JPH10114533A - Production of high purity transparent silica glass - Google Patents

Production of high purity transparent silica glass

Info

Publication number
JPH10114533A
JPH10114533A JP9152158A JP15215897A JPH10114533A JP H10114533 A JPH10114533 A JP H10114533A JP 9152158 A JP9152158 A JP 9152158A JP 15215897 A JP15215897 A JP 15215897A JP H10114533 A JPH10114533 A JP H10114533A
Authority
JP
Japan
Prior art keywords
silica glass
transparent silica
bubbles
purity
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9152158A
Other languages
Japanese (ja)
Other versions
JP3988211B2 (en
Inventor
Kenji Kamo
賢治 加茂
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP15215897A priority Critical patent/JP3988211B2/en
Publication of JPH10114533A publication Critical patent/JPH10114533A/en
Application granted granted Critical
Publication of JP3988211B2 publication Critical patent/JP3988211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high purity transparent silica glass almost free from bubbles and a crystallized part and not undergoing a density change by heating or the penetration of gas by melting high purity amorphous silica powder obtd. from silicon alkoxide by heating in an atmosphere under reduced pressure, giving a pressurized state with inert gas and subjecting the resultant transparent silica glass to hot isostatic pressing. SOLUTION: High purity amorphous silica powder cong. An, K, Mg, Ca, Fe, Al and Ti by <=0.1ppm each obtd. from silicon alkoxide is used as starting material, heat-treated and pressurized to produce high purity silica glass. At this time, the starting material is held at a temp. at which the powder is meltable in an atmosphere under a reduced pressure of <=10mmHg, bubbles each having >=1mm diameter are diminished by gibing a pressurized state of >=2kgf/ cm<2> with inert gas and bubbles each having <1mm diameter and diminished by applying 100-200MPa pressure by inert gas at 1,200-1,350 deg.C with a hot isostatic press. Heat treatment at 1,000-1,300 deg.C and slow cooling are then carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気泡を減少させた高
純度透明シリカガラスの製造方法に関する。更に詳しく
は、光透過性を利用する各種光学材料、高温型液晶基板
などの材料として利用できる高純度透明シリカガラスの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity transparent silica glass with reduced bubbles. More specifically, the present invention relates to a method for producing a high-purity transparent silica glass that can be used as a material for various optical materials utilizing high light transmittance and a high-temperature liquid crystal substrate.

【0002】[0002]

【従来の技術】各種合成シリカ粉末を減圧雰囲気中で1
800〜1900℃に加熱し、透明シリカガラスとする
製造方法が従来から知られている。たとえば、特開平3
−37120、特開平3−5329、特開平2−229
735には、アルコキシシランを加水分解したゲルを焼
成することにより得たシリカ粉末を減圧雰囲気下150
0〜2200℃に加熱して透明シリカガラスとする製法
が開示されている。このような方法においては、純度の
高い透明シリカガラスが比較的簡単に得られるものの、
得られたガラスには気泡が含まれる。気泡の形態は10
〜100μmの微小気泡が散在する場合や0.5〜2m
mの大きい気泡が点在する場合など製法により様々であ
る。このようなガラスを1200〜1500℃に長時間
保持すると気泡周辺が結晶化してくるという欠点があっ
た。
2. Description of the Related Art Various synthetic silica powders are mixed under reduced pressure atmosphere.
A method for producing a transparent silica glass by heating to 800 to 1900 ° C. has been conventionally known. For example, JP
-37120, JP-A-3-5329, JP-A-2-229
In 735, silica powder obtained by calcining a gel obtained by hydrolyzing alkoxysilane is mixed under reduced pressure atmosphere for 150 minutes.
A method for producing a transparent silica glass by heating to 0 to 2200 ° C. is disclosed. In such a method, transparent silica glass with high purity can be obtained relatively easily,
The resulting glass contains air bubbles. The form of the bubble is 10
When small air bubbles of 100100 μm are scattered or 0.5 to 2 m
It varies depending on the production method, for example, when bubbles having a large m are scattered. When such a glass is kept at 1200 to 1500 ° C. for a long time, there is a disadvantage that the periphery of the bubbles is crystallized.

【0003】また、特公昭59−34660や特開昭5
7−34031には、シリカガラス中の気泡を減少させ
る方法として1000〜1500℃の温度領域で高圧ガ
スを作用させる方法が開示されている。このような方法
は確かに気泡を減少させるのに有効であるが、得られる
ガラスは通常の石英ガラスよりも密度が高くなってお
り、密度が高くなったシリカガラスをそのまま使用する
とシリカガラスが膨脹するという欠点があった。また高
圧ガス圧力を作用させるとシリカガラス表面にガスが浸
入し、発泡等が生じる恐れがあるという問題もあった。
さらに、このようなシリカガラスは均質性(Δn)が普
通のシリカガラスより劣るものである。
Further, Japanese Patent Publication No. 59-34660 and Japanese Patent Application Laid-Open
7-34031 discloses a method of applying a high-pressure gas in a temperature range of 1000 to 1500 ° C. as a method for reducing bubbles in silica glass. Although such a method is certainly effective in reducing bubbles, the resulting glass has a higher density than ordinary quartz glass, and if the silica glass having the higher density is used as it is, the silica glass expands. Had the disadvantage of doing so. Further, there is also a problem that when high pressure gas pressure is applied, gas enters the surface of the silica glass and foaming or the like may occur.
Furthermore, such silica glass is inferior in homogeneity (Δn) to ordinary silica glass.

