JPH10113790A - Covered electrode for cast iron and its deposited part - Google Patents

Covered electrode for cast iron and its deposited part

Info

Publication number
JPH10113790A
JPH10113790A JP28933996A JP28933996A JPH10113790A JP H10113790 A JPH10113790 A JP H10113790A JP 28933996 A JP28933996 A JP 28933996A JP 28933996 A JP28933996 A JP 28933996A JP H10113790 A JPH10113790 A JP H10113790A
Authority
JP
Japan
Prior art keywords
cast iron
wire
coating material
impact value
welding rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28933996A
Other languages
Japanese (ja)
Other versions
JP3214689B2 (en
Inventor
Isao Mukai
功 向井
Seiji Yoshioka
清次 吉岡
Takaaki Hashimoto
高明 橋本
Yoshiyuki Hashimoto
善行 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU YOUSETSUBOU KK
Kurimoto Ltd
Original Assignee
TOKUSHU YOUSETSUBOU KK
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU YOUSETSUBOU KK, Kurimoto Ltd filed Critical TOKUSHU YOUSETSUBOU KK
Priority to JP28933996A priority Critical patent/JP3214689B2/en
Publication of JPH10113790A publication Critical patent/JPH10113790A/en
Application granted granted Critical
Publication of JP3214689B2 publication Critical patent/JP3214689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the development of a welding rod with a high impact value at the deposited part of the cast iron material which is related to the wire use development of the cost iron material. SOLUTION: A condition maintaining Sharpy impact value 5kgm/cm<2> of a deposited metal whose base material is the cost iron material, which has been welded with the covered electrode of a wire rod containing at least 40 to 60% Ni except 2.0% C, 2.5% Si and 2.5% Mn, is that the depositedimetal contains 1.20 to 2.20wt.% V. By adding an adequate amount of V from a covering material or the wire rod, a part of the V is solidified in the austenitic phase of a base material, and the strength and the hardness of the deposited metal are enhanced. Further, the grain refining of an austenitic grain size is performed. And, double carbide with VC or FeC3 is formed in the greater part of it, and an outstanding increase in hardness and a remarkable increase in level of the Sharpy impact value as a result of it, are induced. By too small addition of V, the impact value does not reach a target, by an excessive addition of V, high hardness is brought, and the toughness of the deposited metal is lost. Therefore, a range balancing with a target value is limited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鋳鉄用アーク溶接
棒、特に近年管路敷設の軽便さに注目されて適用範囲が
急速に拡大しつつあるダクタイル鋳鉄管の無締結継手方
式などで必要な高強度、高耐衝撃性の溶着部を形成でき
る鋳鉄用アーク溶接棒の改善に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc welding rod for cast iron, and in particular, to a high strength required for a non-fastened joint system of a ductile cast iron pipe whose application range is rapidly expanding in recent years due to its lightness in pipe laying. The present invention relates to an improvement in an arc welding rod for cast iron capable of forming a welded portion having high strength and high impact resistance.

【0002】[0002]

【従来の技術】鋳鉄用アーク溶接棒として汎用化されて
ダクタイル鋳鉄を含む各種、各レベルの鋳鉄同士の溶接
材として広く使用されるのは、JIS−Z−3252の
うちでも、DFCNiFeとして分類される品種であ
り、その線材の成分はC:2.0%,Si:2.5%,
Mn:2.5%の他に少なくともNi:40〜60%を
含むオーステナイト系の材質を基調として形成されてい
る。すなわち、Niは典型的なオーステナイト形成元素
であり、大量の添加によって常温までγ領域を維持する
特性があり、鋳鉄材の溶接棒の線材として適用すれば、
比較的低温で溶解してオーステナイト組織の溶着部を形
成するから、他の材質のように線材の溶解温度が高く溶
接時の急速な昇温や急冷によって母材である鋳鉄材との
境界部や熱影響部に割れや剥離の発生する危険性を緩和
し、軟性ではあるが靱性も具え母材との間にある程度の
粘結力を具えた溶着部を得ることができる。
2. Description of the Related Art Among arc welding rods for cast iron and widely used as welding materials for various levels of cast iron, including ductile cast iron, is classified as DFCNiFe in JIS-Z-3252. The components of the wire are C: 2.0%, Si: 2.5%,
It is formed based on an austenitic material containing at least Ni: 40 to 60% in addition to Mn: 2.5%. That is, Ni is a typical austenite-forming element, has the property of maintaining the γ region up to room temperature by a large amount of addition, and if applied as a wire rod for a cast iron welding rod,
Since it melts at a relatively low temperature to form the welded part of the austenitic structure, the melting temperature of the wire is high, as in other materials, and the boundary between the base material and the cast iron material is increased by rapid temperature rise and rapid cooling during welding. The risk of cracks and peeling occurring in the heat-affected zone is reduced, and a welded portion having a soft but toughness and having a certain level of cohesion with the base material can be obtained.

【0003】しかしながら、この線材をベースとして通
常公知の被覆材で安定したアークを維持するように図っ
た従来の鋳鉄用アーク溶接棒は、単に鋳鉄と鋳鉄同士の
間に柔軟な中間層を溶着部として介在させて見掛け上、
鋳鉄同士を互に接着させただけであり、溶着部と母材の
接する境界間には金属分子の相互の交流があったとして
も極く境界の表面だけの限られた範囲に留まり、通常の
炭素鋼や合金鋼に見られるように相互に溶け込んで特定
の溶着組織層を形成するのとは異なり、境界を超えて分
子の固溶する範囲はきわめて限定されるから、強度的に
母材に近い材力を予定できるレベルに達しないのは当然
の帰結というべきである。
[0003] However, the conventional arc welding rod for cast iron, which is designed to maintain a stable arc with a generally known coating material based on this wire, simply includes a flexible intermediate layer between the cast iron and the cast iron. Apparently,
Only the cast irons were bonded to each other, and even if there was mutual interaction of metal molecules between the welded part and the boundary where the base material was in contact, it stayed in a limited range only on the surface of the boundary, Unlike the case of carbon steel and alloy steel, which melt into each other and form a specific welded structure layer, the range of solid solution of the molecule beyond the boundary is extremely limited, so the strength of the base metal It is a natural consequence of not reaching the level at which near material strength can be planned.

【0004】[0004]

