JPH10113937A - Manufacture of fiber reinforced thermosetting foamed resin molded article - Google Patents
Manufacture of fiber reinforced thermosetting foamed resin molded articleInfo
- Publication number
- JPH10113937A JPH10113937A JP8269826A JP26982696A JPH10113937A JP H10113937 A JPH10113937 A JP H10113937A JP 8269826 A JP8269826 A JP 8269826A JP 26982696 A JP26982696 A JP 26982696A JP H10113937 A JPH10113937 A JP H10113937A
- Authority
- JP
- Japan
- Prior art keywords
- foamed resin
- thermosetting foamed
- thermosetting
- reaction catalyst
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、繊維強化熱硬化性
発泡樹脂成形品の製造方法に関する。The present invention relates to a method for producing a fiber-reinforced thermosetting foamed resin molded article.
【0002】[0002]
【従来の技術】外観的に天然木材と類似しており、また
物性的に天然木材と同等以上の性能を示す繊維強化され
た熱硬化性発泡樹脂成形品が建材や枕木等の構造体とし
て使用されている。従来のこの種の熱硬化性発泡樹脂成
形品は、特開昭55−134228号公報、実開昭59
−36414号公報、実開昭59−36415号公報に
開示されているような製造装置を用い、特開昭48−3
0137号公報、特開昭50−18905号公報、特公
昭52−2421号公報、特公昭63−34807号公
報等に開示されているような方法により連続的に製造す
ることができるようになっている。2. Description of the Related Art A fiber-reinforced thermosetting foamed resin molded article which is similar in appearance to natural wood and has physical properties equal to or higher than that of natural wood is used as a structure for building materials and sleepers. Have been. A conventional thermosetting foamed resin molded product of this type is disclosed in JP-A-55-134228 and JP-A-59-134228.
Japanese Patent Application Laid-Open No. Sho 48-364 and No. Sho 59-36415, and
No. 0137, JP-A-50-18905, JP-B-52-2421, JP-B-63-34807, and the like, thereby enabling continuous production. I have.
【0003】すなわち、熱硬化性発泡樹脂成形品は、ガ
ラス繊維ロービングのガラス繊維とガラス繊維との間に
熱硬化性発泡樹脂液とその反応触媒とを含む熱硬化性発
泡樹脂組成物を連続的に含浸させたのち、筒状の成形用
通路内に引込み、成形用通路の手前または成形用通路内
で前記熱硬化性発泡樹脂組成物中の熱硬化性発泡樹脂液
を加熱し発泡硬化させることによって得られるようにな
っている。[0003] That is, a thermosetting foamed resin molded product is obtained by continuously forming a thermosetting foamed resin composition containing a thermosetting foamed resin liquid and a reaction catalyst thereof between glass fibers of glass fiber roving. After being impregnated, the resin is drawn into a cylindrical molding passage, and the thermosetting foamed resin liquid in the thermosetting foamed resin composition is heated and foamed before the molding passage or in the molding passage. Is obtained by
【0004】しかし、上記従来の製造方法は、熱硬化性
発泡樹脂液の反応速度を調整して熱硬化性発泡樹脂液を
成形用通路の所定位置で発泡硬化させるために熱硬化性
発泡樹脂組成物中に反応触媒を添加しているのである
が、この方法によって大断面積製品を得ようとすると、
補強繊維やこれに含浸させる熱硬化性発泡樹脂組成物の
量も多くなる。したがって、現行の製造方法では、含浸
に要する時間がどうしても長くなり、含浸時間が長くな
ると成形用通路に引き込まれる前に熱硬化性発泡樹脂液
が発泡硬化反応を開始してしまい、成形不良を起こすと
言う問題がある。[0004] However, the above-mentioned conventional manufacturing method is intended to adjust the reaction rate of the thermosetting foamed resin liquid to foam and harden the thermosetting foamed resin liquid at a predetermined position in a molding passage. The reaction catalyst is added to the product, but when trying to obtain a large cross-sectional product by this method,
The amount of the reinforcing fiber and the thermosetting foamed resin composition impregnated therein is also increased. Therefore, in the current production method, the time required for the impregnation is inevitably long, and if the impregnation time is long, the thermosetting foamed resin liquid starts a foaming curing reaction before being drawn into the molding passage, resulting in molding failure. There is a problem to say.
【0005】また、異形の成形製品を得ようとした場合
も、部分的に含浸させる樹脂の量が異なるため、大断面
積製品の場合と同様の問題を起こす恐れがある。[0005] Further, when trying to obtain a molded product having an irregular shape, the same problem as in the case of a product having a large cross-sectional area may be caused because the amount of the resin to be partially impregnated is different.
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
事情に鑑みて、熱硬化性発泡樹脂の発泡および硬化反応
開始時間をコントロールすることができ、大断面積製品
や複雑な異形製品でも従来の製造装置を用いて製造する
ことができる繊維強化熱硬化性発泡樹脂成形品の製造方
法を提供することを目的としている。SUMMARY OF THE INVENTION In view of such circumstances, the present invention can control the foaming and curing reaction start time of a thermosetting foamed resin, and can be applied to a large cross-sectional product or a complicated deformed product. It is an object of the present invention to provide a method for producing a fiber-reinforced thermosetting foamed resin molded article that can be produced using a conventional production apparatus.
【0007】[0007]
【課題を解決するための手段】本発明にかかる繊維強化
熱硬化性発泡樹脂成形品の製造方法は、このような目的
を達成するために、長尺の補強繊維材料に熱硬化性発泡
樹脂液とその反応触媒とを含む熱硬化性発泡樹脂組成物
を連続的に含浸させたのち、筒状の成形用通路内に引込
み、成形用通路内で前記熱硬化性発泡樹脂組成物中の熱
硬化性発泡樹脂液を発泡硬化させる繊維強化熱硬化性発
泡樹脂成形品の製造方法において、所望の熱または所望
の負荷をかけることによって壊れる皮膜材によって形成
されたカプセル内に、前記熱硬化性発泡樹脂組成物の反
応触媒が収容されている構成とした。According to the present invention, there is provided a method for producing a fiber-reinforced thermosetting foamed resin molded article, in which a thermosetting foamed resin liquid is added to a long reinforcing fiber material. And then continuously impregnated with a thermosetting foamed resin composition containing the same, and then drawn into a cylindrical molding passage, where the thermosetting foam in the thermosetting foamed resin composition is molded. In the method for producing a fiber-reinforced thermosetting foamed resin molded article for foaming and curing a thermosetting foamed resin liquid, the thermosetting foamed resin is placed in a capsule formed by a film material that is broken by applying a desired heat or a desired load. The configuration was such that the reaction catalyst of the composition was accommodated.
【0008】また、上記構成において、請求項2のよう
に、カプセル内に反応触媒とともに有機溶剤を入れるよ
うにしても構わないし、請求項3のように熱硬化性発泡
樹脂組成物中に、カプセル化された反応触媒以外に未カ
プセル化の反応触媒を添加するようにしても構わない。In the above construction, an organic solvent may be put in the capsule together with the reaction catalyst as in claim 2, and the capsule may be contained in the thermosetting foamed resin composition as in claim 3. An unencapsulated reaction catalyst may be added in addition to the converted reaction catalyst.
【0009】また、熱硬化性発泡樹脂としては、特に限
定されないが、たとえば、ポリウレタン樹脂,フェノー
ル樹脂,ポリエステル樹脂等の発泡体が挙げられる。補
強繊維としては、ポリエステル繊維等の有機繊維やカー
ボン繊維,ガラス繊維等のフィラメント,ストランド,
ヤーン,ロービング、織布、不織布等が挙げられ、ガラ
ス繊維が好ましい。The thermosetting foam resin is not particularly limited, and examples thereof include foams such as polyurethane resin, phenol resin and polyester resin. As the reinforcing fibers, organic fibers such as polyester fibers, carbon fibers, filaments such as glass fibers, strands,
Yarns, rovings, woven fabrics, non-woven fabrics and the like can be mentioned, and glass fibers are preferred.
【0010】反応触媒としては、ポリウレタン樹脂,フ
ェノール樹脂,ポリエステル樹脂等の反応触媒として使
用されている公知のものが挙げられる。Examples of the reaction catalyst include known ones used as reaction catalysts such as polyurethane resins, phenol resins and polyester resins.
【0011】有機溶剤としては、反応触媒に対して長期
にわたり不活性で、熱による膨張により皮膜を破壊する
のに充分な膨張性を有しているものであれば、特に限定
されないが、たとえば、メチレンクロリド,アセトン等
の一般有機溶剤が挙げられる。カプセルを形成する皮膜
材(壁材)としては、反応触媒や溶剤に侵されず、ま
た、反応触媒や溶剤に対して不活性なものであれば特に
限定されないが、たとえば、ゼラチン,エチルセルロー
ス,アミノ樹脂,塩化ビニリデン樹脂,ポリエチレン,
ポリスチレン等の有機高分子物質、シリカ,珪酸カルシ
ウム等の無機物質等が反応触媒や溶剤の種類に応じて適
宜選択することができる。The organic solvent is not particularly limited as long as it is inert to the reaction catalyst for a long period of time and has sufficient expandability to break the film by expansion due to heat. General organic solvents such as methylene chloride and acetone are exemplified. The coating material (wall material) forming the capsule is not particularly limited as long as it is not attacked by the reaction catalyst or the solvent and is inactive to the reaction catalyst or the solvent. For example, gelatin, ethyl cellulose, amino Resin, vinylidene chloride resin, polyethylene,
Organic polymer substances such as polystyrene and inorganic substances such as silica and calcium silicate can be appropriately selected according to the type of reaction catalyst and solvent.
【0012】カプセルの粒径としては、反応が不均一に
ならない程度に熱硬化性発泡樹脂組成物中で分散可能で
あることが好ましく、また、コストバランスを考慮する
と、10〜200μm程度が好ましい。熱硬化性発泡樹
脂組成物の加熱方法は、特に限定されないが、たとえ
ば、通常用いられている熱風加熱、電熱ヒーター、短時
間に均一加熱できるマイクロ波加熱、遠赤外線加熱等が
挙げられ、これらを併用しても構わない。The particle size of the capsule is preferably such that it can be dispersed in the thermosetting foamed resin composition to such an extent that the reaction does not become nonuniform, and from the viewpoint of cost balance, it is preferably about 10 to 200 μm. The method of heating the thermosetting foamed resin composition is not particularly limited, and includes, for example, commonly used hot air heating, electric heater, microwave heating capable of uniform heating in a short time, far-infrared heating, and the like. You may use them together.
【0013】[0013]
【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。図1および図2は本
発明にかかる繊維強化熱硬化性発泡樹脂成形品の製造方
法に使用する装置の1例をあらわしている。図1に示す
ように、この製造方法は、反応により熱硬化性発泡樹脂
液となるA剤とB剤とをそれぞれの容器52,52に別
々に用意するとともに、A剤およびB剤のいずれか一方
に、図3に示すような、触媒と溶剤の混合物11を溶剤
の熱膨張によって壊れる皮膜12内に収容したカプセル
1を混合しておく。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings. 1 and 2 show an example of an apparatus used in the method for producing a fiber-reinforced thermosetting foamed resin molded product according to the present invention. As shown in FIG. 1, in this production method, an A agent and a B agent, which become a thermosetting foamed resin liquid by a reaction, are separately prepared in respective containers 52, 52, and either one of the A agent and the B agent is prepared. On the other hand, as shown in FIG. 3, a capsule 1 in which a mixture 11 of a catalyst and a solvent is accommodated in a film 12 which is broken by thermal expansion of the solvent is mixed.
【0014】そして、まず、繊維配列板21に設けられ
た小孔22を通して所望のピッチに配列させたガラス繊
維ロービング群23を連続的に4つの無端ベルト(図
1,2では上下2つの無端ベルトしかあらわれていな
い)31,31で形成された断面4角形の成形用通路3
方向に進行させる。つぎに、このロービング群23の進
行途中で、散布機5aを左右に往復動させながらA剤お
よびB剤を混ぜ合わせて得られた液状の熱硬化性発泡樹
脂組成物(以下、「樹脂組成物」とのみ記す)をロービ
ング群23の上方から散布してロービング群23に樹脂
組成物51を付着させる。First, a group of glass fiber rovings 23 arranged at a desired pitch through small holes 22 provided in a fiber arrangement plate 21 is continuously connected to four endless belts (in FIG. 1 and FIG. 2, two upper and lower endless belts). A molding passage 3 having a quadrangular cross section formed by 31, 31
Proceed in the direction. Next, during the progress of the roving group 23, a liquid thermosetting foamed resin composition (hereinafter referred to as “resin composition”) obtained by mixing the agent A and the agent B while reciprocating the sprayer 5a left and right. ) Is sprayed from above the roving group 23 to adhere the resin composition 51 to the roving group 23.
【0015】このようにして樹脂組成物が付着したロー
ビング群24を、図1および図2に示すように、含浸台
6の所で収束させ、含浸台6の上方に設けた含浸板6
1,61と含浸台6との間で挟み込み、含浸板61を図
1に矢印で示すように左右に摺動させてロービング群2
4を揉み、ロービング群23を構成するガラス繊維とガ
ラス繊維との間に樹脂組成物を含浸させる。The roving group 24 to which the resin composition has adhered is converged at the impregnating table 6 as shown in FIGS. 1 and 2, and the impregnating plate 6 provided above the impregnating table 6
1 and 61 and the impregnating table 6, and the impregnating plate 61 is slid left and right as shown by arrows in FIG.
4 is rubbed, and the resin composition is impregnated between the glass fibers constituting the roving group 23.
【0016】つぎに、樹脂組成物を充分に含浸させたロ
ービング群24をマイクロ波加熱装置4内に通し、マイ
クロ波加熱し、カプセル1内の溶剤を膨張させ、その膨
張力によってカプセル1を壊し、反応触媒を樹脂組成物
中に分散させ熱硬化性発泡樹脂液に作用させて発泡硬化
を開始させる。Next, the roving group 24 sufficiently impregnated with the resin composition is passed through the microwave heating device 4 and microwave-heated to expand the solvent in the capsule 1 and break the capsule 1 by the expanding force. The reaction catalyst is dispersed in the resin composition and acts on the thermosetting foamed resin liquid to start foaming and curing.
【0017】そして、この含浸された樹脂組成物中の熱
硬化性発泡樹脂液が図2に示すように発泡硬化し始めた
ロービング群25を成形用通路3へ引込み、成形用通路
3内でさらに加熱発泡硬化させて成形品7を連続的に得
る。なお、図1中、8は熱硬化性発泡樹脂液の含浸室、
81は含浸室8の空調装置、26aはA剤の定量供給ポ
ンプ、26bはB剤の定量供給ポンプ、27aはA剤温
度調整用熱交換機、27bはB剤温度調整用熱交換機、
38は成形用通路3内の熱硬化性発泡樹脂液を加熱する
ための熱風の発生機であり、図2中、32は高温部、3
3は低温部、34は冷却部である。Then, the roving group 25 in which the thermosetting foamed resin liquid in the impregnated resin composition has begun to foam and harden is drawn into the molding passage 3 as shown in FIG. The molded product 7 is continuously obtained by heat foaming and curing. In FIG. 1, 8 is an impregnation chamber of a thermosetting foamed resin liquid,
81 is an air conditioner for the impregnation chamber 8, 26a is a fixed amount supply pump for the A agent, 26b is a fixed amount supply pump for the B agent, 27a is a heat exchanger for adjusting the temperature of the A agent, 27b is a heat exchanger for adjusting the temperature of the B agent,
Reference numeral 38 denotes a hot air generator for heating the thermosetting foamed resin liquid in the molding passage 3. In FIG.
Reference numeral 3 denotes a low-temperature section, and 34 denotes a cooling section.
【0018】この製造方法は、以上のように、反応触媒
が溶剤とともにカプセル1内に収容され、このカプセル
1がマイクロ波加熱装置4での加熱による溶剤の膨張に
よって破壊されることにより初めて熱硬化性発泡樹脂液
に反応触媒が作用するようになる。すなわち、樹脂組成
物が加熱されるまでは、反応触媒が熱硬化性発泡樹脂液
に全く作用しないため、含浸完了までの時間を長くして
も含浸中に発泡硬化を起こすことがない。In this manufacturing method, as described above, the reaction catalyst is housed in the capsule 1 together with the solvent, and the capsule 1 is destroyed by the expansion of the solvent due to the heating by the microwave heating device 4, and the thermosetting is performed only when the capsule 1 is broken. The reaction catalyst acts on the water-soluble foamed resin liquid. That is, since the reaction catalyst does not act on the thermosetting foamed resin liquid at all until the resin composition is heated, foaming hardening does not occur during impregnation even if the time until completion of impregnation is lengthened.
【0019】したがって、大断面積製品や複雑な異形製
品でも従来の製造装置を用いて簡単に製造することがで
きる。また、この製造方法を薄型等の現行サイズの製品
製造時に用いるようにすれば、現行より成形速度を上げ
ることが可能となる。勿論、最終製品強度、諸物性、外
観品質を損なうこともない。しかも、溶剤の膨張力によ
って内側から負荷をかけることによってカプセル1を壊
すようにしたので、より低温の加熱によってカプセル1
を壊せるようになり、カプセル1の皮膜材12を加熱に
より溶かして壊す方法に比べ、加熱エネルギーを節約す
ることができる。Therefore, even a product having a large cross-sectional area or a complicated deformed product can be easily manufactured using a conventional manufacturing apparatus. Further, if this manufacturing method is used for manufacturing a product of the current size such as a thin type, it is possible to increase the molding speed as compared with the present. Of course, the final product strength, physical properties and appearance quality are not impaired. In addition, since the capsule 1 is broken by applying a load from the inside by the expansion force of the solvent, the capsule 1 is heated by lower temperature.
Can be broken, and the heating energy can be saved as compared with the method of melting and breaking the coating material 12 of the capsule 1 by heating.
【0020】なお、本発明にかかる繊維強化熱硬化性発
泡樹脂成形品の製造方法は、上記の実施の形態に限定さ
れない。The method for producing a fiber-reinforced thermosetting foamed resin molded article according to the present invention is not limited to the above embodiment.
【0021】[0021]
【実施例】以下に、本発明の実施例をより詳しく説明す
る。 (実施例1)図1の製造装置を用い、ガラス繊維ロービ
ング(太さ17μmの単繊維を2.0×106 本集めて
1ストランドとしたものを12ストランド集めたもの)
を1mあたり5280gとなるように供給し、1mあた
り6720gとなるように以下に示す組成の樹脂組成物
を散布機からガラス繊維ロービング上に散布したのち、
含浸台と含浸板との間で約1kg/cm2 の揉み圧で樹脂組
成物をガラス繊維とガラス繊維との間に充分含浸させた
のち、マイクロ波加熱装置内で800w/hのマイクロ
波を約1分間照射して加熱し、溶媒および反応触媒を膨
張させてカプセルの皮膜材を壊し樹脂組成物内に拡散さ
せ成形用通路には引き込まずに発泡硬化させて成形品を
得た。Embodiments of the present invention will be described below in more detail. (Example 1) Using the manufacturing apparatus of FIG. 1, glass fiber roving (2.0 × 10 6 single fibers having a thickness of 17 μm were collected to form 12 strands, and 12 strands were collected).
Is supplied so as to be 5280 g per meter, and a resin composition having the following composition is sprayed from a sprayer onto a glass fiber roving so as to be 6720 g per meter,
After the resin composition is sufficiently impregnated between the glass fibers with a kneading pressure of about 1 kg / cm 2 between the impregnating table and the impregnating plate, 800 w / h microwaves are applied in a microwave heating device. Irradiation was performed for about 1 minute, and the mixture was heated to expand the solvent and the reaction catalyst, thereby breaking the capsule coating material, diffusing into the resin composition, and foaming and curing without being drawn into the molding passage to obtain a molded product.
【0022】 〔熱硬化性発泡樹脂組成物〕 ・A剤(ポリエーテルポリオール) 100部 ・B剤(4,4´−ジフェニルメタンジイソシアネート) 150部 ・カプセル 0.6部 皮膜材: ゼラチンポリマーを主成分とする皮膜材 粒径 : 約200μm 内容物:反応触媒(金属系有機化合物) 約3.3×10-7g/1カプセル 溶剤(メチレンクロリド) 約6.6×10-7g/1カプセル[Thermosetting Foam Resin Composition] 100 parts of agent A (polyether polyol) 150 parts of agent B (4,4'-diphenylmethane diisocyanate) 0.6 part of capsule Coating material: Mainly gelatin polymer Particle size: about 200 μm Contents: reaction catalyst (metal organic compound) about 3.3 × 10 −7 g / 1 capsule Solvent (methylene chloride) about 6.6 × 10 −7 g / 1 capsule
【0023】(実施例2)熱硬化性発泡樹脂組成物とし
て以下に示す組成のものを用いた以外は、実施例1と同
様にして成形品を得た。(Example 2) A molded article was obtained in the same manner as in Example 1 except that the thermosetting foamed resin composition having the following composition was used.
【0024】 〔熱硬化性発泡樹脂組成物〕 ・A剤(ポリエーテルポリオール) 100部 ・B剤(4,4´−ジフェニルメタンジイソシアネート) 150部 ・カプセル 0.2部 皮膜材: ゼラチンポリマーを主成分とする皮膜材 粒径 : 約200μm 内容物:反応触媒(金属系有機化合物) 約1.0×10-6g/1カプセル[Thermosetting foamed resin composition] ・ A part (polyether polyol) 100 parts ・ B part (4,4′-diphenylmethane diisocyanate) 150 parts ・ Capsule 0.2 part Film material: Mainly gelatin polymer Film material to be used Particle size: about 200 μm Contents: reaction catalyst (metal organic compound) about 1.0 × 10 −6 g / 1 capsule
【0025】(比較例1)反応触媒を直接熱硬化性発泡
樹脂組成物中に予め混合する従来の方法を用い、マイク
ロ波加熱を行わず、樹脂の自己反応熱により反応を進行
させた以外は、実施例2と同様にして成形品を得た。上
記実施例1,2および比較例1において、発泡時間
(X)、発泡停止時間(Y)、発泡所要時間(Y−X)
を測定するとともに、実施例1,2で得た成形品を比較
例1の成形品をブランクとして比較してその発泡状態を
調べその結果を表1に示した。また、実施例1,2およ
ひ比較例1において得られた成形品の比重,曲げ強度、
曲げヤング率、部分圧縮強度、吸水率についても調べ表
1に併せて示した。(Comparative Example 1) Except for using a conventional method of directly mixing a reaction catalyst into a thermosetting foamed resin composition in advance, and without using microwave heating, the reaction was allowed to proceed by the self-reaction heat of the resin. A molded product was obtained in the same manner as in Example 2. In Examples 1 and 2 and Comparative Example 1, the foaming time (X), the foaming stop time (Y), and the foaming time (YX)
Was measured, and the foamed state of the molded articles obtained in Examples 1 and 2 was compared with the molded article of Comparative Example 1 as a blank. The results are shown in Table 1. Also, the specific gravities, bending strengths, and the like of the molded articles obtained in Examples 1 and 2 and Comparative Example 1
The bending Young's modulus, partial compressive strength, and water absorption were also investigated and are shown in Table 1.
【0026】なお、発泡時間(X)および発泡停止時間
(Y)は、A剤およびB剤を攪拌し、散布機からの散布
開始時を0秒とし、それぞれ散布開始からのトータル時
間であらわした。また、実施例1,2および比較例1の
成形品から試験片を3つずつ切取り、それぞれの比重,
曲げ強度、曲げヤング率、部分圧縮強度、吸水率は、J
IS Z 2101に準拠する試験方法により求め、部
分圧縮強度は比例限定値である。The foaming time (X) and the foaming stop time (Y) were expressed as the total time from the start of spraying, respectively, with the time of starting spraying from the sprayer being 0 seconds when the agent A and the agent B were stirred. . Further, three test pieces were cut out from the molded products of Examples 1 and 2 and Comparative Example 1, and the specific gravity,
The bending strength, bending Young's modulus, partial compressive strength, and water absorption
The partial compressive strength is determined by a test method based on ISZ 2101 and is a proportionally limited value.
【0027】[0027]
【表1】 [Table 1]
【0028】表1に示すにように、本発明の方法によれ
ば、発泡硬化に到る時間が長くなっても、成形品が従来
のものと変わらずに得られることがよく判る。すなわ
ち、大断面積の製品も、薄型の製品と同様に成形性よく
得られることがよく判る。As shown in Table 1, according to the method of the present invention, it can be clearly understood that a molded product can be obtained without any change even when the time required for foaming hardening is long. That is, it is well understood that a product having a large cross-sectional area can be obtained with good moldability, similarly to a thin product.
【0029】(実施例3)揉み圧を3kg/cm2 とし、こ
の揉みによってガラス繊維とガラス繊維との間に樹脂組
成物を含浸させるとともに、カプセルの皮膜材を壊し、
マイクロ波加熱を加えなかった以外は、実施例2と同様
にして成形品を得た。 (比較例2)揉み圧を1kg/cm2 とした以外は、比較例
1と同様にして成形品を得た。(Example 3) The kneading pressure was set to 3 kg / cm 2, and the resin composition was impregnated between the glass fibers by this kneading, and the coating material of the capsule was broken.
A molded product was obtained in the same manner as in Example 2 except that microwave heating was not applied. (Comparative Example 2) A molded product was obtained in the same manner as in Comparative Example 1, except that the kneading pressure was 1 kg / cm 2 .
【0030】上記実施例3および比較例2において、発
泡時間(X)、発泡停止時間(Y)、発泡所要時間(Y
−X)を測定するとともに、実施例3で得た成形品を比
較例2の成形品をブランクとして比較してその発泡状態
を調べその結果を表2に示した。また、実施例1と同様
にして実施例3および比較例2において得られた成形品
の比重,曲げ強度、曲げヤング率、部分圧縮強度、吸水
率についても調べ表2に併せて示した。In Example 3 and Comparative Example 2, the foaming time (X), foaming stop time (Y), and foaming time (Y)
-X), the molded product obtained in Example 3 was compared with the molded product of Comparative Example 2 as a blank to check the foaming state, and the results are shown in Table 2. The specific gravity, bending strength, bending Young's modulus, partial compressive strength, and water absorption of the molded articles obtained in Example 3 and Comparative Example 2 in the same manner as in Example 1 were also examined and shown in Table 2.
【0031】[0031]
【表2】 [Table 2]
【0032】(実施例4)熱硬化性発泡樹脂組成物とし
て、実施例2の熱硬化性発泡樹脂組成物に、カプセル中
の反応触媒が7、液状の反応触媒が3の割合となるよう
にさらに液状の反応触媒を添加したものを用い、マイク
ロ波加熱を行わず、樹脂の自己発熱によって反応を開始
させた以外は、実施例1と同様にして成形品を得た。Example 4 As the thermosetting foamed resin composition, the thermosetting foamed resin composition of Example 2 was prepared such that the ratio of the reaction catalyst in the capsule was 7 and that of the liquid reaction catalyst was 3. Further, a molded product was obtained in the same manner as in Example 1 except that the reaction was started by the self-heating of the resin without using microwave heating and using a liquid reaction catalyst.
【0033】上記実施例4において、発泡時間(X)、
発泡停止時間(Y)、発泡所要時間(Y−X)を測定す
るとともに、実施例4で得た成形品を比較例1の成形品
をブランクとして比較してその発泡状態を調べその結果
を表3に示した。また、実施例4において得られた成形
品の比重,曲げ強度、曲げヤング率、部分圧縮強度、吸
水率、成形時の内部最高温度(中心部)についても実施
例1と同様にして調べ、比較例1と対比させて表3に併
せて示した。In the above Example 4, the foaming time (X),
The foaming stop time (Y) and the required foaming time (YX) were measured, and the molded product obtained in Example 4 was compared with the molded product of Comparative Example 1 as a blank, and the foaming state was examined. 3 is shown. In addition, the specific gravity, bending strength, bending Young's modulus, partial compressive strength, water absorption, and the maximum internal temperature during molding (central portion) of the molded product obtained in Example 4 were also examined and compared in the same manner as in Example 1. The results are shown in Table 3 in comparison with Example 1.
【0034】[0034]
【表3】 [Table 3]
【0035】[0035]
【発明の効果】本発明にかかる繊維強化熱硬化性発泡樹
脂成形品の製造方法は、以上のように構成されているの
で、熱硬化性発泡樹脂の発泡および硬化反応開始時間を
コントロールすることができ、大断面積製品や複雑な異
形製品でも従来の製造装置を用いて製造することができ
る。The method for producing a fiber-reinforced thermosetting foamed resin molded article according to the present invention is configured as described above, so that the foaming and curing reaction start time of the thermosetting foamed resin can be controlled. Even large cross-section products and complicated deformed products can be manufactured using conventional manufacturing equipment.
【図1】本発明にかかる繊維強化熱硬化性発泡樹脂成形
品の製造方法に用いる装置をあらわす斜視図である。FIG. 1 is a perspective view showing an apparatus used for a method for producing a fiber-reinforced thermosetting foamed resin molded product according to the present invention.
【図2】図1の装置の断面図である。FIG. 2 is a sectional view of the apparatus of FIG.
【図3】カプセルの断面図である。FIG. 3 is a sectional view of a capsule.
1 カプセル 11 混合液 12 皮膜材 23 ガラス繊維ロービング群(補強繊維材料) 3 成形用通路 DESCRIPTION OF SYMBOLS 1 Capsule 11 Mixed liquid 12 Membrane material 23 Glass fiber roving group (reinforcing fiber material) 3 Molding passage
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 31:10 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29L 31:10
Claims (3)
とその反応触媒とを含む液状の熱硬化性発泡樹脂組成物
を連続的に含浸させたのち、筒状の成形用通路内に引込
み、成形用通路内で前記熱硬化性発泡樹脂組成物中の熱
硬化性発泡樹脂液を発泡硬化させる繊維強化熱硬化性発
泡樹脂成形品の製造方法において、所望の熱または所望
の負荷をかけることによって壊れる皮膜材によって形成
されたカプセル内に、前記熱硬化性発泡樹脂組成物の反
応触媒が収容されていることを特徴とする繊維強化熱硬
化性発泡樹脂成形品の製造方法。1. A long-form reinforcing fiber material which is continuously impregnated with a liquid thermosetting foamed resin composition containing a thermosetting foamed resin liquid and a reaction catalyst thereof, and is then impregnated into a cylindrical molding passage. In the method for producing a fiber-reinforced thermosetting foamed resin molded article in which the thermosetting foamed resin liquid in the thermosetting foamed resin composition is foamed and cured in the molding passage, a desired heat or a desired load is applied. A process for producing a fiber-reinforced thermosetting foamed resin molded product, wherein a reaction catalyst of the thermosetting foamed resin composition is accommodated in a capsule formed of a film material which is broken by being applied.
入れられている請求項1に記載の繊維強化熱硬化性発泡
樹脂成形品の製造方法。2. The method for producing a fiber-reinforced thermosetting foamed resin molded article according to claim 1, wherein the capsule contains an organic solvent together with a reaction catalyst.
された反応触媒以外に未カプセル化の反応触媒をも含ん
でいる請求項1または請求項2に記載の繊維強化熱硬化
性発泡樹脂成形品の製造方法。3. The fiber-reinforced thermosetting foam according to claim 1, wherein the thermosetting foamed resin composition contains an unencapsulated reaction catalyst in addition to the encapsulated reaction catalyst. Manufacturing method of resin molded product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8269826A JPH10113937A (en) | 1996-10-11 | 1996-10-11 | Manufacture of fiber reinforced thermosetting foamed resin molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8269826A JPH10113937A (en) | 1996-10-11 | 1996-10-11 | Manufacture of fiber reinforced thermosetting foamed resin molded article |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10113937A true JPH10113937A (en) | 1998-05-06 |
Family
ID=17477723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8269826A Pending JPH10113937A (en) | 1996-10-11 | 1996-10-11 | Manufacture of fiber reinforced thermosetting foamed resin molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10113937A (en) |
-
1996
- 1996-10-11 JP JP8269826A patent/JPH10113937A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3062682A (en) | Fibrous glass product and method of manufacture | |
US5609806A (en) | Method of making prepreg | |
US4163824A (en) | Fiber foam and process | |
US3546060A (en) | Fiber-reinforced foam plastic shaped articles | |
US6972144B2 (en) | Composite structural material and method of making same | |
US4828897A (en) | Reinforced polymeric composites | |
JP2002520200A (en) | Method for producing foam-containing structure | |
FI57068B (en) | ANVAENDANDE AV EXPANDERADE MIKROSFAERER INNEHAOLLANDE FIBERBANA SOM ARMERINGSMEDEL | |
JPS6334809B2 (en) | ||
US5043034A (en) | Post forming semi-finished product for the manufacture of moulded parts resistant to bending | |
US20040067353A1 (en) | Self-foaming core reinforcement for laminate applications | |
KR101936763B1 (en) | The manufacture machine of self-extinguishing Expandable Polystyrene | |
JPH10113937A (en) | Manufacture of fiber reinforced thermosetting foamed resin molded article | |
US4405538A (en) | Resin transfer molding system with controlled induction period for expanded synthetic articles | |
WO2001049473A1 (en) | Process and apparatus for producing reinforced composite systems | |
US4476076A (en) | Method of open forming an expanded polyester resin article involving a controlled induction period | |
US3462523A (en) | Cellular compositions and fibrous glass coated therewith | |
JP2001096558A (en) | Composite material and manufacturing method | |
JPH03288629A (en) | Manufacture of composite molder product | |
JP2000204267A (en) | Composite material, production thereof, and synthetic railroad tie | |
US20030021993A1 (en) | Coated fibers and process | |
JPH0449028A (en) | Manufacture of fiber-reinforced foamed phenol molded form | |
JP2000080191A (en) | Foamed molded product of filament reinforced curable resin | |
CA1103849A (en) | Resin foams | |
Koltzenburg et al. | The Basics of Plastics Processing |