【0004】このような気泡の発生、結晶化、密度変
化、ガスの浸入といった問題は、光透過性を利用する各
種光学材料、高温型液晶基板などの用途、また高温で長
時間使用する半導体製造用治具などの用途には適さず、
これらの問題がない材料が望まれていた。
[0004] Problems such as generation of bubbles, crystallization, density change, and gas infiltration are caused by various optical materials utilizing light transmissivity, applications such as high temperature type liquid crystal substrates, and semiconductor manufacturing which is used at high temperatures for a long time. Not suitable for applications such as jigs
Materials that do not have these problems have been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
記載の従来技術の問題点を克服し、光透過性を利用する
各種光学材料、高温型液晶基板などの用途、また高温で
長時間使用する半導体製造装置治具などの用途に適用可
能な気泡又は結晶化部分が極めて少なく、かつ加熱によ
る密度変化やガスの浸入もない高純度透明シリカガラス
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems of the prior art and to use various optical materials utilizing light transmissivity, high temperature type liquid crystal substrates, etc. An object of the present invention is to provide a method for producing a high-purity transparent silica glass which has extremely few bubbles or crystallized portions applicable to applications such as a jig for a semiconductor manufacturing apparatus to be used, and has no change in density or intrusion of gas due to heating.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を行なった結果、珪素のア
ルコキシドより得られる高純度非晶質シリカ粉末を、減
圧雰囲気中で高純度非晶質シリカ粉末が溶融しうる温度
に加熱溶解し、その後不活性ガスで加圧状態にして、得
られた透明シリカガラスに熱間静水圧プレス処理を施す
ことにより、ガラス中の直径1mm未満の気泡が効果的
に減少すること、さらに高純度透明シリカガラスを再加
熱することにより、密度を戻すことができ、浸入したガ
スを取り除くことができることを見出だし、本発明を完
成した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have obtained a high-purity amorphous silica powder obtained from silicon alkoxide under high-pressure atmosphere. By heating and melting to a temperature at which the pure amorphous silica powder can be melted, and then pressurizing with an inert gas, and subjecting the obtained transparent silica glass to hot isostatic pressing, a diameter of 1 mm in the glass is obtained. The present inventors have found that bubbles less than less can be effectively reduced, and further, by reheating the high-purity transparent silica glass, the density can be returned and the invading gas can be removed, and the present invention has been completed.

【0007】すなわち本発明は、含有金属不純物として
各々独立してNa、K、Mg、Ca、Fe、Al、Ti
が0.1ppm以下である珪素のアルコキシドより得た
高純度非晶質シリカ粉末を出発原料とし、熱処理及び圧
力処理することにより高純度透明シリカガラスを製造す
る方法において、(a)出発原料を10mmHg以下の
減圧雰囲気下出発原料が溶融しうる温度におき、その後
不活性ガスで圧力で2kgf/cm2以上の加圧状態に
して、直径1mm以上の気泡を減少させる工程と、
(b)熱間静水圧プレス装置を用い、1200〜135
0℃の温度範囲で100〜200MPaの不活性ガスに
よる圧力を作用させ、直径1mm未満の気泡を減少させ
る工程と、(c)(b)の工程の後、1000〜130
0℃で熱処理した後徐冷する工程を備えてなることを特
徴とする高純度透明シリカガラスの製造方法である。
That is, according to the present invention, Na, K, Mg, Ca, Fe, Al, Ti
Is a high-purity amorphous silica powder obtained from a silicon alkoxide having a content of 0.1 ppm or less, and a heat treatment and a pressure treatment to produce a high-purity transparent silica glass, wherein (a) the starting material is 10 mmHg Placing the starting material under a reduced pressure atmosphere at a temperature at which the starting material can be melted, and then applying a pressure of 2 kgf / cm 2 or more with an inert gas to reduce bubbles having a diameter of 1 mm or more;
(B) Using a hot isostatic pressing device, from 1200 to 135
A step of applying a pressure of 100 to 200 MPa of inert gas in a temperature range of 0 ° C. to reduce bubbles having a diameter of less than 1 mm, and after steps (c) and (b), 1000 to 130
A method for producing a high-purity transparent silica glass, comprising a step of performing a heat treatment at 0 ° C. and then gradually cooling.

【0008】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0009】本発明において用いられる出発原料である
高純度非晶質シリカ粉末は、珪素のアルコキシドより得
た非晶質シリカ粉末であり、含有金属不純物であるN
a、K、Mg、Ca、Fe、Al、Tiはすべて0.1
ppm以下である。
The high-purity amorphous silica powder used as a starting material in the present invention is an amorphous silica powder obtained from an alkoxide of silicon, and contains N, which is a metal impurity contained therein.
a, K, Mg, Ca, Fe, Al and Ti are all 0.1
ppm or less.

【0010】珪素のアルコキシドとしては、上記に記載
のような高純度のものであれば特に限定なく用いること
ができ、例えば、メチルシリケ−ト、エチルシリケ−ト
等の珪素のアルコキシド、等を例示することができる。
The alkoxide of silicon can be used without any particular limitation as long as it has a high purity as described above. Examples thereof include alkoxides of silicon such as methyl silicate and ethyl silicate. Can be.

【0011】珪素のアルコキシドを高純度非晶質シリカ
粉末とする方法としては、酸又はアルカリと接触させる
ことにより珪素のアルコキシドを加水分解して得る方法
を例示することができる。この珪素のアルコキシドを加
水分解の際に使用する酸又はアルカリとしては、酸とし
て塩酸、酢酸等の有機酸、無機酸を例示でき、アルカリ
としてアンモニア等を例示できるが、これらに限定され
るものではない。
As a method for converting silicon alkoxide into high-purity amorphous silica powder, a method obtained by contacting with an acid or an alkali to hydrolyze silicon alkoxide can be exemplified. Examples of the acid or alkali used for hydrolysis of the silicon alkoxide include organic acids such as hydrochloric acid and acetic acid and inorganic acids as the acid, and ammonia and the like as the alkali, but are not limited thereto. Absent.

【0012】高純度非晶質シリカ粉末に含まれ得る含有
金属不純物としては、Na、K、Mg、Ca、Fe、A
l、Tiであり、不純物の含有量はすべて0.1ppm
以下である。Na、Kのアルカリ金属が不純物として
0.1ppmを越えて含まれる場合、これらはガラスの
製造工程において結晶化しやすいという問題点が生じ好
ましくない。また、Mg、Ca、Fe、Al、Tiが不
純物として0.1ppmを越えて含まれる場合、これら
は紫外線の吸収作用を有するため高純度透明シリカガラ
スの透過率を悪化させるという問題点が生じ好ましくな
い。
Metal impurities that can be contained in the high-purity amorphous silica powder include Na, K, Mg, Ca, Fe, A
l, Ti, the content of all impurities is 0.1 ppm
It is as follows. If the alkali metals such as Na and K are contained as impurities in excess of 0.1 ppm, they are not preferable because they cause a problem that they are easily crystallized in the glass production process. Further, when Mg, Ca, Fe, Al, and Ti are contained in excess of 0.1 ppm as impurities, they have a problem of deteriorating the transmittance of high-purity transparent silica glass because they have an ultraviolet absorbing effect, and are thus preferable. Absent.

