apparatus
DE102005047712A1 (en) * 2005-09-27 2007-03-29 X3D Technologies Gmbh Autostereoscopic arrangement for use in passenger car, has autostereoscopic display with control electronics for inspecting viewer located on seat, and determination unit for determining head position of viewer based on position of seat
JP2010002894A (en) * 2008-05-23 2010-01-07 Nanao Corp Stereoscopic image display system
CN101923249A (en) * 2009-06-16 2010-12-22 三星电子株式会社 Display device and method
JP2011002832A (en) * 2009-06-16 2011-01-06 Samsung Electronics Co Ltd Image display device and method
US8780013B2 (en) 2009-06-16 2014-07-15 Samsung Electronics Co., Ltd. Display device and method
CN101923249B (en) * 2009-06-16 2015-06-24 三星电子株式会社 Display device and method

Similar Documents

Publication Publication Date Title
US11223820B2 (en) Augmented reality displays with active alignment and corresponding methods
US10869024B2 (en) Augmented reality displays with active alignment and corresponding methods
US8203599B2 (en) 3D image display apparatus and method using detected eye information
US6326994B1 (en) Matched field-of-view stereographic imaging apparatus
JPH10327433A (en) Display device for composted image
JPH07322301A (en) Three-dimensional display device and screen control method therefor
JP5173395B2 (en) Visual function inspection device
JP2000152285A (en) Stereoscopic image display device
JP2002232913A (en) Double eye camera and stereoscopic vision image viewing system
KR20030048013A (en) A method and system of revision for 3-dimensional image
JP3469884B2 (en) 3D image display device
JPH10115878A (en) Three dimensional picture projection system using directional screen
JPH0713105A (en) Observer follow-up type stereoscopic display device
JP3425402B2 (en) Apparatus and method for displaying stereoscopic image
JP2012244466A (en) Stereoscopic image processing device
WO2012097503A1 (en) Control method and apparatus for stereoscopic display
JP5331785B2 (en) Stereoscopic image analyzer
JP3976860B2 (en) Stereoscopic imaging device
JP6608208B2 (en) Image display device
JP6677387B2 (en) Stereoscopic image display device and stereoscopic image display method
JPH09298759A (en) Stereoscopic video display device
JPH06276552A (en) Stereoscopic picture image pickup device and picture display device
JP4235291B2 (en) 3D image system
JP4609844B2 (en) Stereoscopic fundus camera
JP3454798B2 (en) Setting method of head position detecting device in stereoscopic image display device and head position detecting device