【発明が解決しようとする課題】然るに近年、鋳鉄用ア
ーク溶接棒材といえども相当な強度や耐衝撃性を求めら
れるケースがその使用の態様によっては必須の要件とな
る場合も現われるようになった。たとえば従来、地中に
埋設する水道用管路の敷設にはダクタイル鋳鉄管の受口
内へ挿口を嵌挿し、押輪の脚端面で継手内のゴムパッキ
ングの端面を押圧しつつ押輪と受口フランジとをボルト
・ナットで締結して管同士を継合していたが、近年は無
締結法(スリップオンタイプ:S2型)として押輪やボ
ルト・ナットを使用しない継合方式が着目されるように
なった。たとえば図9に示す実開平4−133090号
の従来技術では、受口1の開口端近くにロックリング溝
2を周設してロックリング3を嵌入し、さらに挿口4に
は挿口リング5を固着し、受口内面と挿口外周面間の中
空部にゴム輪6を介装して継手部の水封作用を維持する
構成としている。ダクタイル鋳鉄管を継合して地下に管
路を敷設する場合、狭隘な掘削抗内へ作業員が入り込ん
で不自然な姿勢で押輪と受口フランジとの締結などの手
作業に依存していた過去の煩瑣な重労働から開放され、
単に地上から特定の治具さえ準備して駆使すれば、容易
に継合の工程が消化できるから、作業性の改善や職場安
全の確保の面できわめて利点が大きい。この継手の基本
的な機能は、地震などの揺動が直撃して管同士の継合を
引き抜く方向に外力が作用したとしても、受口のロック
リングと挿口リングとが衝き当ってそれ以上の移動を阻
止する点にあり、挿口リングが鋳鉄管内周で堅牢に固定
されることが管同士の離脱が防止された免震管路を形成
する重要な前提であるとされている。
However, in recent years, even in the case of arc welding rods for cast iron, cases in which considerable strength and impact resistance are required may appear depending on the mode of use. Was. For example, conventionally, when laying a water pipe buried underground, an insertion hole is inserted into the socket of the ductile cast iron pipe, and the pressing ring and the receiving flange are pressed while pressing the end face of the rubber packing inside the joint with the leg end face of the pressing ring. And the pipes were joined by bolts and nuts, but in recent years, as a non-fastening method (slip-on type: S2 type), a joining method that does not use a press wheel or bolts and nuts has been attracting attention. became. For example, in the prior art disclosed in Japanese Utility Model Laid-Open No. 4-133090 shown in FIG. 9, a lock ring groove 2 is provided around an opening end of a receiving port 1 so that a lock ring 3 is fitted therein. And a rubber ring 6 is interposed in the hollow portion between the inner surface of the receiving port and the outer peripheral surface of the insertion port to maintain the water sealing action of the joint portion. When connecting ductile cast iron pipes and laying pipes underground, workers entered into narrow excavations and relied on manual work such as fastening the press ring and receiving flange in an unnatural posture Freed from the troublesome hard work of the past,
By simply preparing and using a specific jig from the ground, the joining process can be easily completed, which is extremely advantageous in terms of improving workability and ensuring workplace safety. The basic function of this joint is that even if rocking such as an earthquake directly hits and external force acts in the direction to pull out the joint between the pipes, the lock ring of the receiving port and the insertion ring will hit and Therefore, it is considered that it is an important premise that the insertion ring is firmly fixed on the inner periphery of the cast iron pipe in order to form a seismic isolation pipe in which separation of the pipes is prevented.

【0005】この例のように挿口内周面へ挿口リングを
固着するには、最も一般的には溶接施工が好適であるこ
とは論を待たず、図9でも溶着部7として示す固定の方
式が通例となっている。最大の課題は地震などの緊急時
に管同士が離脱する方向に外力が加わったとき、受口リ
ングと挿口リングとが衝き当って双方の移動を確実に阻
止しなければ無締結方式の信頼性に疑問が生じる点に集
約される。挿口リングは炭素鋼で製造される環状体であ
るから強度的に何の懸念もないが、ダクタイル鋳鉄管の
内周面と挿口リングとの溶着部7に離脱防止機能を保証
できるだけの強度、特に耐衝撃性が確保できるかという
点に本工法の成否が懸っている。十分に管の移動を制止
して管路の機能を守る条件は、母材であるダクタイル鋳
鉄自体の強度や耐衝撃値から勘案し、実体テストの繰り
返しからも少なくとも引張り強度は28Kgf/mm2、シャ
ルピー衝撃値(ノウノッチ)は5Kgm/cm2が必要条件で
あるという結論に達している。しかし、これに対して従
来のJISで規定された前記Ni−Fe系の鋳鉄用アー
ク溶接棒では到底このレベルに達することができず、特
に重要なシャルピー衝撃値については僅々、1〜3Kgm/
cm2程度の水準しか実績が認められず、このような苛酷
な使用条件で機能を託すには余りに不安が大きいため、
スリップオンタイプの工法が作業性や職場安全性の面で
如何に過去の方式を凌駕していても、実施に踏み切るに
は克服すべき最大の課題として残ることは否定し難い。
[0005] In order to fix the insertion ring to the inner peripheral surface of the insertion hole as in this example, it cannot be overestimated that welding is most generally suitable. The scheme is customary. The biggest issue is the reliability of the non-fastening method unless the receiving ring and the insertion ring collide with each other to prevent the movement of both when the external force is applied in the direction that the pipes separate in an emergency such as an earthquake. Are summarized in the points where questions arise. Since the insertion ring is an annular body made of carbon steel, there is no concern in terms of strength. However, the strength of the welded portion 7 between the inner peripheral surface of the ductile cast iron pipe and the insertion ring is sufficient to guarantee the function of preventing separation. In particular, the success or failure of this method depends on whether or not impact resistance can be ensured. Conditions that sufficiently suppress the movement of the pipe and protect the function of the pipeline are taken into account from the strength and impact resistance of the ductile cast iron itself, which is the base material, and at least the tensile strength is at least 28 kgf / mm 2 even from repeated physical tests, It has been concluded that a Charpy impact value (Know Notch) is a requirement of 5 kgm / cm 2 . However, on the other hand, the above-mentioned Ni-Fe-based arc welding rod for cast iron specified by the conventional JIS cannot reach this level at all, and the particularly important Charpy impact value is slightly 1 to 3 kg / m2.
Only a level of about 2 cm is recognized, and it is too uneasy to entrust the function under such severe use conditions,
It is undeniable that no matter how much the slip-on type method surpasses the past methods in terms of workability and workplace safety, it will remain the biggest challenge to overcome in order to implement it.

【0006】本来、金属材料の多岐に亘る発展や多彩な
使用条件の変遷と共に溶接技術の進歩もまた瞠目すべき
ものがあるが、その大半は低、中合金鋼における合金元
素の適量添加とそれに伴う熱処理などの関連技術であ
る。たとえば、特開平7−323392号公報の従来技
術では、490N/mm2級の高張力鋼の溶接に最適の被
覆アーク溶接棒としてVを芯線の含有量と歩留り係数を
掛けた被覆材の含有量の合計が0.05から0.25%
含む線材を提示し、高張力鋼特有の耐低温割れ性を改善
したと謳っている。本来、V添加が低水素系アーク溶接
棒の溶接欠陥防止に有効であることは比較的古くから知
られ、Vの添加が水素のトラップ作用を働くことによっ
て水素の固溶に基づく溶接低温割れの防止に顕著な効果
を示すことは冶金的な実験で確認され学会で報告されて
いる。
[0006] Originally, the progress of welding technology has been remarkable along with the widespread development of metal materials and the transition of various use conditions, but most of them have been accompanied by the addition of appropriate amounts of alloying elements in low and medium alloyed steels and the accompanying progress. Related technology such as heat treatment. For example, in the prior art of Japanese Patent Application Laid-Open No. 7-323392, V is multiplied by the content of the core wire and the content of the coating material as the optimum coated arc welding rod for welding 490 N / mm 2 class high strength steel. Is from 0.05 to 0.25%
Including wire rods, it claims to improve the low-temperature cracking resistance characteristic of high-tensile steel. It has been long known that the addition of V is effective in preventing welding defects in low hydrogen arc welding rods. It has been known for a long time that the addition of V acts as a trapping agent for hydrogen to prevent low-temperature cracking of welds based on solid solution of hydrogen. Its remarkable effect on prevention has been confirmed by metallurgical experiments and reported at academic conferences.