【0013】この高純度非晶質シリカ粉末を耐熱性容
器、例えば高純度カーボンルツボに充填し、加熱処理を
行う。使用に際しては粉末粒度を調製することが好まし
く、加水分解、粉砕などの処理の条件を設定することで
粒度範囲を制御できる。高純度非晶質シリカ粉末の粒度
範囲としては、粒度範囲を調製するためや高純度透明シ
リカガラスの製造工程において気泡の除去を容易にする
ために30〜500μmの範囲に調製することが好まし
く、さらに30〜200μmが好ましい。
The high-purity amorphous silica powder is filled in a heat-resistant container, for example, a high-purity carbon crucible, and subjected to a heat treatment. When used, it is preferable to adjust the particle size of the powder, and the particle size range can be controlled by setting processing conditions such as hydrolysis and pulverization. As the particle size range of the high-purity amorphous silica powder, it is preferable to adjust the particle size range to 30 to 500 μm in order to adjust the particle size range and to facilitate the removal of bubbles in the manufacturing process of the high-purity transparent silica glass, Further, the thickness is preferably 30 to 200 μm.

【0014】本発明の方法において、高純度透明シリカ
ガラスを製造する工程の内、工程(a)は出発原料であ
る高純度非晶質シリカ粉末を耐熱性容器に充填し、10
mmHg以下の減圧雰囲気下で出発原料が溶融しうる温
度以上に加熱し、その後Ar、窒素などの不活性ガスを
用いてゲ−ジ圧力で2kgf/cm2以上の加圧状態と
することにより透明シリカガラスを製造するものであ
る。この工程(a)において用いられる耐熱性容器と
は、本発明の目的を達成できるものであれば特に制限な
く用いることができるが、例えば、高純度処理したカ−
ボン容器、炭化珪素容器などを例示できる。
In the method of the present invention, in the step of producing a high-purity transparent silica glass, the step (a) comprises charging a high-purity amorphous silica powder, which is a starting material, into a heat-resistant container.
Under a reduced pressure atmosphere of not more than mmHg, the starting material is heated to a temperature at which the starting material can be melted or more, and then the pressure is increased to 2 kgf / cm 2 or more with a gage pressure using an inert gas such as Ar or nitrogen. This is for producing silica glass. The heat-resistant container used in this step (a) can be used without particular limitation as long as the object of the present invention can be achieved.
Examples include a bon container and a silicon carbide container.

【0015】減圧の条件としては、10mmHg以下で
ある。減圧の条件が10mmHgを越える場合には高温
においてシリカが昇華することにより発生するガスの影
響を受け透明なシリカガラスを得られなくなるため好ま
しくない。
The condition of the pressure reduction is 10 mmHg or less. When the pressure reduction condition exceeds 10 mmHg, it is not preferable because transparent silica glass cannot be obtained due to the gas generated by sublimation of silica at a high temperature.

【0016】加熱の際には、例えばカ−ボン抵抗加熱方
式あるいは高周波加熱方式の真空雰囲気電気炉により実
施することが例示できる。加熱の温度としては、出発原
料が溶融しうる温度以上の温度である。出発原料が溶融
しうる温度とは、本発明において用いられる高純度非晶
質シリカ粉末が加熱にて溶融しうる温度であり、常圧に
おいて1713℃である。加熱温度がこの温度に達しな
い場合、出発原料が溶融しなかったり、溶融した出発原
料中にクリストバライト結晶が溶融しきれずに残りガラ
スが割れやすくなるため好ましくない。出発原料を溶融
し保持する時間としては、出発原料がほぼ全量溶解しガ
ラス化できる時間であれば特に制限はないが、低い場合
には長時間を要する。例えば、加熱温度が1800〜1
850℃の場合には5分以上保持することで達成され
る。
The heating can be performed, for example, by using a carbon atmosphere heating method or a high frequency heating method in a vacuum atmosphere electric furnace. The heating temperature is a temperature higher than the temperature at which the starting materials can be melted. The temperature at which the starting material can be melted is a temperature at which the high-purity amorphous silica powder used in the present invention can be melted by heating, and is 1713 ° C. at normal pressure. If the heating temperature does not reach this temperature, the starting material is not melted, or cristobalite crystals cannot be completely melted in the melted starting material, and the remaining glass is easily broken. The time for melting and holding the starting material is not particularly limited as long as substantially all of the starting material can be dissolved and vitrified, but if it is low, a long time is required. For example, if the heating temperature is 1800-1
In the case of 850 ° C., this is achieved by holding for 5 minutes or more.

【0017】加圧するために用いられる不活性ガスとし
ては、本発明の目的である高純度透明シリカガラスを製
造することができるものであれば特に制限なく用いるこ
とができ、Ar、窒素、Heなどの不活性ガスを例示す
ることができるが、経済性、気密性、不活性ガスの熱伝
導率などを考慮して、Ar、窒素が好ましく、Arが更
に好ましい。不活性ガスを用いて加圧する際の条件は2
kgf/cm2以上である。加圧条件が2kgf/cm2
未満の場合には製造工程中に生じる気泡が大きくなりそ
の除去が困難となるため好ましくない。加圧条件が2k
gf/cm2以上であれば特に問題なく実施できるが、
経済性、加圧装置の運転上のトラブルの回避のため、ゲ
−ジ圧力で2〜20kgf/cm2とすることが好まし
く、2〜10kgf/cm2とすることがより好まし
い。
The inert gas used for pressurizing can be used without any particular limitation as long as it can produce the high-purity transparent silica glass which is the object of the present invention, and may be Ar, nitrogen, He or the like. The inert gas may be exemplified, but in consideration of economy, airtightness, thermal conductivity of the inert gas, and the like, Ar and nitrogen are preferable, and Ar is more preferable. Conditions for pressurizing with inert gas are 2
kgf / cm 2 or more. Pressurizing condition is 2kgf / cm 2
If it is less than this, bubbles generated during the manufacturing process become large and removal thereof becomes difficult, which is not preferable. Pressurizing condition is 2k
gf / cm 2 or more can be carried out without any particular problem.
For economy, avoiding operational troubles of the pressure device, gate - is preferably set to 2~20kgf / cm 2 di pressure, and more preferably to 2~10kgf / cm 2.

【0018】工程(a)により得られる透明シリカガラ
スは出発原料を溶解した際に生じる直径1mm以上の気
泡を減少させたものであるが、直径1mm以上の気泡を
減少させる理由としては、工程(b)において熱間静水
圧プレス処理で減少できる気泡径には臨界値があり、直
径1mm以上の気泡を減少させることは困難となるため
である。
The transparent silica glass obtained in the step (a) reduces bubbles having a diameter of 1 mm or more when the starting material is dissolved. The reason for reducing the bubbles having a diameter of 1 mm or more is as follows. This is because there is a critical value in the bubble diameter that can be reduced by the hot isostatic pressing in b), and it is difficult to reduce bubbles having a diameter of 1 mm or more.

【0019】本発明の方法において、高純度透明シリカ
ガラスを製造する工程の内、工程(b)は透明シリカガ
ラスに熱間静水圧プレス装置を用い、1200〜135
0℃の温度範囲で100〜200MPaの不活性ガスに
よる圧力を作用させ、高純度透明シリカガラスを製造す
るものである。
In the method of the present invention, in the step of producing a high-purity transparent silica glass, the step (b) is performed by using a hot isostatic pressing apparatus on the transparent silica glass to form a transparent silica glass of 1200 to 135.
A high-purity transparent silica glass is produced by applying a pressure of an inert gas of 100 to 200 MPa in a temperature range of 0 ° C.

【0020】工程(b)における温度条件は、1200
〜1350℃の温度範囲である。温度が1200℃未満
の場合にはガラスの流動性少なくなり工程(b)におい
て直径1mm未満の気泡を減少させることが困難となる
ため好ましくない。温度が1350℃を越える場合には
ガラスの結晶化が著しくなり均質な高純度透明シリカガ
ラスを得られなくなるため好ましくない。
The temperature condition in the step (b) is 1200
温度 1350 ° C. If the temperature is lower than 1200 ° C., the fluidity of the glass decreases and it becomes difficult to reduce bubbles having a diameter of less than 1 mm in step (b), which is not preferable. If the temperature exceeds 1350 ° C., the crystallization of the glass becomes remarkable, and it becomes impossible to obtain a homogeneous high-purity transparent silica glass.

【0021】不活性ガスを用いて加圧する際の圧力条件
は100〜200MPaである。圧力条件が100MP
a未満の場合には直径1mm未満の気泡の除去が困難と
なるため好ましくない。圧力条件が200MPaを越え
る場合には、経済性、加圧装置の運転上のトラブルの回
避のため好ましくない。
The pressure condition when pressurizing with an inert gas is 100 to 200 MPa. Pressure condition is 100MP
If it is less than a, it is not preferable because it becomes difficult to remove bubbles having a diameter of less than 1 mm. When the pressure condition exceeds 200 MPa, it is not preferable because it is economical and avoids trouble in operation of the pressurizing device.

【0022】工程(b)において加圧するために用いら
れる不活性ガスとしては、本発明の目的である高純度透
明シリカガラスを製造することができるものであれば特
に制限なく用いることができ、Ar、窒素、Heなどの
不活性ガスを例示することができるが、経済性、気密
性、不活性ガスの熱伝導率などを考慮して、Ar、窒素
が好ましく、Arが更に好ましい。
The inert gas used for pressurizing in the step (b) can be used without any particular limitation as long as it can produce the high-purity transparent silica glass which is the object of the present invention. , Nitrogen, and inert gas such as He, but Ar, nitrogen are preferable, and Ar is more preferable in consideration of economy, airtightness, and thermal conductivity of the inert gas.

【0023】ここで、気泡を減少させる意味としては、
本発明の方法により得られる高純度透明シリカガラスを
光透過性を利用する各種光学材料、高温型液晶基板など
の用途、また高温で長時間使用する半導体製造用治具な
どの用途に適用可能とするためであって、その気泡量と
しては実施例にもみられるように単位容積当たりの気泡
の数として表される。その具体的な数値としては、高純
度透明シリカガラスの中において、1個/cm3未満で
あることが好ましく、気泡がその測定によって認められ
なくなり消滅することが更に好ましい。
Here, the meaning of reducing bubbles is as follows.
The high-purity transparent silica glass obtained by the method of the present invention can be applied to various optical materials utilizing light transmissivity, applications such as high-temperature liquid crystal substrates, and applications such as jigs for semiconductor production which are used at high temperatures for a long time. For this reason, the amount of bubbles is expressed as the number of bubbles per unit volume as seen in the examples. The specific numerical value is preferably less than 1 / cm 3 in the high-purity transparent silica glass, and it is more preferable that bubbles are not recognized by the measurement and disappear.

【0024】本発明の方法において、高純度透明シリカ
ガラスを製造する工程の内、工程(c)の高純度透明シ
リカガラスを熱処理する条件としては、工程(b)で得
たものを、そのままあるいは取り出した後に、大気中で
1000〜1300℃の温度範囲で15時間以内加熱保
持し、その後徐冷することが好ましい。また、昇温ある
いは降温の速度としても、徐々に上げあるいは下げる条
件が好ましく用いられる。この内、徐々に下げる際に、
3℃/分以下の速度にて徐冷することが望ましく、特に
1000〜1300℃に加熱後、700℃程度へ徐冷す
ることが重要である。例えば、大気中で1200℃まで
6時間程度で昇温させ1200℃で4時間程度保持させ
た後、1200℃から700℃まで8時間程度かけて降
温させ、700℃から室温までは徐冷させるといった条
件が好ましく用いられる。この理由として、上記記載の
条件により再加熱処理することにより、気泡を除去する
前の密度に戻すことができるために歪みをなくすことが
でき、また、工程(b)で浸入した、主に高純度透明ガ
ラスの表面部分に存在する不活性ガスを取り除くことが
できるからである。ここで、密度が気泡除去処理前のも
のと異なっている場合には使用時に加熱された場合に膨
脹して破損してしまう場合があり、好ましくない。ま
た、不活性ガスを含んだまま高純度透明シリカガラスを
使用すると、発泡したり、屈折率が変動してしまい、半
導体製造用治具や光学用材料として好ましくないものと
なる場合がある。このように、工程(c)の再加熱処理
は、得られる高純度透明シリカガラスの用途面において
重要なものである。
In the method of the present invention, among the steps for producing a high-purity transparent silica glass, the conditions for heat-treating the high-purity transparent silica glass in the step (c) are as follows: After being taken out, it is preferable to heat and hold in the air within a temperature range of 1000 to 1300 ° C. for 15 hours or less, and then gradually cool. Also, as for the rate of temperature increase or decrease, conditions for gradually increasing or decreasing the temperature are preferably used. When gradually lowering,
It is desirable to gradually cool at a rate of 3 ° C./min or less, and it is particularly important to gradually cool to about 700 ° C. after heating to 1000 to 1300 ° C. For example, the temperature is raised to 1200 ° C. in the air in about 6 hours, the temperature is maintained at 1200 ° C. for about 4 hours, the temperature is lowered from 1200 ° C. to 700 ° C. in about 8 hours, and the temperature is gradually cooled from 700 ° C. to room temperature. Conditions are preferably used. The reason for this is that by performing the reheating treatment under the conditions described above, the density can be returned to the density before the bubbles were removed, so that the distortion could be eliminated. This is because the inert gas existing on the surface portion of the high-purity transparent glass can be removed. Here, if the density is different from that before the air bubble removal treatment, it may expand and break when heated during use, which is not preferable. Also, if high-purity transparent silica glass is used while containing an inert gas, foaming or a change in the refractive index may be unfavorable as a jig for semiconductor production or a material for optical use. As described above, the reheating treatment in the step (c) is important in application of the obtained high-purity transparent silica glass.

【0025】また、本発明の方法により得られる高純度
透明シリカガラスの均質性(Δn)は3×10-5未満で
あることが望ましい。このことにより各種光学材として
使用可能にすることができる。
The high purity transparent silica glass obtained by the method of the present invention preferably has a homogeneity (Δn) of less than 3 × 10 −5 . Thereby, it can be used as various optical materials.

【0026】さらに、本発明の方法により得られる高純
度透明シリカガラスのOH基含有量としては、加熱によ
る劣化を少なくするために10ppm以下であることが
望ましい。このことにより基板材料として利用する場合
に起こりうる加熱処理による変形を抑制することができ
る。
Further, the OH group content of the high-purity transparent silica glass obtained by the method of the present invention is desirably 10 ppm or less in order to reduce deterioration due to heating. This makes it possible to suppress deformation due to heat treatment that can occur when the substrate is used as a substrate material.

【0027】[0027]

【実施例】本発明を以下の実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。なお
不純物の分析等は以下により行なった。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The analysis of impurities and the like were performed as follows.

【0028】〜不純物の分析〜 珪素のアルコキシドを加水分解して得られた市販品の非
晶質シリカ粉末を公知の方法であるICP法により分析
した。
Analysis of Impurities A commercially available amorphous silica powder obtained by hydrolyzing an alkoxide of silicon was analyzed by an ICP method which is a known method.

【0029】〜平均粒子径〜 非晶質シリカ粉末の平均粒子径は、レ−ザ−回折散乱法
COULTER LS−130(COULTER EL
ECTRONICS社製)により測定した。
Average Particle Diameter The average particle diameter of the amorphous silica powder is determined by laser diffraction scattering method COULTER LS-130 (COULTER EL).
(Ectronics).

【0030】〜気泡径及び気泡量〜 シリカガラスを切断機と研磨装置を用いて100mm×
100mm×10mm(厚み)の大きさに鏡面研磨し測
定用サンプルとした。これを目盛り付きレンズのある偏
光顕微鏡(オリンパス社製、型式:BH−2)を使用
し、サンプル中の気泡径及び気泡量を測定した。なお、
気泡量については、1cm3あたりの個数(個/cm3
として求めた。
~ Bubble diameter and bubble amount ~ Silica glass was cut into 100 mm ×
It was mirror-polished to a size of 100 mm × 10 mm (thickness) to obtain a measurement sample. Using a polarization microscope (manufactured by Olympus Corporation, model: BH-2) having a graduated lens, the bubble diameter and bubble amount in the sample were measured. In addition,
About the amount of air bubbles, the number per 1 cm 3 (pieces / cm 3 )
Asked.

【0031】〜密度〜 シリカガラスを切断機と研磨装置を用いて100mm×
100mm×10mm(厚み)の大きさに鏡面研磨し測
定用サンプルとした。これをアルキメデス法により密度
を測定した。
~ Density ~ Silica glass is cut into 100 mm ×
It was mirror-polished to a size of 100 mm × 10 mm (thickness) to obtain a measurement sample. The density was measured by the Archimedes method.

【0032】〜OH基含有量〜 シリカガラスを切断機と研磨装置を用いて100mm×
100mm×10mm(厚み)の大きさに鏡面研磨し測
定用サンプルとした。これをFT−IR装置(島津製作
所社製、型式:FT−IR−8100M)を使用し、サ
ンプルのIR透過光の波長3600カイザ−のOH基吸
収スペクトルにより定量した。
~ OH group content ~ Silica glass is cut into 100 mm ×
It was mirror-polished to a size of 100 mm × 10 mm (thickness) to obtain a measurement sample. Using an FT-IR apparatus (manufactured by Shimadzu Corporation, model: FT-IR-8100M), the sample was quantified by an OH group absorption spectrum at a wavelength of 3600 Kaiser of IR transmitted light of the sample.

【0033】〜表面のガス分析〜 シリカガラスを切断機を用いて10mm×10mm、厚
みは作製した状態のままであるシリカガラスを測定用サ
ンプルとした。このサンプルをESCA(Perkin
Elmer社製、機種5400MC)によりガス量を
測定した。
-Surface Gas Analysis- A silica glass having a size of 10 mm x 10 mm and a thickness as produced was measured using a cutting machine as a sample for measurement. This sample was used for ESCA (Perkin
The gas amount was measured by Elmer, model 5400MC).

【0034】〜均質性(Δn)の測定〜 シリカガラスを研磨装置を用いてφ165mm×25m
m(厚み)の大きさに鏡面研磨し測定サンプルとした。
これを干渉計(ZYGO社製、機種:MarkIV)を
用いて均質性(Δn:単位として、cm・cm-1)を測
定した。
~ Measurement of homogeneity (Δn) ~ A silica glass was polished to a diameter of 165 mm x 25 m using a polishing machine.
m (thickness) was mirror-polished to a measurement sample.
The homogeneity (Δn: unit: cm · cm −1 ) was measured using an interferometer (manufactured by ZYGO, model: Mark IV).

【0035】実施例1 珪素のアルコキシドを加水分解して得られた市販品の非
晶質シリカ粉末を出発原料とした。この非晶質シリカ粉
末の平均粒子径は、レ−ザ−回折散乱法により測定した
ところ151μmであった。この粉末中の不純物を分析
した結果は表1の通りであった。
Example 1 A commercially available amorphous silica powder obtained by hydrolyzing an alkoxide of silicon was used as a starting material. The average particle size of this amorphous silica powder was 151 μm as measured by a laser diffraction scattering method. The results of analyzing the impurities in this powder are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】この粉末を高純度処理したカ−ボン容器に
充填し、カ−ボン抵抗加熱炉に設置し、真空度を10-3
mmHgまで減圧し、300℃/時間の昇温速度で18
50℃まで昇温し、5分間保持した後、減圧を解除し、
窒素ガスを4kgf/cm2となるまで導入し、さらに
10分間保持した。保持中の真空度は1mmHgであっ
た。冷却はガス圧をかけたまま放冷し、透明シリカガラ
スを得た。
The mosquitoes were high purity process this powder - filling in Bonn container, Ca - installed in Bonn resistance heating furnace, a vacuum degree of 10 -3
mmHg, and at a heating rate of 300 ° C./hour, 18
After the temperature was raised to 50 ° C. and held for 5 minutes, the vacuum was released,
Nitrogen gas was introduced until the pressure became 4 kgf / cm 2, and the temperature was further maintained for 10 minutes. The degree of vacuum during holding was 1 mmHg. Cooling was allowed to cool while applying gas pressure to obtain a transparent silica glass.

【0038】次に、このガラスを熱間静水圧プレス装置
に入れ、Arガスを圧力媒体とし、600℃/時間の昇
温速度で1300℃まで上げ、圧力150MPaをかけ
た状態で1時間保持した。
Next, the glass was put into a hot isostatic press, and heated to 1300 ° C. at a heating rate of 600 ° C./hour using Ar gas as a pressure medium, and kept at a pressure of 150 MPa for 1 hour. .

【0039】熱間静水圧プレス処理後におけるガラス中
の気泡径及び気泡量、ガラスの密度を上記記載の方法に
より測定し、その結果を表2に示した。この結果から熱
間静水圧プレス処理によって無気泡となったことが判っ
た。また、熱間静水圧プレス処理後のArガスの浸入量
を上記記載の方法により測定したところ、約1%であっ
た。
The diameter and amount of bubbles in the glass after the hot isostatic pressing and the density of the glass were measured by the methods described above. The results are shown in Table 2. From this result, it was found that air bubbles were eliminated by hot isostatic pressing. The amount of infiltration of Ar gas after the hot isostatic pressing was measured by the method described above, and was about 1%.

【0040】[0040]

【表2】 [Table 2]

【0041】次に熱間静水圧プレス処理後、シリカガラ
スを大気中、1200℃まで6時間で昇温させ1200
℃で4時間保持させた後、1200℃から700℃まで
8時間かけて降温させるという再加熱処理を行なった。
そして、再加熱したシリカガラスの密度を測定したとこ
ろ2.210g/cm3であり熱間静水圧プレス前の密
度に戻すことができた。また、Arは検出されなかっ
た。
Next, after hot isostatic pressing, the temperature of the silica glass was raised to 1200 ° C. in the air for 6 hours to 1200 ° C.
After maintaining at 4 ° C. for 4 hours, a reheating treatment was performed in which the temperature was lowered from 1200 ° C. to 700 ° C. over 8 hours.
When the density of the reheated silica glass was measured, it was 2.210 g / cm 3 , and it was possible to return to the density before hot isostatic pressing. Ar was not detected.

【0042】実施例2 実施例1で使用したと同じ非晶質シリカ粉末を使用し、
この粉末を高純度処理したカ−ボン容器に充填し、カ−
ボン抵抗加熱炉に設置し、真空度を10-3mmHgまで
減圧し、300℃/時間の昇温速度で1850℃まで昇
温し、5分間保持した後、減圧を解除し、窒素ガスを
9.5kgf/cm2となるまで導入し、さらに10分
間保持した。保持中の真空度は1mmHgであった。冷
却はガス圧をかけたまま放冷し、透明シリカガラスを得
た。
Example 2 Using the same amorphous silica powder as used in Example 1,
This powder is filled in a highly purified carbon container,
The furnace was set in a Bonn resistance heating furnace, the degree of vacuum was reduced to 10 −3 mmHg, the temperature was raised to 1850 ° C. at a rate of 300 ° C./hour, and the temperature was maintained for 5 minutes. It was introduced until the pressure became 0.5 kgf / cm 2, and was further maintained for 10 minutes. The degree of vacuum during holding was 1 mmHg. Cooling was allowed to cool while applying gas pressure to obtain a transparent silica glass.

【0043】次に、このガラスを熱間静水圧プレス装置
に入れ、Arガスを圧力媒体とし、600℃/時間の昇
温速度で1250℃まで上げ、圧力150MPaをかけ
た状態で4時間保持した。
Next, the glass was put into a hot isostatic press, and heated to 1250 ° C. at a heating rate of 600 ° C./hour using Ar gas as a pressure medium, and maintained at a pressure of 150 MPa for 4 hours. .

【0044】熱間静水圧プレス処理後におけるガラス中
の気泡径及び気泡量、ガラスの密度、ガラス中のOH基
含有量を上記記載の方法により測定し、その結果を表3
に示した。この結果から熱間静水圧プレス処理によって
無気泡となったことが判った。また、熱間静水圧プレス
処理後のArガスの浸入量を上記記載の方法により測定
したところ、約1%であった。
After the hot isostatic pressing, the diameter and amount of bubbles in the glass, the density of the glass, and the OH group content in the glass were measured by the methods described above.
It was shown to. From this result, it was found that air bubbles were eliminated by hot isostatic pressing. The amount of infiltration of Ar gas after the hot isostatic pressing was measured by the method described above, and was about 1%.

【0045】[0045]

【表3】 [Table 3]

【0046】次に熱間静水圧プレス処理後、シリカガラ
スを大気中、1200℃まで6時間で昇温させ1200
℃で4時間保持させた後、1200℃から700℃まで
8時間かけて降温させるという再加熱を行なった。そし
て、再加熱したシリカガラスの密度を測定したところ
2.205g/cm3であり熱間静水圧プレス前の密度
に戻すことができた。また、Arは検出されなかった。
また、このようにして得たシリカガラスの均質性(Δ
n)を上記記載の方法により測定ところ、1.9×10
-5であった。
Next, after the hot isostatic pressing, the silica glass was heated to 1200 ° C. in the air for 6 hours to 1200 ° C.
After being kept at a temperature of 4 ° C. for 4 hours, reheating was performed in which the temperature was lowered from 1200 ° C. to 700 ° C. over 8 hours. When the density of the reheated silica glass was measured, it was 2.205 g / cm 3 , which could be returned to the density before hot isostatic pressing. Ar was not detected.
In addition, the homogeneity (Δ
n) was measured by the method described above and found to be 1.9 × 10
-5 .

【0047】比較例1 実施例1で使用したと同じ非晶質シリカ粉末を使用し、
この粉末を高純度処理したカ−ボン容器に充填し、カ−
ボン抵抗加熱炉に設置し、真空度を10-3mmHgまで
減圧し、300℃/時間の昇温速度で1850℃まで昇
温し、減圧状態のまま15分間保持した。保持中の真空
度は2mmHgであった。冷却は減圧状態のまま放冷
し、透明シリカガラスを得た。得られた透明シリカガラ
ス中の気泡径及び気泡量を測定し、その結果を表4に示
す。
Comparative Example 1 Using the same amorphous silica powder as used in Example 1,
This powder is filled in a highly purified carbon container,
The sample was placed in a Bonn resistance heating furnace, the degree of vacuum was reduced to 10 −3 mmHg, the temperature was raised to 1850 ° C. at a rate of 300 ° C./hour, and the reduced pressure was maintained for 15 minutes. The degree of vacuum during the holding was 2 mmHg. Cooling was allowed to take place in a reduced pressure state to obtain a transparent silica glass. The bubble diameter and bubble amount in the obtained transparent silica glass were measured, and the results are shown in Table 4.

【0048】[0048]

【表4】 [Table 4]

【0049】この結果から原料粉末を溶融させる時に圧
力が2kgf/cm2未満で溶解させた場合には1mm
以上の気泡が多く存在することが判った。
From this result, when the raw material powder is melted at a pressure of less than 2 kgf / cm 2 when melting it, 1 mm
It was found that many of the above bubbles existed.

【0050】[0050]

【発明の効果】本発明の製造方法によれば、高純度粉末
を溶融する際に加圧すること及び溶融加圧して得たシリ
カガラスを熱間静水圧プレス処理により、気泡を極めて
少なくすることができ、又、再加熱処理により熱間静水
圧プレス処理前の密度に戻すことができ、浸入した不活
性ガスを取り除くことができる。従って、気泡のために
従来利用できなかった光透過性を必要とする用途、例え
ば高温型液晶基板、プリズム、レンズなど各種光学材料
として利用できる。また、気泡周辺の結晶化、加熱処理
による変形のために使用できなかった用途、例えば半導
体製造用の各種治工具類の材料としても利用できる。
According to the production method of the present invention, it is possible to extremely reduce bubbles by applying high pressure when melting high purity powder and hot isostatic pressing silica glass obtained by melting and pressing. Further, the density can be returned to the density before the hot isostatic pressing by the reheating treatment, and the inert gas which has entered can be removed. Therefore, it can be used for applications requiring light transmittance which has not been conventionally available due to bubbles, for example, various optical materials such as high-temperature liquid crystal substrates, prisms, and lenses. It can also be used as a material that could not be used due to crystallization around bubbles and deformation due to heat treatment, for example, as a material for various jigs and tools for semiconductor manufacturing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】含有金属不純物としてNa、K、Mg、C
a、Fe、Al、Tiが各々独立して0.1ppm以下
である珪素のアルコキシドより得た高純度非晶質シリカ
粉末を出発原料とし、熱処理及び圧力処理することによ
り高純度透明シリカガラスを製造する方法において、 (a)出発原料を10mmHg以下の減圧雰囲気下出発
原料が溶融しうる温度におき、その後不活性ガスで圧力
で2kgf/cm2以上の加圧状態にして、直径1mm
以上の気泡を減少させる工程と、 (b)熱間静水圧プレス装置を用い、1200〜135
0℃の温度範囲で100〜200MPaの不活性ガスに
よる圧力を作用させ、直径1mm未満の気泡を減少させ
る工程と、 (c)(b)の工程の後、1000〜1300℃で熱処
理した後徐冷する工程を備えてなることを特徴とする高
純度透明シリカガラスの製造方法。
(1) Na, K, Mg, C
a, Fe, Al, and Ti are each independently high-purity amorphous silica powder obtained from a silicon alkoxide of 0.1 ppm or less as a starting material, and heat-treated and pressure-treated to produce high-purity transparent silica glass. (A) placing the starting material in a reduced-pressure atmosphere of 10 mmHg or less at a temperature at which the starting material can be melted, and then pressurizing with an inert gas at a pressure of 2 kgf / cm 2 or more to form a starting material having a diameter of 1 mm
(B) using a hot isostatic pressing device to reduce the number of air bubbles;
A step of applying a pressure of an inert gas of 100 to 200 MPa in a temperature range of 0 ° C. to reduce bubbles having a diameter of less than 1 mm; and (c) after the step (b), heat-treating at 1000 to 1300 ° C. A method for producing a high-purity transparent silica glass, comprising a step of cooling.
【請求項2】請求項1に記載の高純度透明シリカガラス
の製造方法において、工程(a)の加圧状態が2〜10
kgf/cm2であり、工程(a)及び(b)の気泡を
消滅させることを特徴とする高純度透明シリカガラスの
製造方法。
2. The method for producing a high-purity transparent silica glass according to claim 1, wherein the pressurized state in the step (a) is 2-10.
A method for producing a high-purity transparent silica glass, which is kgf / cm 2 and eliminates bubbles in steps (a) and (b).
【請求項3】請求項1又は請求項2に記載の高純度透明
シリカガラスの均質性(Δn)が3×10-5未満である
ことを特徴とする高純度透明シリカガラスの製造方法。
3. A method for producing a high-purity transparent silica glass, wherein the homogeneity (Δn) of the high-purity transparent silica glass according to claim 1 or 2 is less than 3 × 10 −5 .
【請求項4】高純度透明シリカガラスのOH基含有量が
10ppm以下であることを特徴とする請求項1〜3の
いずれかに記載の高純度透明シリカガラスの製造方法。
4. The method for producing a high-purity transparent silica glass according to claim 1, wherein the OH group content of the high-purity transparent silica glass is 10 ppm or less.
JP15215897A 1996-06-18 1997-06-10 Method for producing high purity transparent silica glass Expired - Fee Related JP3988211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15215897A JP3988211B2 (en) 1996-06-18 1997-06-10 Method for producing high purity transparent silica glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-156619 1996-06-18
JP15661996 1996-06-18
JP15215897A JP3988211B2 (en) 1996-06-18 1997-06-10 Method for producing high purity transparent silica glass

Publications (2)

Publication Number Publication Date
JPH10114533A true JPH10114533A (en) 1998-05-06
JP3988211B2 JP3988211B2 (en) 2007-10-10

Family

ID=26481153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15215897A Expired - Fee Related JP3988211B2 (en) 1996-06-18 1997-06-10 Method for producing high purity transparent silica glass

Country Status (1)

Country Link
JP (1) JP3988211B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070652A1 (en) * 2002-02-20 2003-08-28 Fujikura Ltd. Optical glass and method for producing the same
KR100446512B1 (en) * 2001-11-13 2004-09-04 삼성전자주식회사 Silica glass fabrication method using sol-gel process
US7175704B2 (en) 2002-06-27 2007-02-13 Diamond Innovations, Inc. Method for reducing defect concentrations in crystals
JP2008209906A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
US8523626B2 (en) * 2006-09-12 2013-09-03 Toyoda Gosei Co., Ltd. Method of making a light emitting device
US9034450B2 (en) 2011-08-31 2015-05-19 Corning Incorporated Binary silica-titania glass articles having a ternary doped silica-titania critical zone
JPWO2015022966A1 (en) * 2013-08-15 2017-03-02 旭硝子株式会社 Low scattering silica glass and method for heat treatment of silica glass
CN109952277A (en) * 2016-11-14 2019-06-28 Agc株式会社 The manufacturing method of melten glass and the manufacturing method of glass article
CN111662003A (en) * 2020-04-01 2020-09-15 青岛万和装饰门窗工程有限公司 Single-piece non-heat-insulation refractory glass and processing method thereof
WO2023080306A1 (en) * 2021-11-03 2023-05-11 목포대학교산학협력단 Method for producing transparent silica sintered body using amorphous silica nanopowder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022165905A (en) * 2021-04-20 2022-11-01 東ソー株式会社 Glass and its manufacturing method, member as well as device therewith

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446512B1 (en) * 2001-11-13 2004-09-04 삼성전자주식회사 Silica glass fabrication method using sol-gel process
WO2003070652A1 (en) * 2002-02-20 2003-08-28 Fujikura Ltd. Optical glass and method for producing the same
US7437893B2 (en) 2002-02-20 2008-10-21 Fujikura Ltd. Method for producing optical glass
US7175704B2 (en) 2002-06-27 2007-02-13 Diamond Innovations, Inc. Method for reducing defect concentrations in crystals
US8216370B2 (en) 2002-06-27 2012-07-10 Momentive Performance Materials Inc. Method for reducing defect concentration in crystals
US8523626B2 (en) * 2006-09-12 2013-09-03 Toyoda Gosei Co., Ltd. Method of making a light emitting device
JP2008209906A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
US9034450B2 (en) 2011-08-31 2015-05-19 Corning Incorporated Binary silica-titania glass articles having a ternary doped silica-titania critical zone
JPWO2015022966A1 (en) * 2013-08-15 2017-03-02 旭硝子株式会社 Low scattering silica glass and method for heat treatment of silica glass
CN109952277A (en) * 2016-11-14 2019-06-28 Agc株式会社 The manufacturing method of melten glass and the manufacturing method of glass article
CN109952277B (en) * 2016-11-14 2021-12-31 Agc株式会社 Method for producing molten glass and method for producing glass article
CN111662003A (en) * 2020-04-01 2020-09-15 青岛万和装饰门窗工程有限公司 Single-piece non-heat-insulation refractory glass and processing method thereof
WO2023080306A1 (en) * 2021-11-03 2023-05-11 목포대학교산학협력단 Method for producing transparent silica sintered body using amorphous silica nanopowder

Also Published As

Publication number Publication date
JP3988211B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
EP2070883B1 (en) Fused quartz glass and process for producing the same
US4938788A (en) Method of producing uniform silica glass block
US20010025598A1 (en) Methods for growing large-volume single crystals from calcium fluoride and their uses
JP3988211B2 (en) Method for producing high purity transparent silica glass
EP2251461B1 (en) Process for producing a quartz glass crucible
CN101426740A (en) Manufacture of large articles in synthetic vitreous silica
US4885019A (en) Process for making bulk heavy metal fluoride glasses
JPH08151220A (en) Method for molding quartz glass
JP4161296B2 (en) Method for producing quartz glass crucible
JP4022678B2 (en) Method for producing high purity transparent silica glass
JP5489614B2 (en) Manufacturing method of optical member
WO2000044678A1 (en) Method and device for forming quartz glass
JP2012218979A (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP3199275B2 (en) Manufacturing method of quartz glass
JP2814795B2 (en) Manufacturing method of quartz glass
JP4473653B2 (en) Manufacturing method of high purity quartz glass
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JPS6272537A (en) Production of high-purity quartz glass
JPH0840735A (en) Production of synthetic quartz glass crucible
JP3188517B2 (en) Manufacturing method of quartz glass
JPH09295826A (en) Production of high-purity transparent silica glass
JP3123696B2 (en) Method for manufacturing quartz glass crucible
JPS63218522A (en) Method for removing strain in quartz glass
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees