JPH10114502A - Separation of hydrogen and methane from gaseous hydrocarbon - Google Patents

Separation of hydrogen and methane from gaseous hydrocarbon

Info

Publication number
JPH10114502A
JPH10114502A JP12502997A JP12502997A JPH10114502A JP H10114502 A JPH10114502 A JP H10114502A JP 12502997 A JP12502997 A JP 12502997A JP 12502997 A JP12502997 A JP 12502997A JP H10114502 A JPH10114502 A JP H10114502A
Authority
JP
Japan
Prior art keywords
gas
methane
demethanizer
hydrogen
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12502997A
Other languages
Japanese (ja)
Other versions
JP3730362B2 (en
Inventor
Yoto O
歐陽▲濤▼
Taketoshi Nishiiri
猛敏 西入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12502997A priority Critical patent/JP3730362B2/en
Publication of JPH10114502A publication Critical patent/JPH10114502A/en
Application granted granted Critical
Publication of JP3730362B2 publication Critical patent/JP3730362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably decrease the power of a refrigerator by dimishing the refigerant energy for separating hydrogen and methane as compared with the conventional method and to increase the output by eliminating the problem that an existing demethanton tower control the production rate. SOLUTION: Gaseous hydrogen is recovered from a high-pressure current of gaseous hydrocarbons contg. hydrogen in a hydrogen separator S-1. The gaseous hydrocarbons are successively cooled in at least two temp. zones arranged in series and separated into into gas and liq., the condensate is supplied to a methane separation stage (predemethanation tower T-1 or demethanation tower T-2), the uncondensed gas is supplied to the succeeding temp. zone, gaseous methane is recovered in the methane separation stage, and a condensate substantially free of methane is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス状炭化水素か
ら水素およびメタンを分離する方法に関し、詳しくは、
炭化水素油の熱分解等の際に得られる水素、メタン、エ
チレン及びエタンを含むガス状炭化水素から水素および
メタンを効率的に分離する方法に関する。
The present invention relates to a method for separating hydrogen and methane from gaseous hydrocarbons.
The present invention relates to a method for efficiently separating hydrogen and methane from gaseous hydrocarbons containing hydrogen, methane, ethylene and ethane obtained at the time of, for example, thermal cracking of a hydrocarbon oil.

【0002】[0002]

【従来の技術】従来、炭化水素油、例えば、ナフサ等を
熱分解して得られる水素、メタン、エタン、プロパン、
エチレン、プロピレン等を含有するガス状炭化水素か
ら、水素およびメタンを深冷分離法により分離する方法
が知られてれいる。斯かる方法としては、例えば、特公
平3−53289号公報に記載された方法が挙げられ
る。
2. Description of the Related Art Conventionally, hydrogen, methane, ethane, propane, and the like obtained by pyrolyzing hydrocarbon oils such as naphtha, etc.
There is known a method of separating hydrogen and methane from a gaseous hydrocarbon containing ethylene, propylene, and the like by a cryogenic separation method. An example of such a method is a method described in Japanese Patent Publication No. 3-53289.

【0003】上記の方法は、図3に示すフローダイアグ
ラムのプロセスを使用して次の様に行われる。ガス状炭
化水素は、圧縮機(C−1)により高圧ガス流とされた
後、水冷却器(W−1)、熱交換器(H−1)乃至(H
−4)において、順次冷却される。そして、これら各熱
交換器のそれぞれの温度帯域において凝縮する炭化水素
混合液は、対応するそれぞれの気液分離器(D−1)乃
至(D−4)において未凝縮ガスから分離される。
The above method is performed as follows using the process of the flow diagram shown in FIG. The gaseous hydrocarbon is converted into a high-pressure gas stream by the compressor (C-1), and then cooled by a water cooler (W-1) and heat exchangers (H-1) to (H-1).
In -4), cooling is performed sequentially. Then, the hydrocarbon mixture condensed in the respective temperature zones of these heat exchangers is separated from the uncondensed gas in the corresponding gas-liquid separators (D-1) to (D-4).

【0004】気液分離器(D−1)の塔底から抜き出さ
れた分離液は、気液接触装置(T−1)(プレ脱メタン
塔)に供給されて精製される。気液接触装置における留
出ガスは、塔頂から抜き出されて熱交換器(H−6)に
より冷却された後、中圧精留塔(T−2)(脱メタン
塔)に供給される。また、気液分離器(D−2)乃至
(D−4)の塔底から抜き出された分離液は、脱メタン
塔(T−2)に供給される。
The separated liquid extracted from the bottom of the gas-liquid separator (D-1) is supplied to a gas-liquid contactor (T-1) (pre-demethanizer) to be purified. The distillate gas in the gas-liquid contact device is extracted from the top of the tower, cooled by the heat exchanger (H-6), and then supplied to the medium-pressure rectification tower (T-2) (demethanizer). . The separated liquid extracted from the bottom of the gas-liquid separators (D-2) to (D-4) is supplied to the demethanizer (T-2).

【0005】脱メタン塔(T−2)により精製されて塔
頂から得られるメタンを主成分とする留分は、熱交換器
(H−5)により冷却された後、気液分離器(D−5)
によりメタンを主成分とする未凝縮ガスと凝縮液とに分
離され、凝縮液の一部は脱メタン塔(T−2)に返送さ
れる。脱メタン塔(T−2)の塔底からはエチレン及び
これより沸点の高い炭化水素を含有する炭化水素混合物
が得られる。
[0005] A methane-based fraction obtained from the top by being purified by the demethanizer (T-2) is cooled by a heat exchanger (H-5), and then cooled by a gas-liquid separator (D). -5)
By this, an uncondensed gas mainly composed of methane and a condensate are separated, and a part of the condensate is returned to the demethanizer (T-2). From the bottom of the demethanizer (T-2), a hydrocarbon mixture containing ethylene and a hydrocarbon having a higher boiling point is obtained.

【0006】気液分離器(D−4)における未凝縮ガス
は、熱交換器(H−7)により、更に冷却され、気液分
離器(D−6)において水素を主成分とする未凝縮ガス
とメタンを主成分とする凝縮液に分離される。
[0006] The uncondensed gas in the gas-liquid separator (D-4) is further cooled by the heat exchanger (H-7), and is not condensed in the gas-liquid separator (D-6). It is separated into condensate mainly composed of gas and methane.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
方法では、冷却工程に送られるガス状炭化水素中に多く
の水素が含まれているので、エチレンを凝縮するため、
各分離器の温度を下げる必要がある。このため、各冷媒
熱交換器で使用する冷媒は、より低温にして且つ量を多
く必要とする。さらに、気液分離器(D−1)乃至(D
−4)により分離される分離液の量およびその中に含ま
れるメタン量が多いため、脱メタン塔(T−2)内にお
ける液負荷が大きい。従って、生産量アップを図る場合
には、脱メタン塔の能力が生産律速(ボトルネック)と
なっている。
However, in the above method, since a large amount of hydrogen is contained in the gaseous hydrocarbon sent to the cooling step, ethylene is condensed.
It is necessary to lower the temperature of each separator. For this reason, the refrigerant used in each refrigerant heat exchanger requires a lower temperature and a larger amount. Furthermore, the gas-liquid separators (D-1) to (D
Since the amount of the separated liquid separated by -4) and the amount of methane contained therein are large, the liquid load in the demethanizer (T-2) is large. Therefore, when the production volume is to be increased, the capacity of the demethanizer is the rate-limiting factor (bottleneck).

【0008】本発明は、上記実情に鑑みなされたもので
あり、その目的は、水素およびメタンを分離するために
必要とする冷媒エネルギーを従来方法よりも低減して冷
凍機の動力を大幅に低下させ、既設の脱メタン塔が生産
律速となっている問題を解消して生産量アップを達成す
る方法を提供することにある。
[0008] The present invention has been made in view of the above circumstances, and an object of the present invention is to significantly reduce the power of a refrigerator by reducing the refrigerant energy required for separating hydrogen and methane from the conventional method. Another object of the present invention is to provide a method for solving the problem that the existing demethanizer is production-limited, thereby achieving an increase in production.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の要旨
は、少なくとも、水素、メタン、エタン及びエチレンを
含むガス状炭化水素の高圧ガス流から、水素およびメタ
ンを分離する方法であって、(1)上記の水素含有ガス
状炭化水素の冷却前に、実質的に水素ガスのみを分離で
きる水素分離器を使用して上記の水素含有ガス状炭化水
素の高圧ガス流から水素ガスを回収し、(2)少なくと
も直列に配置された2つ以上の温度帯域において、上記
のガス状炭化水素を順次冷却して各温度帯域で気液分離
し、そして、分離されたそれらの凝縮液はメタン分離工
程に供給し、未凝縮ガスは次の温度帯域に供給し、
(3)メタン分離工程において、メタンガスを回収する
と共にメタンを実質的に含有しない凝縮液を回収するこ
とを特徴とするガス状炭化水素から水素およびメタンを
分離する方法に存する。
That is, the gist of the present invention is a method for separating hydrogen and methane from a high-pressure gas stream of a gaseous hydrocarbon containing at least hydrogen, methane, ethane and ethylene, 1) prior to cooling said hydrogen-containing gaseous hydrocarbon, recovering hydrogen gas from said high-pressure gas stream of hydrogen-containing gaseous hydrocarbon using a hydrogen separator capable of substantially separating only hydrogen gas; (2) In at least two or more temperature zones arranged in series, the above-mentioned gaseous hydrocarbons are sequentially cooled and separated into gas and liquid in each temperature zone, and the separated condensate is subjected to a methane separation step. And the uncondensed gas is supplied to the next temperature zone,
(3) A method for separating hydrogen and methane from gaseous hydrocarbons, wherein in the methane separation step, a methane gas is recovered and a condensate containing substantially no methane is recovered.

【0010】そして、本発明の好ましい態様では、上記
の構成に加え、上記(3)のメタン分離工程をプレ脱メ
タン塔と脱メタン塔とから構成し、デフレグメーター装
置を使用して上記(2)の順次冷却工程の最終の温度帯
域における未凝縮ガスからエチレンを実質的に含有しな
いガスを回収すると共にエチレン成分に富む凝縮液を分
離し、そして、分離された凝縮液は脱メタン塔に供給
し、プレ脱メタン塔において、上記(2)の順次冷却工
程で得られた凝縮液から、メタンを実質的に含有しない
高沸点炭化水素成分を回収すると共にメタンに富む低沸
点成分ガスを分離し、そして、分離されたガスは脱メタ
ン塔に供給し、脱メタン塔において、メタンガスを回収
すると共にメタンを実質的に含有しない凝縮液を回収す
る。
In a preferred embodiment of the present invention, in addition to the above configuration, the methane separation step of (3) above comprises a pre-demethanizer and a demethanizer, and the above-mentioned (3) is carried out using a dephlegmator. 2) recovering a gas substantially free of ethylene from the uncondensed gas in the final temperature zone of the sequential cooling step, separating a condensate rich in ethylene components, and separating the condensate into a demethanizer; The high-boiling hydrocarbon component substantially free of methane is recovered from the condensate obtained in the sequential cooling step (2) and the low-boiling component gas rich in methane is separated from the condensate obtained in the sequential cooling step in the pre-demethanizer column. Then, the separated gas is supplied to a demethanizer, in which a methane gas is recovered and a condensate substantially free of methane is recovered.

【0011】[0011]

【発明の実施の形態】以下、本発明を添付図面に基づい
て説明する。図1は本発明の好ましい態様の一例を示す
プロセスフローダイアグラムであり、図2は本発明の別
の態様を示すプロセスフローダイアグラムである。各図
とも、C−1は圧縮機、W−1は水冷却器、S−1は水
素分離器、H−1〜H−7は熱交換器、D−1〜D−6
は気液分離器、T−1はプレ脱メタン塔、T−2は脱メ
タン塔、DEP−1はデフレグメーター装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. FIG. 1 is a process flow diagram showing an example of a preferred embodiment of the present invention, and FIG. 2 is a process flow diagram showing another embodiment of the present invention. In each figure, C-1 is a compressor, W-1 is a water cooler, S-1 is a hydrogen separator, H-1 to H-7 are heat exchangers, D-1 to D-6.
Is a gas-liquid separator, T-1 is a pre-demethanizer, T-2 is a demethanizer, and DEP-1 is a dephlegmator.

【0012】図1に示すプロセスは、主として、圧縮器
(C−1)、水素分離器(S−1)、水冷却器(W−
1)、熱交換器(H−1)乃至(H−6)、気液分離器
(D−1)乃至(D−3)及び(D−5)、プレ脱メタ
ン塔(T−1)、脱メタン塔(T−2)及びデフレグメ
ーター装置(DEP−1)より構成されている。
The process shown in FIG. 1 mainly includes a compressor (C-1), a hydrogen separator (S-1), and a water cooler (W-
1), heat exchangers (H-1) to (H-6), gas-liquid separators (D-1) to (D-3) and (D-5), a pre-demethanizer (T-1), It consists of a demethanizer (T-2) and a dephlegmator (DEP-1).

【0013】本発明において、原料ガスとしては、少な
くとも、水素、メタン、エチレン及びエタンを含むガス
状炭化水素が使用される。特に、ナフサ等の熱分解によ
って得られるガス状炭化水素が好ましく使用される。上
記の水素含有ガス状炭化水素は、圧縮機(C−1)によ
り圧縮されて高圧ガス流となる。なお、ガス状炭化水素
中に存在するSOxやCO2は、圧縮過程または圧縮後に
アルカリ溶液と接触処理し、これらの酸性ガスを除去す
ることが好ましい。
In the present invention, a gaseous hydrocarbon containing at least hydrogen, methane, ethylene and ethane is used as a raw material gas. In particular, gaseous hydrocarbons obtained by thermal decomposition of naphtha or the like are preferably used. The hydrogen-containing gaseous hydrocarbon is compressed by the compressor (C-1) to form a high-pressure gas stream. Incidentally, SO x and CO 2 present in the gaseous hydrocarbon is to contact treatment with an alkali solution after the compression process or compression, it is preferable to remove these acidic gases.

【0014】上記の高圧ガス流の好ましい圧力は、20
〜50kg/cm2G(約2〜5MPa)の範囲とされ
る。圧力が20kg/cm2G(約2MPa)未満の場
合、高圧ガス流は、最終的に−160℃より低い温度ま
で冷却する必要がある。また、50kg/cm2G(約
5MPa)を超える場合は、このガスの圧縮に必要な動
力が必要以上に増大し、何れの場合も不経済である。
The preferred pressure of the high pressure gas stream is 20
5050 kg / cm 2 G (about 2 to 5 MPa). If the pressure is less than 20 kg / cm 2 G (about 2 MPa), the high pressure gas stream will eventually need to be cooled to a temperature below −160 ° C. If the pressure exceeds 50 kg / cm 2 G (about 5 MPa), the power required for compressing the gas is increased more than necessary, and in any case, it is uneconomical.

【0015】先ず、上記の水素含有ガス状炭化水素の冷
却前に、水素分離器(S−1)において、上記の水素含
有ガス状炭化水素の高圧ガス流から、水素ガスを回収す
ると共にガス状炭化水素を分離する。水素分離器(S−
1)における水素含有ガス状炭化水素の温度は、通常5
0〜250℃とされる。
First, before cooling the hydrogen-containing gaseous hydrocarbon, the hydrogen separator recovers hydrogen gas from the high-pressure gas stream of the hydrogen-containing gaseous hydrocarbon in the hydrogen separator (S-1). Separate hydrocarbons. Hydrogen separator (S-
The temperature of the hydrogen-containing gaseous hydrocarbon in 1) is usually 5
0-250 ° C.

【0016】なお、本発明において、「水素含有ガス状
炭化水素の冷却前」とは、メタンやエチレン等を分離す
るのに必要な深冷分離のための冷却の前、と言う意味で
あり、ナフサ分解温度から取り扱い容易な温度への冷却
や、圧縮による温度上昇に対する冷却、あるいは、炭素
数3以上の高沸点炭化水素を予め分離する過程での冷却
は予め行ってもよい。
In the present invention, "before cooling of a hydrogen-containing gaseous hydrocarbon" means "before cooling for cryogenic separation necessary for separating methane, ethylene, etc." Cooling from the naphtha decomposition temperature to a temperature that is easy to handle, cooling against temperature rise due to compression, or cooling in the process of previously separating high-boiling hydrocarbons having 3 or more carbon atoms may be performed in advance.

【0017】上記の水素分離器(S−1)としては、ガ
ス状炭化水素中の水素を選択的に透過させて分離できる
分離膜が好適に使用される。分離膜としては、ガス状炭
化水素から水素を選択的に透過できる金属膜、特に、パ
ラジウム膜、パラジウム合金膜または白金膜が好適に使
用される。これらの金属膜は、シリカ、アルミナ、それ
らの混合物などの支持部材で保持して使用することが好
ましい。
As the hydrogen separator (S-1), a separation membrane capable of selectively permeating and separating hydrogen in gaseous hydrocarbons is preferably used. As the separation membrane, a metal membrane capable of selectively permeating hydrogen from gaseous hydrocarbons, particularly a palladium membrane, a palladium alloy membrane or a platinum membrane is suitably used. These metal films are preferably used while being held by a support member such as silica, alumina, or a mixture thereof.

【0018】水素分離器(S−1)で分離された水素
は、実質的に水素のみであるため、燃料として消費する
ばかりではなく、隣接プラントで水素添加反応などの原
料として使用することが出来る。
Since the hydrogen separated by the hydrogen separator (S-1) is substantially only hydrogen, it can be used not only as a fuel but also as a raw material for a hydrogenation reaction in an adjacent plant. .

【0019】次に、少なくとも直列に配置された2つ以
上の温度帯域において、上記のガス状炭化水素を順次冷
却して各温度帯域で気液分離する。そして、分離された
上記の凝縮液はプレ脱メタン塔(T−1)及び脱メタン
塔(T−2)に供給される。この場合、通常、最初の温
度帯域で気液分離された凝縮液をプレ脱メタン塔(T−
1)に供給し、第2番目以降の温度帯域で気液分離され
た凝縮液を脱メタン塔(T−2)に供給する。未凝縮ガ
スは次の温度帯域に供給される。
Next, in at least two or more temperature zones arranged in series, the above-mentioned gaseous hydrocarbon is sequentially cooled to separate gas and liquid in each temperature zone. Then, the separated condensate is supplied to the pre-demethanizer (T-1) and the demethanizer (T-2). In this case, the condensate separated in the first temperature zone by gas-liquid separation is usually supplied to a pre-demethanizer (T-
The condensate separated into gas and liquid in the second and subsequent temperature zones is supplied to the demethanizer (T-2). Uncondensed gas is supplied to the next temperature zone.

【0020】上記の気液分離を行う各温度帯域とは、各
熱交換器(H−1)乃至(H−3)とそれぞれに後続す
る各気液分離器(D−1)乃至(D−3)の1組を意味
し、図1に示すプロセスは、気液分離を行う温度帯域を
3個有する。すなわち、上記の分離膜によって水素濃度
を低下したガス状炭化水素は、水冷却器(W−1)、熱
交換器(H−1)乃至(H−3)により順次冷却され、
気液分離器(D−1)乃至(D−3)で順次凝縮液に分
離される。
The temperature zones in which the above-mentioned gas-liquid separation is performed are defined as the heat exchangers (H-1) to (H-3) and the gas-liquid separators (D-1) to (D- The process shown in FIG. 1 has three temperature zones for performing gas-liquid separation. That is, the gaseous hydrocarbon whose hydrogen concentration has been reduced by the separation membrane is sequentially cooled by the water cooler (W-1) and the heat exchangers (H-1) to (H-3).
The condensed liquid is sequentially separated by the gas-liquid separators (D-1) to (D-3).

【0021】上記の分離膜を経た高圧ガス流は、水冷却
器(W−1)により常温まで冷却され、熱交換器(H−
1)乃至(H−3)で順次に冷却されて気液分離器(D
−1)乃至(D−3)で順次凝縮液に分離されるが、こ
の際、熱交換器(H−1)乃至(H−3)の冷却温度
は、水素分離器(S−1)における分離水素量に応じて
特定温度範囲内に設定する。例えば、熱交換器(H−
1)の出口において−20℃〜−40℃の温度領域に、
熱交換器(H−2)の出口において−40℃〜−70℃
の温度領域に、熱交換器(H−3)の出口において−7
0℃〜−90℃の温度領域になる様に冷媒との熱交換量
を調整する。
The high-pressure gas stream having passed through the separation membrane is cooled to room temperature by a water cooler (W-1), and is cooled by a heat exchanger (H-).
1) to (H-3), the gas-liquid separator (D)
-1) to (D-3) are successively separated into condensed liquids. At this time, the cooling temperature of the heat exchangers (H-1) to (H-3) depends on the hydrogen separator (S-1). The temperature is set within a specific temperature range according to the amount of separated hydrogen. For example, a heat exchanger (H-
At the outlet of 1), in the temperature range of -20 ° C to -40 ° C,
−40 ° C. to −70 ° C. at the outlet of the heat exchanger (H-2)
-7 at the outlet of the heat exchanger (H-3) in the temperature range of
The amount of heat exchange with the refrigerant is adjusted so as to be in a temperature range of 0 ° C. to −90 ° C.

【0022】上記の温度設定により、各気液分離器(D
−1)乃至(D−3)及び後述のデフレグメーター装置
(DEP−1)における凝縮液量とその組成を調整でき
る。この結果、熱交換器における冷媒使用量の低下およ
び冷媒温度の上昇を図ることが出来、冷凍機の動力低下
が可能となると共に、脱メタン塔(T−2)への供給液
量を減少でき、ガス状炭化水素の処理量を増加させるこ
とが出来る。さらに、デフレグメーター装置へ供給され
る未凝縮ガス量が減少することにより、デフレグメータ
ー装置の小型化が可能となるばかりではなく、デフレグ
メーター装置の分離性能を向上させることが出来る。
By the above temperature setting, each gas-liquid separator (D
-1) to (D-3) and the amount and composition of the condensate in the dephlegmator (DEP-1) described below can be adjusted. As a result, the amount of refrigerant used in the heat exchanger can be reduced and the temperature of the refrigerant can be increased, so that the power of the refrigerator can be reduced, and the amount of liquid supplied to the demethanizer (T-2) can be reduced. In addition, the throughput of gaseous hydrocarbons can be increased. Further, the reduction in the amount of uncondensed gas supplied to the dephlegmator apparatus not only allows the downsizing of the dephlegmator apparatus, but also improves the separation performance of the dephlegmator apparatus.

【0023】なお、上記の熱交換器(H−1)には冷媒
液体プロピレンが、また、熱交換器(H−2)乃至(H
−5)には冷媒液体エチレンが低温側液体の冷媒源とし
て、それぞれ使用される。
The heat exchanger (H-1) contains refrigerant propylene, and the heat exchangers (H-2) to (H).
In -5), refrigerant liquid ethylene is used as a refrigerant source for the low-temperature side liquid.

【0024】熱交換器(H−1)により、−20℃〜−
40℃の温度領域まで冷却された高圧ガス流は、気液分
離器(D−1)により気液分離される。分離された凝縮
液は、プレ脱メタン塔(T−1)の上部に供給される。
この凝縮液は、比較的沸点の高い炭化水素を多く含有し
ているがメタンも含んでいる。例えば、ナフサの熱分解
ガスを使用した場合には、メタンを10〜25モル%程
度含み、プレ脱メタン塔(T−1)でメタンを実質的に
含有しない塔底液とメタンに富む塔頂留出ガスとに分離
される。
-20 ° C to-
The high-pressure gas stream cooled to a temperature range of 40 ° C. is subjected to gas-liquid separation by a gas-liquid separator (D-1). The separated condensate is supplied to the upper part of the pre-demethanizer (T-1).
This condensate contains a lot of relatively high boiling hydrocarbons but also contains methane. For example, when a naphtha pyrolysis gas is used, the bottom liquid containing about 10 to 25 mol% of methane and containing substantially no methane in the pre-demethanizer (T-1) and the top of methane-rich column It is separated into distillate gas.

【0025】上記のプレ脱メタン塔(T−1)には、塔
内に通常の精留塔と同様に気液接触用の棚段または充填
物が具備されている。この塔に供給された凝縮液は、塔
内を落下する際、塔の下部まで到達した液が塔底の加熱
源(図示せず)により加熱されて発生する炭化水素の上
昇流と向流接触し、メタンが蒸発し、高沸点成分が凝縮
する。塔底液は塔底から抜き出す。メタンに富む留出ガ
スは、熱交換器(H−6)を経て脱メタン塔(T−2)
の上段部に供給される。
The pre-demethanization tower (T-1) is provided with a plate or a packing for gas-liquid contact in the tower, similarly to a normal rectification tower. When the condensate supplied to the tower falls in the tower, the liquid that has reached the lower part of the tower is heated by a heating source (not shown) at the bottom of the tower and is brought into countercurrent contact with the upward flow of hydrocarbons generated. Then, methane evaporates and high-boiling components condense. The bottom liquid is withdrawn from the bottom. The methane-rich distillate gas passes through a heat exchanger (H-6), and then is demethanized (T-2).
Is supplied to the upper stage.

【0026】気液分離器(D−1)における未凝縮ガス
は、熱交換器(H−2)に供給されて−40℃〜−70
℃の温度領域に冷却された後、気液分離器(D−2)に
供給されて気液分離される。分離された凝縮液は、塔底
から抜き出されて脱メタン塔(T−2)に供給される。
The uncondensed gas in the gas-liquid separator (D-1) is supplied to a heat exchanger (H-2) and is supplied from -40.degree.
After being cooled to a temperature range of ° C., it is supplied to a gas-liquid separator (D-2) to be separated into gas and liquid. The separated condensate is withdrawn from the bottom of the column and supplied to the demethanizer (T-2).

【0027】一方、未凝縮ガスは、熱交換器(H−3)
に供給されて−70℃〜−90℃の温度領域まで冷却さ
れた後、気液分離器(D−3)に供給されて気液分離さ
れる。分離された凝縮液は、塔底から抜き出されて脱メ
タン塔(T−2)に供給される。
On the other hand, the uncondensed gas is supplied to a heat exchanger (H-3).
And cooled to a temperature range of -70 ° C to -90 ° C, and then supplied to a gas-liquid separator (D-3) for gas-liquid separation. The separated condensate is withdrawn from the bottom of the column and supplied to the demethanizer (T-2).

【0028】次に、デフレグメーター装置(DEP−
1)において、上記の最終の温度帯域の未凝縮ガスか
ら、エチレンを実質的に含有しないガスを回収すると共
にエチレン成分に富む凝縮液を分離し、そして、分離さ
れた凝縮液は脱メタン塔(T−2)に供給する。すなわ
ち、気液分離器(D−3)の未凝縮ガスは、必要に応じ
て熱交換器(H−4)で冷却された後、デフレグメータ
ー装置(DEP−1)に供給される。
Next, a dephlegmator (DEP-
In 1), a gas substantially free of ethylene is recovered from the uncondensed gas in the final temperature zone, and a condensate rich in ethylene is separated, and the separated condensate is demethanized ( T-2). That is, the uncondensed gas in the gas-liquid separator (D-3) is cooled by the heat exchanger (H-4) as necessary, and then supplied to the dephlegmator (DEP-1).

【0029】デフレグメーター装置(DEP−1)は、
供給されたガスをメタンを主成分とするガスとエチレン
成分に富む凝縮液とに分離する。エチレン成分に富む凝
縮液は、塔底から抜き出されて脱メタン塔(T−2)に
供給される。デフレグメーター装置(DEP−1)は、
複数の垂直に設けられた間接熱交換通路からなる上部精
留塔熱交換部分(20R)及びこの上部精留塔熱交換部
分で冷却され重力で流下する凝縮液を集める下部ドラム
(20D)から成る。デフレグメーター装置(DEP−
1)への供給は、その下部に行うのが好ましい。
The dephlegmator (DEP-1)
The supplied gas is separated into a gas containing methane as a main component and a condensate rich in an ethylene component. The condensate rich in ethylene component is withdrawn from the bottom of the column and supplied to the demethanizer (T-2). The dephlegmator (DEP-1)
An upper rectification tower heat exchange section (20R) comprising a plurality of vertically provided indirect heat exchange passages and a lower drum (20D) for collecting the condensate cooled by gravity and cooled by the upper rectification tower heat exchange section. . Dephlegmator (DEP-
The supply to 1) is preferably carried out below.

【0030】上記のデフレグメーター装置(DEP−
1)へ供給された未凝縮ガスは、上部精留塔熱交換部分
(20R)を上方向に通過する際、他の冷媒(図示せ
ず)で冷却されて一部凝縮して流下する。その結果、上
部精留塔熱交換部分(20R)内で、上昇するガスと凝
縮液とが直接気液接触熱交換を行い、次第に流下する凝
縮液はエチレンに富み、また、上昇するガスはメタンに
富む様になる。
The above dephlegmator (DEP-
When the uncondensed gas supplied to 1) passes through the upper rectification tower heat exchange section (20R) upward, it is cooled by another refrigerant (not shown) and partially condenses and flows down. As a result, in the upper rectification tower heat exchange part (20R), the ascending gas and the condensate perform direct gas-liquid contact heat exchange, the gradually flowing condensate is rich in ethylene, and the ascending gas is methane. It will be rich.

【0031】従来技術の様に、デフレグメーター装置
(DEP−1)に供給される未凝縮ガスに多量の水素が
含まれている場合には、水素が掃気ガスとして作用し、
エチレンの凝縮を妨害するが、本発明では、水素が予め
水素分離器(S−1)で除去されているので、デフレグ
メーター装置での分離が効率良く行われる。
When the uncondensed gas supplied to the dephlegmator apparatus (DEP-1) contains a large amount of hydrogen as in the prior art, the hydrogen acts as a scavenging gas,
Although it interferes with the condensation of ethylene, in the present invention, since the hydrogen has been removed in advance by the hydrogen separator (S-1), the separation by the dephlegmator is performed efficiently.

【0032】デフレグメーター装置(DEP−1)にお
ける上部精留塔熱交換部分(20R)の未凝縮ガス温度
は、−90℃〜−110℃温度領域に、下部ドラム部分
(20D)の凝縮液温度は、−70℃〜−85℃温度領
域にそれぞれ設定される。その結果、下部ドラム部分
(20D)から抜き出される凝縮液は、図3に示す従来
の気液分離器で分離された凝縮液に比較して液量が低下
し、脱メタン塔(T−2)への供給液量を減少できる。
The temperature of the uncondensed gas in the upper rectification column heat exchange section (20R) in the dephlegmator apparatus (DEP-1) falls within the temperature range of -90 ° C to -110 ° C, and the condensate in the lower drum section (20D). The temperature is set in a temperature range of -70 ° C to -85 ° C. As a result, the amount of condensate extracted from the lower drum portion (20D) is reduced as compared with the condensate separated by the conventional gas-liquid separator shown in FIG. ) Can be reduced.

【0033】上記の結果、既設脱メタン塔能力で原料ガ
スの処理量増加が図れると共に、深冷分離において必要
とされる冷媒液体であるエチレン液量が大幅に節減さ
れ、最終的にはエチレン圧縮機(図示せず)に必要な動
力が大幅に節減できる。また、デフレグメーター装置
(DEP−1)から得られる未凝縮ガスは、メタン濃度
が高い。熱交換器(H−1)乃至(H−3)の出口の高
圧ガス温度は、従来ほど低下させる必要がなく、冷却効
率を向上させることが出来る。
As a result, the throughput of the raw material gas can be increased by the capacity of the existing demethanizer, and the amount of the ethylene liquid, which is the refrigerant liquid required in the cryogenic separation, can be greatly reduced. The power required for the machine (not shown) can be greatly reduced. The uncondensed gas obtained from the dephlegmator (DEP-1) has a high methane concentration. The high-pressure gas temperature at the outlets of the heat exchangers (H-1) to (H-3) does not need to be reduced as compared with the conventional case, and the cooling efficiency can be improved.

【0034】一方、プレ脱メタン塔(T−1)におい
て、メタンを実質的に含有しない高沸点炭化水素成分を
回収すると共にメタンに富む低沸点成分のガスを分離
し、そして、分離されたガスは脱メタン塔(T−2)に
供給される。プレ脱メタン塔(T−1)の塔頂から抜き
出された留出ガスは、通常、メタンを40〜50%、エ
チレンを40〜50%程度含有している。他の脱メタン
塔供給液に比較し、メタンの含有率が高く、エチレンの
割合が低い。このメタンに富む留出ガスは、熱交換器
(H−6)で冷却した後、脱メタン塔(T−2)へ供給
される。
On the other hand, in the pre-demethanizer (T-1), a high-boiling hydrocarbon component substantially free of methane is recovered, a gas of a low-boiling component rich in methane is separated, and the separated gas is removed. Is supplied to the demethanizer (T-2). The distillate gas extracted from the top of the pre-demethanizer (T-1) usually contains about 40 to 50% of methane and about 40 to 50% of ethylene. Compared to other demethanizer feed liquids, the content of methane is high and the proportion of ethylene is low. The methane-rich distillate gas is cooled in the heat exchanger (H-6) and then supplied to the demethanizer (T-2).

【0035】次に、脱メタン塔(T−2)において、メ
タンガスを回収すると共にメタンを実質的に含有しない
凝縮液を回収する。脱メタン塔(T−2)は、通常の深
冷分離の際に使用される棚段または充填物の充填された
精留塔であり、メタンとエチレンとを分離する。脱メタ
ン塔(T−2)の塔頂部には、留出ガスを循環冷媒のエ
チレン液により冷却してその大部分を凝縮させてこの塔
の還流液とするための熱交換器(H−5)及びこの還流
液と未凝縮ガスとに分離するための気液分離器(D−
5)が設けられている。
Next, in the demethanizer (T-2), a methane gas is recovered and a condensate substantially containing no methane is recovered. The demethanizer (T-2) is a rectification column filled with trays or packings used in ordinary cryogenic separation, and separates methane and ethylene. At the top of the demethanizer tower (T-2), a heat exchanger (H-5) for cooling the distillate gas with the circulating refrigerant ethylene liquid and condensing most of the gas into the reflux liquid of this tower. ) And a gas-liquid separator (D-
5) is provided.

【0036】脱メタン塔(T−2)において、この塔に
供給された上記の凝縮液および留出液は、気液分離器
(D−5)からの留出液がこの塔に返送される還流液の
作用および塔底の加熱源(図示せず)による塔底液の加
熱作用により精留され、メタンを実質的に含有しないエ
チレンを主成分とする凝縮液として塔底から取り出され
る。脱メタン塔(T−2)の塔頂部から取り出された留
出ガスは、熱交換器(H−5)により冷却された後、気
液分離器(D−5)においてエチレンを実質的に含有し
ないメタンを主成分とする留出ガスとして分離される。
In the demethanizer tower (T-2), the condensate and distillate supplied to the tower are returned from the gas-liquid separator (D-5) to this tower. The fraction is rectified by the action of the reflux liquid and the heating action of the bottom liquid by a heating source (not shown) at the bottom, and is removed from the bottom as a condensate containing ethylene as a main component substantially containing no methane. The distillate gas taken out from the top of the demethanizer (T-2) is cooled by the heat exchanger (H-5) and then substantially contains ethylene in the gas-liquid separator (D-5). Is separated as a distillate gas mainly composed of methane.

【0037】プレ脱メタン塔(T−1)及びデフレグメ
ーター装置(DEP−1)の好ましい圧力は、15〜4
0kg/cm2G(約1.5〜4MPa)の範囲とされ
る。脱メタン塔(T−2)の圧力は、通常、プレ脱メタ
ン塔(T−1)及びデフレグメーター装置(DEP−
1)より少し低い圧力、好ましくはプレ脱メタン塔(T
−1)及びデフレグメーター装置(DEP−1)より
0.1〜10kg/cm2G(約0.01〜1MPa)
低い圧力の範囲とされる。
The preferred pressure of the pre-demethanizer (T-1) and the dephlegmator (DEP-1) is 15 to 4
The range is 0 kg / cm 2 G (about 1.5 to 4 MPa). The pressure of the demethanizer (T-2) is usually determined by the pre-demethanizer (T-1) and the dephlegmator (DEP-
1) slightly lower pressure, preferably pre-demethanizer (T
-1) and 0.1 to 10 kg / cm 2 G (about 0.01 to 1 MPa) from the dephlegmator (DEP-1)
It is in the low pressure range.

【0038】本発明の最も好ましい態様は、上記の様
に、順次冷却されて行われる最後の気液分離での未凝縮
ガスをデフレグメーター装置で分離し、メタン分離工程
はプレ脱メタン塔と脱メタン塔から構成される態様であ
るが、本発明は、これ以外にも、他の気液分離工程でデ
フレグメーター装置を使用する態様、デフレグメーター
装置を使用しない態様、プレ脱メタン塔を使用しない態
様なども本発明に包含される。
In the most preferred embodiment of the present invention, as described above, the uncondensed gas in the last gas-liquid separation performed by cooling sequentially is separated by a dephlegmator, and the methane separation step is performed by using a pre-demethanizer. Although it is an embodiment configured from a demethanizer, the present invention also includes an embodiment using a dephlegmator device in another gas-liquid separation step, an embodiment not using a dephlegmator device, a pre-demethanizer, Embodiments that do not use are also included in the present invention.

【0039】例えば、図2に示す様に、図1のデフレグ
メーター装置(DEP−1)に代えて、熱交換器(H−
4)と気液分離装置(D−4)とを設けることも出来
る。この場合、熱交換器(H−4)での出口における温
度帯域は−90〜−115℃に調節することが好まし
い。
For example, as shown in FIG. 2, instead of the dephlegmator (DEP-1) of FIG. 1, a heat exchanger (H-
4) and a gas-liquid separation device (D-4) can also be provided. In this case, the temperature zone at the outlet of the heat exchanger (H-4) is preferably adjusted to -90 to -115 ° C.

【0040】[0040]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0041】実施例1 以下に図1に示すフローダイアグラムのプロセスによっ
てガス状炭化水素から水素およびメタンを分離する場合
についてのシミュレーション結果を示す。なお、シミュ
レーションプログラムはASPENPLUS(ASPEN TECHNOLOGY,
INC.社製)を使用した。
Example 1 A simulation result in the case of separating hydrogen and methane from gaseous hydrocarbons by the process of the flow diagram shown in FIG. 1 is shown below. The simulation program is ASPENPLUS (ASPEN TECHNOLOGY,
INC.).

【0042】原料ガスとしては、水素15モル%、メタ
ン31モル%、エチレン33モル%、エタン7モル%、
プロピレン10モル%及びその他の炭化水素4モル%よ
りなるナフサの熱分解ガスをモデルとした。
As raw material gases, 15 mol% of hydrogen, 31 mol% of methane, 33 mol% of ethylene, 7 mol% of ethane,
A naphtha pyrolysis gas consisting of 10 mol% of propylene and 4 mol% of other hydrocarbons was used as a model.

【0043】また、水素分離装置(S−1)には分離
膜、プレ脱メタン塔(T−1)には21段の棚段塔、脱
メタン塔(T−2)には41段の棚段塔とした。ここ
で、分離膜の性能は、水素ガスのみを選択的に透過する
ものとし、膜透過量を748kmol/Hとした。
Further, a separation membrane is installed in the hydrogen separator (S-1), a 21-stage plate tower is installed in the pre-demethanizer (T-1), and a 41-stage plate is installed in the demethanizer (T-2). It was a tower. Here, the performance of the separation membrane was such that only hydrogen gas was selectively permeated, and the permeation amount of the membrane was 748 kmol / H.

【0044】原料ガスは、圧縮機(C−1)を経て34
kg/cm2G(約3.5MPa)及び91℃の高圧ガ
ス流として水素分離器(S−1)に供給する。水素分離
器(S−1)では、原料ガス中の水素75%が分離され
て回収される。水素分離後の原料ガスは、水冷却器(W
−1)において15℃まで冷却された後、熱交換器(H
−1)において−23℃まで冷却されて気液分離器(D
−1)に供給される。気液分離器(D−1)における未
凝縮ガスは、熱交換器(H−2)において−61℃まで
冷却された後、気液分離器(D−2)に供給され、気液
分離器(D−1)における凝縮液は、プレ脱メタン塔
(T−1)に供給される。
The raw material gas passes through a compressor (C-1) and is supplied to a source (34).
The gas is supplied to the hydrogen separator (S-1) as a high-pressure gas stream of kg / cm 2 G (about 3.5 MPa) and 91 ° C. In the hydrogen separator (S-1), 75% of the hydrogen in the raw material gas is separated and collected. The raw material gas after hydrogen separation is supplied to a water cooler (W
-1), after cooling to 15 ° C., the heat exchanger (H
-1), cooled to -23 ° C. and gas-liquid separator (D
-1). The uncondensed gas in the gas-liquid separator (D-1) is cooled to -61 ° C. in the heat exchanger (H-2), and then supplied to the gas-liquid separator (D-2). The condensate in (D-1) is supplied to the pre-demethanizer (T-1).

【0045】気液分離器(D−2)における未凝縮ガス
は、熱交換器(H−3)において−81℃まで冷却され
た後、気液分離器(D−3)に供給され、気液分離器
(D−2)における凝縮液は、脱メタン塔(T−2)に
供給される。気液分離器(D−3)における未凝縮ガス
は、熱交換器(H−4)により冷却後、デフレグメータ
ー装置(DEP−1)へ供給され、気液分離器(D−
3)における凝縮液は、脱メタン塔(T−2)に供給さ
れる。
The uncondensed gas in the gas-liquid separator (D-2) is cooled to −81 ° C. in the heat exchanger (H-3), and then supplied to the gas-liquid separator (D-3). The condensate in the liquid separator (D-2) is supplied to the demethanizer (T-2). The uncondensed gas in the gas-liquid separator (D-3) is cooled by the heat exchanger (H-4) and then supplied to the dephlegmator (DEP-1), where it is cooled.
The condensate in 3) is supplied to the demethanizer (T-2).

【0046】上記のデフレグメーター装置(DEP−
1)へ供給される上記の未凝縮ガスは、上部精留塔熱交
換部分(20R)を上方向に通過する際に冷却されて分
縮されて落下する。その結果、上部精留塔熱交換部分
(20R)内において、上昇するガスと凝縮液とが直接
気液接触交換を行い、次第に落下する凝縮液はエチレン
に富み、また、上昇するガスはメタンに富む様になる。
メタンに富む留出ガスは、塔頂から抜き出された後、常
温まで加熱されて回収される。一方、デフレグメーター
装置(DEP−1)におけるエチレンに富む凝縮液は、
脱メタン塔(T−2)へ供給される。
The above dephlegmator (DEP-
The uncondensed gas supplied to 1) is cooled and decomposed when passing upward through the upper rectification tower heat exchange section (20R), and falls. As a result, in the upper rectification tower heat exchange section (20R), the rising gas and the condensate directly perform gas-liquid contact exchange, and the gradually falling condensate is rich in ethylene, and the rising gas is methane. Be rich.
The methane-rich distillate gas is extracted from the top of the tower and then heated to room temperature and recovered. On the other hand, the condensate rich in ethylene in the dephlegmator (DEP-1)
It is supplied to the demethanizer (T-2).

【0047】一方、前述のプレ脱メタン塔(T−1)へ
供給される凝縮液は、メタンに富む留出ガスとメタンを
実質的に含有しない塔底液とに分離される。そして、メ
タンに富む留出ガスは、熱交換器(H−6)で冷却して
凝縮された後、脱メタン塔(T−2)へ供給され、メタ
ンを実質的に含有しない塔底液(高沸点炭化水素成分)
は回収される。
On the other hand, the condensate supplied to the above-mentioned pre-demethanizer (T-1) is separated into a methane-rich distillate gas and a bottom liquid substantially containing no methane. Then, the methane-rich distillate gas is cooled and condensed in the heat exchanger (H-6), and then supplied to the demethanizer (T-2), where the bottom liquid substantially containing no methane ( High boiling point hydrocarbon component)
Is recovered.

【0048】脱メタン塔(T−2)は、通常の深冷分離
の際に使用される精留塔であり、塔頂部には、その塔頂
留出ガスを冷却し、その一部を凝縮させ、この塔の還流
液とするための熱交換器(H−5)及びこの還流液と未
凝縮ガスとに分離するための気液分離器(D−5)を設
けられている。
The demethanizer (T-2) is a rectification column used for ordinary cryogenic separation. At the top, the gas discharged from the top is cooled and a part thereof is condensed. A heat exchanger (H-5) for converting the reflux liquid into unrefined gas and a heat-exchanger (D-5) for separating the reflux liquid and uncondensed gas are provided.

【0049】脱メタン塔(T−2)においては、気液分
離器(D−2)における凝縮液、気液分離器(D−3)
における凝縮液、デフレグメーター装置(DEP−1)
におけるエチレンに富む凝縮液、熱交換器(H−6)で
得られたメタンに富む凝縮液が処理される。
In the demethanizer (T-2), the condensate in the gas-liquid separator (D-2) and the gas-liquid separator (D-3)
Liquid, dephlegmator (DEP-1)
And the methane-rich condensate obtained in the heat exchanger (H-6).

【0050】そして、脱メタン塔(T−2)の塔頂部か
ら取り出した留出ガスは、熱交換器(H−5)により冷
却された後、気液分離器(D−5)において、エチレン
を実質的に含有しないメタンを主成分とする留出ガスと
して分離された後、常温まで加温されて回収される。脱
メタン塔(T−2)の塔底からは、エチレンを主成分と
する凝縮液が回収される。
Then, the distillate gas taken out from the top of the demethanizer (T-2) is cooled by a heat exchanger (H-5), and then cooled by a gas-liquid separator (D-5). Is separated as a distillate gas containing methane as a main component substantially free of methane, and then heated to room temperature and recovered. A condensate containing ethylene as a main component is recovered from the bottom of the demethanizer (T-2).

【0051】上記の熱交換器の冷媒として、熱交換器
(H−1)ではプロピレン冷媒を、(H−2)乃至(H
−5)ではエチレン冷媒を使用するものとして計算し
た。表1に定常状態における運転条件および物質収支の
計算結果を示す。
In the heat exchanger (H-1), a propylene refrigerant is used as a refrigerant in the heat exchanger (H-1).
In -5), calculation was performed assuming that an ethylene refrigerant was used. Table 1 shows the operating conditions and the calculation results of the material balance in the steady state.

【0052】[0052]

【表1】 [Table 1]

【0053】比較例1 実施例1において、図3に示すプロセスに変更した以外
は、実施例1と同様にシミュレーションを行った。表2
に定常状態における運転条件および物質収支の計算結果
を示す。
Comparative Example 1 A simulation was performed in the same manner as in Example 1, except that the process was changed to the process shown in FIG. Table 2
Figure 2 shows the operating conditions and the material balance calculation results in the steady state.

【0054】[0054]

【表2】 [Table 2]

【0055】実施例1および比較例1における冷凍機馬
力および脱メタン塔への供給量の比較を表3に示す。
Table 3 shows a comparison between the horsepower of the refrigerator and the supply amount to the demethanizer in Example 1 and Comparative Example 1.

【0056】[0056]

【表3】 [Table 3]

【0057】実施例2 実施例1において、図2の示すプロセスに変えた以外
は、実施例1と同様に操作した。定常状態における運転
条件および物質収支の計算結果を表4に示す。また、実
施例2と比較例1との比較を表5に示す。
Example 2 The procedure of Example 1 was repeated, except that the process shown in FIG. 2 was used. Table 4 shows the operating conditions and the calculation results of the material balance in the steady state. Table 5 shows a comparison between Example 2 and Comparative Example 1.

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【発明の効果】以上、説明した本発明によれば、従来法
に比較して気液分離器の温度を高く設定できるため、従
来法より高温の冷媒を使用できることにより、冷凍機の
吸い込み圧力を高く設定でき、冷凍機動力の低減が図れ
る。よって、本発明による冷凍機動力節減により大きな
経済的利益を得ることが出来る。さらに、デフレグメー
ター装置を併用すれば、脱メタン塔へのメタン供給量を
低下させることが出来る。すなわち、既設のプラントの
場合には、現状より多くの原料ガスを処理でき、新設プ
ラントの場合には、脱メタン塔の小型化を実現できる。
According to the present invention described above, since the temperature of the gas-liquid separator can be set higher than that of the conventional method, the refrigerant pressure higher than that of the conventional method can be used. It can be set high and the chiller power can be reduced. Therefore, a great economic benefit can be obtained by the power saving of the refrigerator according to the present invention. Furthermore, when a dephlegmator is used in combination, the amount of methane supplied to the demethanizer can be reduced. That is, in the case of an existing plant, more raw material gas can be processed than in the current situation, and in the case of a new plant, the size of the demethanizer can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好ましい態様の一例を示すプロセスフ
ローダイアグラム
FIG. 1 is a process flow diagram illustrating an example of a preferred embodiment of the present invention.

【図2】本発明の別の態様を示すプロセスフローダイア
グラム
FIG. 2 is a process flow diagram illustrating another embodiment of the present invention.

【図3】従来技術のプロセスフローダイアグラムFIG. 3 is a prior art process flow diagram.

【符号の説明】[Explanation of symbols]

C−1:圧縮機 W−1:水冷却器 S−1:水素分離器 H−1〜H−7:熱交換器 D−1〜D−6:気液分離器 T−1:プレ脱メタン塔 T−2:脱メタン塔 DEP−:デフレグメーター装置 C-1: Compressor W-1: Water cooler S-1: Hydrogen separator H-1 to H-7: Heat exchanger D-1 to D-6: Gas-liquid separator T-1: Pre-demethane Tower T-2: Demethanizer DEP-: Dephlegmator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10G 53/02 C10G 53/02 F25J 3/02 F25J 3/02 B 101 101 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C10G 53/02 C10G 53/02 F25J 3/02 F25J 3/02 B 101 101

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、水素、メタン、エタン及び
エチレンを含むガス状炭化水素の高圧ガス流から、水素
およびメタンを分離する方法であって、(1)上記の水
素含有ガス状炭化水素の冷却前に、実質的に水素ガスの
みを分離できる水素分離器を使用して上記の水素含有ガ
ス状炭化水素の高圧ガス流から水素ガスを回収し、
(2)少なくとも直列に配置された2つ以上の温度帯域
において、上記のガス状炭化水素を順次冷却して各温度
帯域で気液分離し、そして、分離されたそれらの凝縮液
はメタン分離工程に供給し、未凝縮ガスは次の温度帯域
に供給し、(3)メタン分離工程において、メタンガス
を回収すると共にメタンを実質的に含有しない凝縮液を
回収することを特徴とするガス状炭化水素から水素およ
びメタンを分離する方法。
1. A method for separating hydrogen and methane from a high-pressure gas stream of a gaseous hydrocarbon containing at least hydrogen, methane, ethane and ethylene, comprising: (1) cooling the hydrogen-containing gaseous hydrocarbon. Prior to recovering hydrogen gas from the high pressure gas stream of hydrogen-containing gaseous hydrocarbons using a hydrogen separator that can substantially separate only hydrogen gas,
(2) In at least two or more temperature zones arranged in series, the above-mentioned gaseous hydrocarbons are sequentially cooled and separated into gas and liquid in each temperature zone, and the separated condensate is subjected to a methane separation step. And the uncondensed gas is supplied to the next temperature zone. (3) In the methane separation step, methane gas is recovered and a condensate containing substantially no methane is recovered. For separating hydrogen and methane from water.
【請求項2】 請求項1の方法において、(2)の順次
冷却工程の少なくとも1つ以上の温度帯域にデフレグメ
ーターを設置して気液分離を行う方法。
2. The method according to claim 1, wherein a gas / liquid separation is performed by installing a dephlegmator in at least one or more temperature zones in the sequential cooling step (2).
【請求項3】 請求項2の方法において、デフレグメー
ター装置を使用して(2)の順次冷却工程の最終の温度
帯域における未凝縮ガスからエチレンを実質的に含有し
ないガスを回収すると共にエチレン成分に富む凝縮液を
分離し、そして、分離された凝縮液はメタン分離工程に
供給する方法。
3. The method according to claim 2, wherein a gas substantially free of ethylene is recovered from the uncondensed gas in the final temperature zone of the sequential cooling step (2) by using a dephlegmator device. A method in which a condensate rich in components is separated, and the separated condensate is supplied to a methane separation step.
【請求項4】 請求項1の方法において、(3)のメタ
ン分離工程をプレ脱メタン塔と脱メタン塔とから構成
し、 プレ脱メタン塔において、(2)の順次冷却工程で得ら
れた凝縮液から、メタンを実質的に含有しない高沸点炭
化水素成分を回収すると共にメタンに富む低沸点成分ガ
スを分離し、そして、分離されたガスは脱メタン塔に供
給し、 脱メタン塔において、メタンガスを回収すると共にメタ
ンを実質的に含有しない凝縮液を回収する方法。
4. The method according to claim 1, wherein the methane separation step (3) comprises a pre-demethanizer and a demethanizer, wherein the pre-demethanizer is obtained by the sequential cooling step (2). From the condensate, a high-boiling hydrocarbon component substantially free of methane is recovered, and a low-boiling component gas rich in methane is separated, and the separated gas is supplied to a demethanizer, where A method for recovering methane gas and recovering a condensate substantially free of methane.
【請求項5】 請求項4の方法において、プレ脱メタン
塔で分離された低沸点成分ガスを冷却した後に脱メタン
塔に供給する方法。
5. The method according to claim 4, wherein the low-boiling component gas separated in the pre-demethanizer is cooled and then supplied to the demethanizer.
【請求項6】 請求項1の方法において、(3)のメタ
ン分離工程をプレ脱メタン塔と脱メタン塔とから構成
し、 (2)の順次冷却工程の少なくとも1つ以上の温度帯域
にデフレグメーターを設置し、気液分離を行う方法。
6. The method according to claim 1, wherein the methane separation step (3) comprises a pre-demethanization tower and a demethanization tower, and the deflation is performed in at least one temperature zone in the sequential cooling step (2). A method of installing a gmeter and performing gas-liquid separation.
【請求項7】 請求項6の方法において、デフレグメー
ター装置を使用して(2)の順次冷却工程の最終の温度
帯域における未凝縮ガスからエチレンを実質的に含有し
ないガスを回収すると共にエチレン成分に富む凝縮液を
分離し、そして、分離された凝縮液は脱メタン塔に供給
し、 プレ脱メタン塔において、(2)の順次冷却工程で得ら
れた凝縮液から、メタンを実質的に含有しない高沸点炭
化水素成分を回収すると共にメタンに富む低沸点成分ガ
スを分離し、そして、分離されたガスは脱メタン塔に供
給し、 脱メタン塔において、メタンガスを回収すると共にメタ
ンを実質的に含有しない凝縮液を回収する方法。
7. The method according to claim 6, wherein a gas substantially free of ethylene is recovered from the uncondensed gas in the final temperature zone of the sequential cooling step (2) by using a dephlegmator apparatus. The condensate rich in components is separated, and the separated condensate is supplied to a demethanizer, where methane is substantially removed from the condensate obtained in the sequential cooling step (2). A high-boiling hydrocarbon component not contained is recovered and a low-boiling component gas rich in methane is separated, and the separated gas is supplied to a demethanizer, where methane gas is recovered and methane is substantially recovered. To collect condensate that is not contained in water.
【請求項8】 請求項7の方法において、プレ脱メタン
塔で分離された低沸点成分ガスを冷却した後に脱メタン
塔に供給する方法。
8. The method according to claim 7, wherein the low-boiling component gas separated in the pre-demethanizer is cooled and then supplied to the demethanizer.
【請求項9】 請求項1の方法において、水素分離器が
水素を選択的に透過できる金属膜である方法。
9. The method of claim 1, wherein the hydrogen separator is a metal membrane that can selectively permeate hydrogen.
【請求項10】請求項1の方法において、原料となる炭
化水素の高圧ガス流がナフサを熱分解して得られたガス
状炭化水素を圧縮機で圧縮して得られたものである方
法。
10. The method according to claim 1, wherein the high-pressure gas stream of the hydrocarbon as the raw material is obtained by compressing a gaseous hydrocarbon obtained by pyrolyzing naphtha with a compressor.
【請求項11】請求項1の方法において、原料となる炭
化水素の高圧ガス流が、ナフサを熱分解して得られたガ
ス状炭化水素を圧縮機で圧縮し、さらに、炭素数が3以
上の高沸点の炭化水素を凝縮させて除去して得られたも
のである方法。
11. The method according to claim 1, wherein the high-pressure gas stream of the hydrocarbon as a raw material compresses a gaseous hydrocarbon obtained by pyrolyzing naphtha with a compressor, and further has a carbon number of 3 or more. The method obtained by condensing and removing the high-boiling hydrocarbons of the above.
JP12502997A 1996-04-30 1997-04-28 Method for separating hydrogen and methane from gaseous hydrocarbons Expired - Lifetime JP3730362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12502997A JP3730362B2 (en) 1996-04-30 1997-04-28 Method for separating hydrogen and methane from gaseous hydrocarbons

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP13268996 1996-04-30
JP8-132690 1996-04-30
JP13269096 1996-04-30
JP8-132689 1996-04-30
JP12502997A JP3730362B2 (en) 1996-04-30 1997-04-28 Method for separating hydrogen and methane from gaseous hydrocarbons

Publications (2)

Publication Number Publication Date
JPH10114502A true JPH10114502A (en) 1998-05-06
JP3730362B2 JP3730362B2 (en) 2006-01-05

Family

ID=27315030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12502997A Expired - Lifetime JP3730362B2 (en) 1996-04-30 1997-04-28 Method for separating hydrogen and methane from gaseous hydrocarbons

Country Status (1)

Country Link
JP (1) JP3730362B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309549A (en) * 1999-02-25 2000-11-07 Jgc Corp Production of ethylene
JP2009001668A (en) * 2007-06-21 2009-01-08 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Mutual utilization method of hydrogen-containing gas
JP2009001452A (en) * 2007-06-21 2009-01-08 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for separating hydrogen-containing gas
CN114034129A (en) * 2021-11-26 2022-02-11 北京恒泰洁能科技有限公司 Energy expansion reconstruction device and method for pyrolysis gas post-hydrogenation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309549A (en) * 1999-02-25 2000-11-07 Jgc Corp Production of ethylene
JP2009001668A (en) * 2007-06-21 2009-01-08 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Mutual utilization method of hydrogen-containing gas
JP2009001452A (en) * 2007-06-21 2009-01-08 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for separating hydrogen-containing gas
CN114034129A (en) * 2021-11-26 2022-02-11 北京恒泰洁能科技有限公司 Energy expansion reconstruction device and method for pyrolysis gas post-hydrogenation device

Also Published As

Publication number Publication date
JP3730362B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP3073008B2 (en) Low-temperature separation of gas mixtures
JP4777976B2 (en) Hydrocarbon gas treatment for rich gas streams.
JP3688006B2 (en) Hybrid condensation / absorption method for separating and recovering olefins from cracking furnace effluent
US4592766A (en) Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
US4507133A (en) Process for LPG recovery
JP4452239B2 (en) Hydrocarbon separation method and separation apparatus
USRE33408E (en) Process for LPG recovery
JP2869357B2 (en) Ethylene recovery method
JP2006188510A (en) Recovery and purification of ethylene
JP2009502714A (en) Recovery of carbon monoxide and hydrogen from hydrocarbon streams.
JPH09505337A (en) Cryogenic separation
JP5793139B2 (en) Hydrocarbon gas treatment
US20130102827A1 (en) Method for treating a cracked gas stream from a hydrocarbon pyrolysis installation and installation associated therewith
EP0134243A1 (en) Apparatus and method for recovering light hydrocarbons from hydrogen containing gases.
JP5802259B2 (en) Hydrocarbon gas treatment
JP3730362B2 (en) Method for separating hydrogen and methane from gaseous hydrocarbons
CN111393252A (en) Light hydrocarbon separation device and method
KR100843487B1 (en) Advanced heat integrated rectifier system
CN1188375C (en) Method for demethanizing in ethylene production
JP5552160B2 (en) Hydrocarbon gas treatment
RU2501779C1 (en) Method of separating ethylene of polymerisation purity from catalytic cracking gases
US2722113A (en) Fractionation process
JPH07196537A (en) Method for separating methane from gaseous hydrocarbon
CN111238164A (en) Intercooling separation device and process for catalytic cracking product gas
JP3306518B2 (en) Method and apparatus for condensing and separating gas containing low boiling impurities

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

EXPY Cancellation because of completion of term