【0007】また、特公昭60−45993号公報の従
来技術では、大型構造物用鋼材には防錆用プライマーが
塗布されているので低水素系アーク溶接棒で溶接すれば
ピットが頻発して補修に難渋していたことを課題として
捉え、線材を被覆する被覆材としてSiC,Al−M
g,MgCO3,CaF2などの成分に置換し、場合によ
ってはNi,Cr,V,Mo,Cu,Nbの1種以上か
ら合計10%以下を含む被覆材を提示して脱酸性、耐割
れ性、耐アーク切れ性を同時に並立したと謳っている。
In the prior art of Japanese Patent Publication No. 60-59993, rust prevention primer is applied to steel for large structures, so if welding is performed with a low-hydrogen arc welding rod, pits frequently occur and repair is performed. The problem was that it was difficult to work, and SiC, Al-M
g, MgCO3, CaF2, etc., and in some cases, present a coating material containing at least 10% by total of at least one of Ni, Cr, V, Mo, Cu, and Nb to provide deoxidation, cracking resistance, It is said that the arc breaking resistance is also at the same time.

【0008】その他、主として9%Cr低合金鋼用専用
として開発し高温強度と靱性を具えた特開平5−161
993号公報のアーク溶接棒、同じく2.25〜3%C
r−1Mo鋼用に特に有効な特開平2−220797号
公報のアーク溶接棒、などすべての従来技術では合金元
素の添加によって目的とする特殊な性格や特有の耐性を
具有するように研究開発した成果を報告している。
[0008] In addition, Japanese Patent Laid-Open No. 5-161 developed mainly for 9% Cr low alloy steel and having high temperature strength and toughness.
No. 993, arc welding rod, 2.25-3% C
In all conventional techniques, such as the arc welding rod disclosed in JP-A-2-220797, which is particularly effective for r-1Mo steel, research and development was carried out so as to have a special property and a specific resistance by adding an alloying element. Report the results.

【0009】翻って前記のダクタイル鋳鉄管と鋼材との
隅肉溶接によって規定された引張り強度とシャルピー衝
撃値とを得る手段もまた多くの金属材料の中から最も適
切な成分を最も適量範囲に限定して特定しなければなら
ない。この作業は結局、膨大な文献を注意深く読み取っ
て各元素の特性に着目した試行錯誤の連続によって見出
す他ないが、特にダクタイル鋳鉄が母材であり、本質的
には鋳鉄材とよく馴染んで割れや亀裂の発生しない堅牢
な溶着部の基地の強化を促す一方、析出した黒鉛のクッ
ション作用によって振動や衝撃を吸収するという両特性
の平衡を如何に調整するかの問題に帰結する。
Means for obtaining the tensile strength and the Charpy impact value specified by fillet welding between the ductile cast iron tube and the steel material described above are also limited to the most appropriate component from the most suitable range among many metallic materials. Must be identified. In the end, this work can only be found through a series of trial and error focusing on the characteristics of each element by carefully reading the vast literature, but in particular ductile cast iron is the base material, which is essentially familiar with cast iron material and cracks and While encouraging the strengthening of the base of a solid welded portion where cracks do not occur, it results in a problem of how to adjust the balance between the properties of absorbing the vibration and shock by the cushioning action of the deposited graphite.

【0010】本発明は以上の課題を解決するために多数
の実験を組織的、系統的に繰り返した後、ダクタイル鋳
鉄管と鋼材との溶着部が通常の母材の物性値を超える優
れた鋳鉄用アーク溶接棒の提供を目的とする。
The present invention solves the above problems by systematically and systematically repeating a number of experiments. After that, the welded portion between the ductile cast iron tube and the steel material has an excellent cast iron which exceeds the physical properties of a normal base material. The purpose of the present invention is to provide an arc welding rod.

【0011】[0011]

【課題を解決するための手段】本発明に係る鋳鉄用アー
ク溶接棒は、C:2.0%,Si:2.5%,Mn:
2.5%の他に少なくともNi:40〜60%を含む線
材よりなる鋳鉄用被覆アーク溶接棒によって鋳鉄材を母
材として溶接した溶着金属が、Vを1.20〜2.20
重量%含有することを特徴とする鋳鉄用被覆溶接アーク
溶接棒による溶着部を形成することを構成上の特徴とす
る。
The arc welding rod for cast iron according to the present invention comprises: C: 2.0%, Si: 2.5%, Mn:
A weld metal welded with a cast iron material as a base metal by a coated arc welding rod for cast iron made of a wire containing at least Ni: 40 to 60% in addition to 2.5%, and has a V of 1.20 to 2.20.
The present invention is characterized in that a welded portion is formed by a coated welding arc welding rod for cast iron characterized by containing by weight.

【0012】鉄鋼材料、またはさらに細分化して溶着部
にVを添加して各種の物性を改善する方策は前記のよう
に多岐に亘って繰り返され多数の報告もあるが、低合金
鋼、とくに高張力鋼の低温溶接割れの防止のために水素
をトラップする目的で適用される提案が目立って多く、
次いで高温強度、またはクリープ強度、破壊靱性の向上
などが続く。しかし、高炭素の鋳鉄用アーク溶接棒に関
する研究はきわめて稀であり、ましてや引張り強度やシ
ャルピー衝撃値の飛躍的な向上を目指した報告は発明者
の知る限り認められない。したがって、本格的な冶金的
考究は今後に待つとして、理論的な考察に関しては現時
点で得られた本発明のデータからVの挙動を推認するに
留めざるを得ない。
As described above, there have been many reports on various measures for improving various physical properties by adding V to a steel material or a finely divided welded portion. Many proposals are applied to trap hydrogen to prevent low-temperature welding cracks in high-strength steel,
Next, high temperature strength, or improvement in creep strength, fracture toughness, and the like continue. However, studies on high-carbon arc welding rods for cast iron are extremely rare, and no reports aiming at drastic improvements in tensile strength and Charpy impact value have been recognized to the inventor's knowledge. Therefore, while full-scale metallurgical studies are to be waited for in the future, theoretical considerations must be inferred from the data of the present invention obtained at the present time to estimate the behavior of V.

【0013】図2は本発明における実験の一例から抜粋
した線図であり、Fe,C,Vの3元素毎に組織内の特
定の検定線に添った分布状態をカウントしたEPMA
(X線マイクロアナライザ)である。図(A)は鉄の分
布を示し、図(B)は図(A)のそれぞれの位置に対応
する位置における炭素の分布を示し、図(C)は同じく
バナジウムの分布の多寡をそれぞれ表示したものであ
る。測定する位置のベースとなる組織は図3(A)〜
(C)にそれぞれ示し、図(A)が鉄、図(B)が炭
素、図(C)がバナジウムの存在だけを選択的に電子像
として表示した成分別組織写真(600倍)であり、図
3各図に引いた同一直線上をプローブが走査して各位置
毎の成分量だけをそれぞれカウントして波形で表示した
のが図2各図である。
FIG. 2 is a diagram extracted from an example of an experiment in the present invention. EPMA in which the distribution along a specific test line in the tissue is counted for each of the three elements Fe, C, and V is shown.
(X-ray microanalyzer). FIG. (A) shows the distribution of iron, FIG. (B) shows the distribution of carbon at positions corresponding to the respective positions in FIG. (A), and FIG. (C) also shows the amount of vanadium distribution. Things. The organization that is the base of the measurement position is shown in FIG.
(C), FIG. (A) is an iron, FIG. (B) is a carbon, and FIG. (C) is a compositional photograph (600 times) selectively showing only the presence of vanadium as an electronic image. Each probe in FIG. 3 scans on the same straight line drawn in each of FIGS. 3A and 3B, and only the component amounts at each position are counted and displayed as waveforms in FIGS.

【0014】図2(A)(B)(C)を関連付けて観察
すれば、図(A)で低い鉄分の箇所が高炭素に該当する
はずであるのに対し、この部分に該当する図(B)では
高炭素のピークが認められるから両成分の関係が表裏一
体となってよく整合しており、さらに、図3(A)で確
認すれば鉄の基地に黒鉛が黒く晶出していることが明示
され、両図を見比べると炭素の位置に関する表示がよく
一致するから、この検知手法の信頼性が高いことを示唆
している。次に図2(C)のバナジウムの分布を見れ
ば、図(B)の高炭素と一致するピークを認めることが
できるが、逆に図(B)の高炭素のすべてのピークが図
(C)の高バナジウムのピークと必ずしも一致するわけ
ではないことが読み取れる。すなわち、炭素は組織とし
ては黒鉛の形で晶出する部分と、炭化物の形で基地中に
析出する部分とに分別され、各図を通して炭素の挙動を
明確に示すために、図2各図内へ黒鉛タイプとして晶出
する炭素分を、炭化物として析出する炭素分をと書
込んで相互の関係を明確にした。
2 (A), 2 (B), and 2 (C), the low iron portion in FIG. 2 (A) should correspond to high carbon, whereas the diagram corresponding to this portion (FIG. 2 (A)) should correspond to high carbon. In B), a high carbon peak is observed, so that the relationship between the two components is inextricably and closely matched, and further it can be confirmed from FIG. 3A that graphite is crystallized black on the iron base. Is clearly shown, and the comparison between the two figures shows that the indications of the carbon positions match well, suggesting that the detection method is highly reliable. Next, by looking at the distribution of vanadium in FIG. 2 (C), peaks corresponding to high carbon in FIG. 2 (B) can be recognized. Conversely, all peaks of high carbon in FIG. It can be seen that the peak does not always coincide with the high vanadium peak of (a). In other words, carbon is separated into a portion that crystallizes in the form of graphite as a structure and a portion that precipitates in the matrix in the form of carbide as a structure. The relationship between the carbon content crystallized as a graphite type and the carbon content precipitated as a carbide was clarified.

【0015】一方、図4は本発明の同じ試料の光学顕微
鏡写真(×400)による組織(A)と、ミクロビッカ
ースによって硬度を測定した位置を表示した説明図
(B)である。同様に図5は被覆材中にVを添加しない
従来技術の光学顕微鏡写真(A)と、硬度測定の圧痕を
同様に表示した説明図(B)である。言うまでもなく両
者共に基地はオーステナイト相をベースとし、基地内に
線で囲まれて析出する部分が炭化物、灰黒色の塊状、ま
たは棒状に晶出しているのが黒鉛である。本発明と従来
技術とでは黒鉛の形状や炭化物の析出形状にも隔たりが
認められるが、本発明の実施例である図4と比較例であ
る図5の差を数値的に示すため、顕微鏡写真に菱形の圧
痕を残した通り、それぞれの基地および炭化物の部分に
ついてミクロビッカース硬度の測定を行なった。測定の
結果は表3に示したが、本発明の実施例と従来技術であ
るJIS−3252−DFC NiFeによる同一条件
下での比較例とを比べると、明瞭にV炭化物の有効性が
現われている。すなわち、本発明実施例ではVC系を主
体とする炭化物周辺のミクロビッカース硬度の平均が2
98に対して比較例のFe3Cを主体とする炭化物周辺
では平均225に留まり、また、基地組織についても本
発明では平均231に対して比較例では平均199を示
すに過ぎず、全体としてVCの作用が基地の強化と超硬
度の炭化物を形成して引張り強度とシャルピー衝撃値の
飛躍的な向上の根源にあると理解できるのではないか。
On the other hand, FIG. 4 is an explanatory diagram (B) showing a structure (A) of the same sample of the present invention by an optical microscope photograph (× 400) and a position where hardness is measured by a micro Vickers. Similarly, FIG. 5 is an optical microscope photograph (A) of the prior art in which V is not added to the coating material, and an explanatory diagram (B) similarly showing the indentation of the hardness measurement. Needless to say, in both cases, the matrix is based on an austenite phase, and graphite is crystallized into carbide, gray-black lump, or rod-like portions in the matrix surrounded by wires and precipitated. Although there is a gap between the shape of graphite and the precipitated shape of carbides between the present invention and the prior art, the difference between FIG. 4 which is an example of the present invention and FIG. 5 which is a comparative example is shown numerically. The micro-Vickers hardness was measured for each matrix and carbide part, leaving a diamond-shaped indentation in FIG. The results of the measurement are shown in Table 3. When comparing the example of the present invention with a comparative example under the same condition using JIS-3252-DFC NiFe, which is the prior art, the effectiveness of V carbide clearly appears. I have. That is, in the embodiment of the present invention, the average of the micro Vickers hardness around the carbide mainly composed of VC is 2
As compared with 98, the average around the carbide mainly composed of Fe3C of the comparative example is only 225, and the average value of the base structure is only 199 in the comparative example with respect to the average of 231 in the present invention. Can be understood to be the root of the dramatic improvement in tensile strength and Charpy impact value by strengthening the matrix and forming ultra-hard carbide.

【0016】前記のミクロビッカース硬度試験が示唆す
るところは、Vの適量の添加は基地のオーステナイト相
に一部が固溶して強度と硬度を高め、さらに加熱・冷却
時の挙動によってオーステナイト結晶粒度の微細化を図
ると共に、その大部分はVCまたはFeC3とのダブル
カーバイドを形成して抜群の硬度アップと結果的にシャ
ルピー衝撃値の大幅なレベルアップを誘導したものと推
認される。図6(佐藤・西沢:日本金属学会会報,2,
1963,10,p565〜571)は鉄鋼材料中にお
ける各種炭化物の硬さを示したものであり、SiC,T
iCと並んでMCタイプの炭化物がきわめて硬度が高い
ことを示している。V添加の高速度鋼はこの原則を利用
した製品であり、本発明の図2〜図6の相互の関連性か
ら明らかに超硬度の炭化物形成にVが主役を演じたもの
と解釈するのが冶金的な常識上、正しい。
The micro Vickers hardness test suggests that the addition of an appropriate amount of V increases the strength and hardness by partially dissolving in the austenite phase of the matrix, and furthermore, the austenite grain size is determined by the behavior during heating and cooling. It is presumed that, in addition to miniaturization, most of them formed double carbide with VC or FeC3, leading to a remarkable increase in hardness and consequently to a significant increase in Charpy impact value. Fig. 6 (Sato and Nishizawa: Bulletin of the Japan Institute of Metals, 2,
1963, 10, pp. 565 to 571) show the hardness of various carbides in steel materials.
It shows that the MC type carbide has extremely high hardness along with iC. V-added high-speed steel is a product utilizing this principle, and it can be interpreted that V plays a leading role in the formation of ultra-hard carbide from the interrelationship of FIGS. 2 to 6 of the present invention. Right from metallurgical common sense.

【0017】V添加の手法としては溶接用の線材自体に
配合する場合と、被覆材に配合する場合とがあり、最終
的に溶着部の適正な組織と、これに裏付けられたシャル
ピー衝撃値や引張り強度の確保のための配合%の上限、
下限を定めることが必要である。図1は後述する本発明
の実施の形態から誘導した成分範囲の限定根拠を示す図
表である。炭素成分が従来から研究開発が集中してきた
合金鋼の10倍以上含有する鋳鉄用アーク溶接棒の開発
においては、ほとんど有効に利用できる従来技術の文献
がなく、また、桁違いに大量のCの挙動が黒鉛晶出など
鋼類とは全く異質の組織を現わすことは言うまでもない
から、個々の溶接材に求められる基準に適合するように
成分の上下の限界を決めることが課題解決の王道である
と解釈した。図1はその意味で試料の測定結果を前記の
スリップオンタイプのダクタイル鋳鉄管の溶接に求めら
れる強度と衝撃値を目標に絞った、謂わば限られた条件
下の成分範囲であることを否定するものではないが、鋳
鉄材を母材とする従来技術と比べて卓抜した強力な溶着
部を形成し、他の構造的な用途に対しても広く適用可能
な抜群の特徴を具えることに変りはない。
As a method of adding V, there are a case where it is blended into the welding wire itself and a case where it is blended into the coating material. Finally, the proper structure of the welded part and the Charpy impact value and the Upper limit of blending percentage for securing tensile strength,
It is necessary to set a lower limit. FIG. 1 is a chart showing the grounds for limiting the component ranges derived from the embodiment of the present invention described later. In the development of arc welding rods for cast iron containing carbon components at least 10 times that of alloy steels for which R & D has been concentrated in the past, there is almost no prior art document that can be used effectively, and a large amount of C It goes without saying that the behavior shows a completely different structure from steel, such as graphite crystallization, so determining the upper and lower limits of components to meet the standards required for individual welded materials is the royal road to solving problems. I interpreted that. FIG. 1 denies that the measurement result of the sample is a component range under so-called limited conditions in which the strength and impact value required for welding the above-described slip-on type ductile cast iron pipe are targeted in that sense. Although it does not mean that it forms a strong welding part that is outstanding compared to the conventional technology that uses cast iron base material, it has outstanding features that can be widely applied to other structural applications. No change.

【0018】図1の作図のデータは後述する実験記録、
特に硬度に関する表3と、シャルピー衝撃値に関する表
4から成分限定のために拾い上げた数値を組み合わせて
構築したものであり、実験で把握できた通則としては、 被覆材中に添加したVの歩留りは85〜95%の幅が
あること、 Vが無添加の従来技術におけるシャルピー衝撃値(Kg
m/cm2)は、最低1.81、最高3.63、平均2.5
1であること、 溶着金属内のV成分が1.40重量%含む実施例1の
シャルピー衝撃値(Kgm/cm2)は最低5.60、最高
6.82、平均6.15であること、 溶着金属内のV成分が1.60重量%含む実施例2の
シャルピー衝撃値(Kgm/cm2)は最低6.36、最高
8.39、平均7.53であること、 溶着金属内のV成分が1.40重量%含む実施例1の
ミクロビッカースの硬度は炭化物周辺が最低290、最
高330、平均298であり、また基地内が最低21
2、最高245、平均231であること、 Vが無添加の従来技術におけるミクロビッカースの硬
度は炭化物周辺で最低212、最高234、平均225
であり、また、基地内が最低180、最高217、平均
199であること がピックアップされる。本発明の目的から評価するなら
ば、シャルピー衝撃値(Kgm/cm2)は5以上であること
が最大の要件であるから、V重量%を横軸に、シャルピ
ー衝撃値を縦軸に取ってシャルピー衝撃値5Kgm/cm2
截るV重量%を求めると測定の平均値ではV:1.0重
量%が得られるが、最大・最小のバラツキを考慮し、そ
れぞれのV値におけるシャルピー衝撃値の最低値だけを
プロットした最低線Lがシャルピー衝撃値5Kgm/cm2
を交差する点を求めるとV:1.20重量%となる。こ
れがバラツキの中の最低の場合を想定したV重量%の下
限である。なお、引張り強度については何れも28Kgf/
mm2を遥かに超える好成績を記録しているので、特に論
議の対象とする必要がなく、焦点は耐衝撃性だけに絞ら
れたと見てよい。
The plotting data shown in FIG.
In particular, it was constructed by combining the values picked up from Table 3 relating to the hardness and Table 4 relating to the Charpy impact value for the purpose of limiting the components. As a general rule that could be grasped by experiments, the yield of V added to the coating material is as follows. 85 to 95%, Charpy impact value (Kg
m / cm 2 ) is 1.81 at the minimum, 3.63 at the maximum, and 2.5 on average
1, the Charpy impact value (Kgm / cm 2 ) of Example 1 containing 1.40% by weight of the V component in the deposited metal is 5.60 at the minimum, 6.82 at the maximum, and 6.15 on average; The Charpy impact value (Kgm / cm 2 ) of Example 2 containing 1.60% by weight of the V component in the deposited metal is at least 6.36, the maximum is 8.39, and the average is 7.53. The hardness of the micro Vickers of Example 1 containing 1.40% by weight of the components is at least 290 around the carbide, at most 330, and an average of 298, and at least 21 in the matrix.
2, maximum 245, average 231; hardness of micro Vickers in the prior art without V added is minimum 212, maximum 234, average 225 around carbide.
It is also picked up that the base station has a minimum of 180, a maximum of 217, and an average of 199. If evaluated for the purpose of the present invention, the greatest requirement is that the Charpy impact value (Kgm / cm 2 ) be 5 or more. Therefore, the V weight% is plotted on the horizontal axis and the Charpy impact value is plotted on the vertical axis. When the V weight% that cuts off the Charpy impact value of 5 kgm / cm 2 is obtained, the average value of the measured values is V: 1.0 wt%. However, considering the maximum / minimum variation, the Charpy impact value at each V value is considered. When the point at which the lowest line L plotting only the lowest value intersects the line with a Charpy impact value of 5 kgm / cm 2 is determined, the result is V: 1.20% by weight. This is the lower limit of V wt% assuming the lowest case among the variations. The tensile strength was 28 kgf /
since the recorded good results exceeding mm 2 far, no particular need of interest discussion, the focus may be seen to have been narrowed down to only impact resistance.

【0019】V重量%の上限は硬度によって決定され
る。Vの増加と共にオーステナイト基地へ固溶する量は
さらに高まり基地の硬度を上げると共に、炭化物の析出
量も増加していくが、溶着部のシャルピー衝撃値はこれ
に比例して際限なく増大するわけではない。硬度の上昇
は耐摩耗性の増大に対してはほぼ比例関係にあるが、シ
ャルピー衝撃値に対しては適正値があり、限度を超えれ
ば当然マイナス作用となって現われる。本発明ではその
上限の設定を基地の硬度に基づいたのは、他の分野、代
表的には合金鋼の研究結果を教訓として冶金的に公知の
一般原則に準拠したからであり、具体的には目標とする
シャルピー衝撃値が確保される限度において、むしろ靱
性の確保こそ健全な溶着部形成の要諦であると判断し、
具体的には基地のミクロビッカース硬度が250を上限
と定め、この硬度に対応するVはV:2.20重量%に
相当することを図1から読み取った。なお、この場合も
硬度の最高値だけを各Vの含有成分毎に結んでバラツキ
の中の最高線Hを範囲決定の要因に選んで試料のバラツ
キを吸収したが、平均値を結んで誘導される線もほぼ同
様にV:2.20重量%=Hv:250でほとんど収斂
し、この上限に関しては二重に再現性を証明する結果と
なっている。
The upper limit of V weight% is determined by the hardness. As V increases, the amount of solid solution in the austenite matrix further increases, increasing the hardness of the matrix and increasing the precipitation of carbides. However, the Charpy impact value of the welded portion does not increase endlessly in proportion to this. Absent. The increase in hardness is almost proportional to the increase in wear resistance, but there is an appropriate value for the Charpy impact value, and if it exceeds the limit, it naturally appears as a negative effect. In the present invention, the setting of the upper limit is based on the hardness of the base, because it is based on general principles known in metallurgy as a lesson from other fields, typically alloy steel research results. Determined that, to the extent that the target Charpy impact value was secured, securing toughness was the essence of sound weld formation,
Specifically, the micro Vickers hardness of the matrix was set to 250 as the upper limit, and it was read from FIG. 1 that V corresponding to this hardness was equivalent to V: 2.20% by weight. In this case as well, only the highest value of hardness was connected for each component of V, and the highest line H among the variations was selected as a factor for determining the range to absorb the variation of the sample. The line also almost converged at V: 2.20% by weight = Hv: 250 almost in the same manner, and the upper limit was double-proven.

【0020】溶着金属内のV重量%の成分範囲を決定し
たが、このVはアーク溶接棒の被覆棒内に添加してもよ
いし、溶接用の線材自体に添加してもよい。または両者
からそれぞれ添加して合計して溶着金属内に前記の範囲
で含有するようにそれぞれ歩留り量から逆算して決定し
てもよい。以下は被覆材に添加する場合の計算の根拠で
あり、Fe−Vは被覆材中へ均等に配合できる粉末状の
フェロバナジウムを意味する。 V重量%=(Fe−V/被覆材)×(被覆材/線材)×
(V/Fe−V)×0.85 ∴(Fe−V/被覆材)=V重量%/[(被覆材/線
材)×(V/Fe−V)×0.85 ] ここで0.85は前記のVの歩留りの低い方を採用して
万全を期したものであり、(V/Fe−V)は各メーカ
の規格品が50重量%で提供されている。(被覆材/線
材)は溶接棒メーカのそれぞれ技術と経験によって各自
のノウハウが成立しているが、溶着部のV重量%が1.
20〜2.20と特定したから (Fe−V/被覆材)=1.20〜2.20/[(被覆材/線材)×(V/F e−V)×0.85 ]………… が成立する範囲の被覆材を使用することが被覆材から添
加する原則となる。ここで(被覆材/線材)の割合を3
0重量%と限定すれば、 (Fe−V/被覆材)=1.20〜2.20/0.30
×0.50×0.85=9.4〜17.2重量%とな
り、歩留りの変動も考慮に入れて被覆材内に添加すべき
Fe−Vは9.0〜17重量%の範囲と算出される。し
かしこの添加量は前記の鋳鉄用アーク溶接棒製作時の被
覆材形成の諸条件により、支配され変動することは言う
までもない。
The component range of V weight% in the deposited metal is determined. This V may be added to the coating rod of the arc welding rod or may be added to the welding wire itself. Alternatively, they may be added back from the two and summed up, respectively, and determined back from the yield so as to be contained in the deposited metal in the above range. The following is the basis of the calculation in the case of adding to the coating material, and Fe-V means powdered ferrovanadium that can be evenly mixed in the coating material. V weight% = (Fe-V / coating material) × (coating material / wire) ×
(V / Fe-V) × 0.85 {(Fe-V / coating) = V wt% / ((coating / wire) × (V / Fe-V) × 0.85] where 0.85 In order to ensure completeness by adopting the lower yield of V, (V / Fe-V) is provided as a standard product of each manufacturer at 50% by weight. (Coating material / wire material) has its own know-how based on the technology and experience of the welding rod maker, but the V weight% of the welded portion is 1.
Since it was specified as 20 to 2.20, (Fe-V / coating material) = 1.20 to 2.20 / [(coating material / wire material) x (V / Fe-V) x 0.85] ... The principle of adding from the coating material is to use a coating material in a range in which ... is satisfied. Here, the ratio of (covering material / wire) is 3
If it is limited to 0% by weight, (Fe-V / coating material) = 1.20 to 2.20 / 0.30
× 0.50 × 0.85 = 9.4 to 17.2% by weight, and Fe-V to be added to the coating material is calculated to be in the range of 9.0 to 17% by weight in consideration of variation in yield. Is done. However, it goes without saying that this addition amount is governed and varied by the conditions for forming the coating material when the arc welding rod for cast iron is manufactured.

【0021】溶着金属に添加するVを被覆材からではな
く線材自体から含有させることは当然可能であり、線材
を量産できる状態であれば却って有効な手段でさえあ
る。この場合は溶融金属中にVを添加するのであるが、
合金鋼とは異なって高Ni系の鋳鉄は高C、高Si、高
Mnと酸素との親和力の高い成分を大量に含み、安定し
た非酸化性のオーステナイト相形成元素であるNiも大
量に含むから、酸化による減耗はほとんど考慮の必要も
なく、歩留りも90%以上はあるものと解される。た
だ、線材溶解のロットがある程度纏まらないと少量多種
生産は経済的にも不利であるから、被覆材による添加の
方が優先する場合も多いと考えられるが、この場合の添
加量は前記の計算式に準拠して 添加Fe−V量=V重量%×線材溶解量/[(V/Fe−V)×0.90 ] …… 前記の溶着部内のV重量%を1.20〜2.20に収め
るためには、線材に配合すべきVは1.30〜2.40
重量%となり、Fe−Vの含有量が50%であればその
倍量を配合して線材を溶解精練すればよいことになる。
被覆材および線材溶解時の添加の両方からVを含有させ
る方法は当然可能であるが、その場合は前記の数式お
よびより個々に算定してその合計が1.20〜2.2
0重量%の範囲に含まれればよい。すなわち、 (Fe−V/被覆材)×(被覆材/線材)×(V/Fe−V)×0.85+0. 90×(線材中に配合したV)………… で算出した数値がV重量%=1.20〜2.20の範囲
であれば本発明の作用と効果はそのまま再現される。
It is, of course, possible to include V to be added to the weld metal not from the coating material but from the wire itself, and it is even an effective means if the wire can be mass-produced. In this case, V is added to the molten metal,
Unlike alloy steel, high-Ni cast iron contains a large amount of high-C, high-Si, high-Mn and high-affinity components with high oxygen, and also a large amount of Ni, which is a stable non-oxidizing austenitic phase-forming element. From this, it is understood that the depletion due to oxidation hardly needs to be considered, and the yield is 90% or more. However, if a lot of wire melting lots are not put together to some extent, small-quantity production of various types is economically disadvantageous, so it is considered that there are many cases where the addition by the coating material takes precedence, but the addition amount in this case is Based on the calculation formula, the amount of added Fe-V = V wt% × dissolved wire amount / [(V / Fe-V) × 0.90]... In order to be within .20, V to be blended into the wire should be 1.30 to 2.40.
% By weight, and if the Fe-V content is 50%, the wire may be dissolved and scoured by mixing twice the amount.
Naturally, it is possible to incorporate V both from the coating material and from the addition at the time of dissolving the wire, but in that case, it is calculated individually from the above formulas and the total is 1.20 to 2.2.
What is necessary is just to be contained in the range of 0 weight%. That is, (Fe-V / coating material) × (coating material / wire) × (V / Fe-V) × 0.85 + 0. If the value calculated by 90 × (V blended in the wire) is in the range of V wt% = 1.20 to 2.20, the operation and effect of the present invention can be reproduced as it is.

【0022】[0022]

【発明の実施の形態】図7は本発明の実施に当り、今回
課せられた条件をクリアすべき挿口リング5のサイズを
示す図であり、呼び径75〜250mmまでの中短口径
のダクタイル鋳鉄管の挿口4に対しては、図におけるM
=15、X=25で鋼板製の挿口リング5を手溶接しな
ければならない。また同様に呼び径が300〜450m
mの中口径管に対してはM=20、X=30として溶接
することが規定されている。溶着部7を形成するための
アーク溶接棒としては、表1上段は従来から広く使用さ
れる合金鋼などに使用される一般のアーク溶接棒線材で
あり、後段は従来技術および本発明の実施形態に共通し
て適用する線材の成分範囲であり、鋼用と比べればC,
Si,Mnにおいて大きな差があるが、鋳鉄用としては
成分をほぼ同一に揃えて純粋に被覆材におけるV添加の
影響だけに焦点を当てた。
FIG. 7 is a view showing the size of the insertion ring 5 which should satisfy the conditions imposed this time in the practice of the present invention. For the insert 4 of the cast iron tube,
= 15, X = 25, the steel plate insert ring 5 must be manually welded. Also the nominal diameter is 300-450m
It is specified that welding is performed with M = 20 and X = 30 for a medium diameter pipe of m. As the arc welding rod for forming the welded portion 7, the upper part of Table 1 is a general arc welding rod wire used for alloy steel and the like widely used in the past, and the latter part is a conventional technique and an embodiment of the present invention. This is the range of wire components commonly applied to
Although there is a great difference between Si and Mn, for cast iron, the components were almost the same, and the focus was purely on the effect of V addition in the coating material.

【0023】[0023]

【表1】 [Table 1]

【0024】表2は本発明に使用したアーク溶接棒の被
覆材の成分であり、表1に示した線材に通常のアーク溶
接棒製作技術によって製品化した。一方、比較すべき従
来技術は表2の成分のうち、Fe−Vだけを削除した以
外は変更なく、このように作成した直径4.0mmの2
種類の試験用溶接棒をそれぞれ使って図8の要領で溶着
部の試験片を作成した。すなわち、肉厚10mmのダク
タイル鋳鉄管の素材を両側の母材とし、35°の傾斜角
度からなる開先を取って下方で9〜11mm、上方で2
0〜23mm開き、35°の傾斜角度からなる開先部に
135〜140Aの溶接電流で溶接試験を実施した。表
3は本発明実施形態と従来技術による比較例とのマイク
ロビッカース硬度測定の結果を纏めたものであり、それ
ぞれの数値の意味するところは既に述べた通りである。
Table 2 shows the components of the coating material of the arc welding rod used in the present invention, and the wire rods shown in Table 1 were commercialized by a usual arc welding rod manufacturing technique. On the other hand, the prior art to be compared is the same as that of Table 2 except that only Fe-V was deleted from the components in Table 2.
Using each type of test welding rod, a test piece at the welded portion was prepared as shown in FIG. That is, the material of the ductile cast iron pipe having a thickness of 10 mm is used as a base material on both sides, and a groove having an inclination angle of 35 ° is formed to 9 to 11 mm below and 2 mm above.
A welding test was carried out with a welding current of 135 to 140 A on a groove having an opening angle of 0 to 23 mm and an inclination angle of 35 °. Table 3 summarizes the results of the micro-Vickers hardness measurement of the embodiment of the present invention and the comparative example according to the prior art, and the meaning of each numerical value is as described above.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】また、表4は本発明実施形態と従来技術に
よる比較例とのシャルピー衝撃値(ノッチなし)(Kgm/
cm2)の比較を示したものであり、本発明の場合、被覆
材へのFe−Vの添加量が何れも11重量%であるにも
拘わらず、溶着金属の分析では実施例1でV:1.40
重量%、実施例2ではV:1.60重量%と異なった結
果を示し、両者の成分差は被覆材中のVの歩留りの差に
起因するものと見て、計算の基礎としては高い歩留り9
5%を捨て、低い85%を基準に置いて歩留りのバラツ
キに対応するように適正範囲を限定した。
Table 4 shows the Charpy impact value (without notch) (Kgm /
cm 2 ). In the case of the present invention, although the amount of Fe-V added to the coating material was 11% by weight, in the analysis of the deposited metal, V : 1.40
%, V in Example 2 was 1.60% by weight. The difference between the two components was attributed to the difference in the yield of V in the coating material. 9
5% was discarded, and the appropriate range was limited based on a low 85% as a standard to cope with the variation in yield.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【発明の効果】本発明は以上に述べた通り、鋳鉄、特に
ダクタイル鋳鉄管において構造的に強度が必要であり、
またシャルピー衝撃値も母材と同一のレベルが求められ
るような鋳鉄用アーク溶接棒を提供し、種々の構造物、
たとえば近年水道用管路の敷設に最も注目を集めている
無締結工法(スリップオンタイプ・S2型)の挿口リン
グの固定溶着に最大の威力を発揮する効果がある。すな
わち、如何に無締結工法が現場能率や職場安全の点で従
来の掘削工法を遥かに凌駕したところで、管路に震動、
振動、揺動などが加わって管同士を離脱する方向に外力
が掛かったとき、その抜け止めの機能は一に懸って挿口
リングの堅牢、強力な固着作用に支配されるのであるか
ら、優れた工法の採否を左右する重大な要件である。本
発明の実施が規定されたシャルピー衝撃値と強度、硬度
をバランスよく具備し、要求に叶う材力を実現した効果
はきわめて顕著なものがある。
As described above, the present invention requires structural strength in cast iron, especially ductile cast iron pipe,
We also provide arc welding rods for cast iron that require the same level of Charpy impact value as the base metal, and various structures,
For example, it has the effect of exerting the greatest power in fixing and welding an insertion ring of a non-fastening method (slip-on type / S2 type) which has attracted the most attention in recent years for laying water pipes. In other words, how the unfastened construction method far exceeded the conventional excavation method in terms of on-site efficiency and workplace safety,
When an external force is applied in the direction of separating the tubes due to vibration, swing, etc., the function of the stopper will depend on the robustness of the insertion ring and the strong fixing action, This is a critical requirement that determines the adoption of a good method. The effect of realizing the material strength that satisfies the requirement by providing the Charpy impact value, strength and hardness in a well-balanced manner according to the practice of the present invention and realizing the required strength is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成分限定の根拠を図解する説明図であ
る。
FIG. 1 is an explanatory diagram illustrating the basis for limiting the components of the present invention.

【図2】本発明実施形態における鉄(A),炭素
(B),バナジウム(C)の成分毎のX線マイクロアナ
ライザの波動線を示す。
FIG. 2 shows wave lines of an X-ray microanalyzer for each component of iron (A), carbon (B), and vanadium (C) in the embodiment of the present invention.

【図3】図2の測定ベースとなった鉄(A),炭素
(B),バナジウム(C)の成分毎の電子顕微鏡組織
(×600)である。
FIG. 3 is an electron microscopic structure (× 600) for each component of iron (A), carbon (B), and vanadium (C), which was the measurement base of FIG. 2;

【図4】同じ実施形態の光学顕微鏡組織(×400)
(A)と、その測定箇所の説明図(B)である。
FIG. 4 Optical microscopic structure of the same embodiment (× 400)
(A) and the explanatory view (B) of the measurement location.

【図5】従来技術の光学顕微鏡組織(×400)(A)
と、その測定箇所の説明図(B)である。
FIG. 5 shows a conventional optical microscope structure (× 400) (A)
(B) of FIG.

【図6】各種の炭化物のミクロビッカース硬度を示す図
表である。
FIG. 6 is a table showing micro Vickers hardness of various carbides.

【図7】無締結工法(スリップオンタイプ・S2型)の
挿口リングの形態を示した図である。
FIG. 7 is a view showing a form of an insertion ring of a non-fastening method (slip-on type / S2 type).

【図8】溶着部の材料試験片を作成する基準を示した正
面図(A)と側面図(B)である。
FIG. 8 is a front view (A) and a side view (B) showing a standard for preparing a material test piece of a welded portion.

【図9】本発明や従来技術が使用される無締結工法の全
体の縦断正面図を示す。
FIG. 9 is a longitudinal sectional front view of the whole non-fastening method in which the present invention and the prior art are used.

【符号の説明】[Explanation of symbols]

1 受口 2 ロックリング溝 3 ロックリング 4 挿口 5 挿口リング 6 ゴム輪 DESCRIPTION OF SYMBOLS 1 Reception opening 2 Lock ring groove 3 Lock ring 4 Insertion opening 5 Insertion ring 6 Rubber ring

フロントページの続き (72)発明者 橋本 高明 大阪府堺市海山町3丁156番地 特殊溶接 棒株式会社内 (72)発明者 橋本 善行 大阪府堺市海山町3丁156番地 特殊溶接 棒株式会社内Continuation of the front page (72) Inventor Takaaki Hashimoto 3-156 Kaiyamacho, Sakai-shi, Osaka Special welding rod Co., Ltd. (72) Inventor Yoshiyuki Hashimoto 3-156 Kaiyamacho, Sakai-shi, Osaka Special welding rod, Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:2.0%,Si:2.5%,Mn:
2.5%の他に少なくともNi:40〜60%を含む線
材よりなる鋳鉄用被覆アーク溶接棒によって鋳鉄材を母
材として溶接した溶着金属が、Vを1.20〜2.20
重量%含有することを特徴とする鋳鉄用被覆アーク溶接
棒による溶着部。
1. C: 2.0%, Si: 2.5%, Mn:
A weld metal welded with a cast iron material as a base metal by a coated arc welding rod for cast iron made of a wire containing at least Ni: 40 to 60% in addition to 2.5%, and has a V of 1.20 to 2.20.
Welded part by coated arc welding rod for cast iron characterized by containing by weight.
【請求項2】 C:2.0%,Si:2.5%,Mn:
2.5%の他に少なくともNi:40〜60%を含む線
材よりなる鋳鉄用被覆アーク溶接棒において、少なくと
も炭酸カルシウム20〜40%,ふっ化バリウム:10
〜30%,黒鉛:5〜20%とその他の有効補助成分を
含むと共に、被覆材に対するFe−Vの添加重量%を下
記数式が成立する範囲内の被覆材で被覆したことを特
徴とする鋳鉄用被覆アーク溶接棒。 (Fe−V/被覆材)=1.20〜2.20/[(被覆材/線材)×(V/F e−V)×0.85 ]…………
2. C: 2.0%, Si: 2.5%, Mn:
In a coated arc welding rod for cast iron made of a wire containing at least Ni: 40 to 60% in addition to 2.5%, at least 20 to 40% of calcium carbonate, and 10: barium fluoride.
Cast iron characterized in that it contains up to 30%, graphite: 5 to 20% and other effective auxiliary components, and the addition weight% of Fe-V to the coating material is coated with a coating material in a range satisfying the following formula. For coated arc welding rod. (Fe-V / coating material) = 1.20 to 2.20 / [(coating material / wire material) × (V / Fe-V) × 0.85]
【請求項3】 請求項2において、被覆材に添加配合す
るFe−Vに代えて、前記線材にV:1.30〜2.4
0重量%を含有させたことを特徴とする鋳鉄用被覆アー
ク溶接棒。
3. The wire according to claim 2, wherein V: 1.30 to 2.4 instead of Fe-V added to the coating material.
A coated arc welding rod for cast iron, characterized by containing 0% by weight.
【請求項4】 請求項2または3に代えて、下記数式
で計算する溶着部内に含有するV重量%が1.20〜
2.20の範囲に含まれることを特徴とする鋳鉄用被覆
アーク溶接棒。 (Fe−V/被覆材)×(被覆材/線材)×(V/Fe−V)×0.85+0. 90×(線材中に配合したV)…………
4. The method according to claim 1, wherein the V weight% contained in the welded portion calculated by the following equation is 1.20 to 20.
2. A coated arc welding rod for cast iron, which is included in the range of 2.20. (Fe-V / coating material) x (coating material / wire) x (V / Fe-V) x 0.85 + 0. 90 × (V compounded in wire) …………
JP28933996A 1996-10-11 1996-10-11 Covered arc welding rod for cast iron and its welded part Expired - Fee Related JP3214689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28933996A JP3214689B2 (en) 1996-10-11 1996-10-11 Covered arc welding rod for cast iron and its welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28933996A JP3214689B2 (en) 1996-10-11 1996-10-11 Covered arc welding rod for cast iron and its welded part

Publications (2)

Publication Number Publication Date
JPH10113790A true JPH10113790A (en) 1998-05-06
JP3214689B2 JP3214689B2 (en) 2001-10-02

Family

ID=17741926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28933996A Expired - Fee Related JP3214689B2 (en) 1996-10-11 1996-10-11 Covered arc welding rod for cast iron and its welded part

Country Status (1)

Country Link
JP (1) JP3214689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038621A (en) * 2014-09-30 2016-04-07 대우조선해양 주식회사 Root Pass Welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038621A (en) * 2014-09-30 2016-04-07 대우조선해양 주식회사 Root Pass Welding

Also Published As

Publication number Publication date
JP3214689B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JPS6343462B2 (en)
BG104001A (en) Cryogen welded structures with super high strengths
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
US6712912B2 (en) Welding method, filler metal composition and article made therefrom
US2156298A (en) Welded article
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
CA1238801A (en) Austenitic stainless steel for low temperature service
MXPA97007729A (en) Solded gasket that has excellent resistance to the fat
JPH01132741A (en) Rustless steel having weldable tough mixed structure
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
CA2017759A1 (en) Method of welding stainless steel studs
JP3214689B2 (en) Covered arc welding rod for cast iron and its welded part
US5519186A (en) Inert gas arc welding wire for high Cr ferritic heat-resisting steel
JPS63157795A (en) Wire for high tensile steel
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
CA1262514A (en) Nuclear grade steels
EP0816523B1 (en) Low-Cr ferritic steels and low-Cr ferritic cast steels having excellent high-temperature strength and weldability
JPS60121099A (en) Compound wire for welding
JP3165902B2 (en) High Cr steel welding method
JPH0857683A (en) Method for welding high-cr steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPH01233088A (en) Gas shield arc welding wire for high tensile strength steel
JP3327632B2 (en) 5% Cr welding material
JPH05171340A (en) Ni-w alloy excellent in corrosion resistance and wear resistance
JP3367824B2 (en) Welding material for heat resistant ferritic steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees