JPH10113400A - Radiotherapy system - Google Patents

Radiotherapy system

Info

Publication number
JPH10113400A
JPH10113400A JP8287296A JP28729696A JPH10113400A JP H10113400 A JPH10113400 A JP H10113400A JP 8287296 A JP8287296 A JP 8287296A JP 28729696 A JP28729696 A JP 28729696A JP H10113400 A JPH10113400 A JP H10113400A
Authority
JP
Japan
Prior art keywords
ray
radiation
patient
data
sinogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8287296A
Other languages
Japanese (ja)
Inventor
Hiromi Hara
弘己 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP8287296A priority Critical patent/JPH10113400A/en
Publication of JPH10113400A publication Critical patent/JPH10113400A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve operability by adjusting a rotational coordinate system drawn by an X-ray CT device and a rotational coordinate system drawn by a radiotherapy device, and setting therapeutic radioactive ray irradiation area data of the radiotherapy device on the basis of data by measuring a subject by the X-ray CT device. SOLUTION: A patient 1 is put on a bed 2, and projection data for a therapeutic plan is gathered by a scanner 3 and an image reconstituting device 4, and a scanner image or a slice image is obatined from the gathered projection data, and is displayed on a display means. A radioactive ray irradiation area is set by a radiotherapy device 8 by operating a console while referring to the displayed image. In this case, a sinogram (reprojection data) of an irradiation expected area is prepared by a reprojection converter 6, but in this case, when a radius RA of gyration of an X-ray source of an X-ray CT device and a radius RB of gyration in the radiotherapy device 8 are different from each other, the sinogram is converted into a sinogram to set a radioactive ray irradiation area from the ratio of RA to RB.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線CT装置を用
いた放射線治療システムに係り、特にX線CT装置で得
た投影データを放射線治療装置における放射線の照射方
向データ、照射幅データなどに変換し、これらの放射線
の照射方向データ、照射幅データに基づいて放射線治療
装置を制御する放射線治療システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiotherapy system using an X-ray CT apparatus, and more particularly, to converting projection data obtained by an X-ray CT apparatus into irradiation direction data and irradiation width data of radiation in the radiotherapy apparatus. The present invention relates to a radiation therapy system that converts the radiation direction data and irradiation width data of the radiation and controls the radiation therapy device based on the data.

【0002】[0002]

【従来の技術】従来の放射線治療装置は、放射線の照射
ヘッドが患者の体軸を中心軸として患者の周りを回転す
ることができるから、回転位置によって前記放射線を斜
めから照射したりできる。また、様々な照射野が形成で
きるマルチ・リーフ・コリメータが実用化され、放射線
を患部のみに照射することが可能になってきた。
2. Description of the Related Art In a conventional radiotherapy apparatus, a radiation irradiation head can rotate around a patient about a patient's body axis as a center axis, so that the radiation can be irradiated obliquely depending on the rotational position. In addition, a multi-leaf collimator capable of forming various irradiation fields has been put into practical use, and it has become possible to irradiate only the affected part with radiation.

【0003】ところで、放射線治療装置の治療を計画す
る医用画像診断装置は、X線透視装置、超音波装置、M
RI装置、X線CT装置が用いられている。X線透視装
置と超音波装置は、前記被検体の三次元情報を得るのが
難しく、MRI装置は様々な高速シーケンスが開発され
たものの高精細な画像をリアルタイムで得ることが難し
い。X線CT装置は最近になって特公平7−67445
号公報で示すような螺旋状スキャンで被検体の断層像を
連続して得てリアルタイムに前記三次元情報を得ること
が可能で、採用され始めている。
[0003] Incidentally, medical image diagnostic apparatuses for planning treatment of a radiation therapy apparatus include an X-ray fluoroscope, an ultrasonic apparatus, and an M-ray diagnostic apparatus.
An RI device and an X-ray CT device are used. It is difficult for the X-ray fluoroscopy apparatus and the ultrasound apparatus to obtain three-dimensional information of the subject, and for the MRI apparatus, although various high-speed sequences have been developed, it is difficult to obtain high-definition images in real time. X-ray CT equipment has recently been launched in Tokiko 7-67445.
It is possible to continuously obtain a tomographic image of a subject by a spiral scan as shown in Japanese Patent Application Laid-Open Publication No. H10-209, and obtain the three-dimensional information in real time.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、X線CT装置における被検体に対するX線管
のデータ計測のための回転が描く回転座標系と、放射線
治療装置における患者に対する放射線照射ヘッドの回転
が描く回転座標系が多くの場合異なる。このようなX線
CT装置で計測したデータを放射線治療装置で用いるた
めには、各々の回転座標系を整合させなければならない
という問題があった。
However, the above-mentioned prior art is based on a rotating coordinate system which describes a rotation for measuring data of an X-ray tube with respect to a subject in an X-ray CT apparatus, and a radiation irradiation head for a patient in a radiation therapy apparatus. In many cases, the rotation coordinate system drawn by the rotation is different. In order to use data measured by such an X-ray CT apparatus in a radiation therapy apparatus, there has been a problem that each rotating coordinate system must be matched.

【0005】本発明は、上記問題を解決するためになさ
れたものであり、その目的は、X線CT装置が描く回転
座標系と放射線治療装置が描く回転座標系とを整合さ
せ、X線CT装置で被検体を計測したデータに基づいて
放射線治療装置の治療用放射線照射領域データを設定す
ることができるX線CT装置を用いた放射線治療システ
ムを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to match a rotational coordinate system drawn by an X-ray CT apparatus with a rotational coordinate system drawn by a radiotherapy apparatus, and An object of the present invention is to provide a radiotherapy system using an X-ray CT apparatus capable of setting therapeutic radiation irradiation area data of a radiotherapy apparatus based on data obtained by measuring a subject by the apparatus.

【0006】[0006]

【課題を解決するための手段】上記目的は、患者に向け
てX線を曝射するX線源と患者を透過したX線を投影デ
ータとして検出するX線検出器を患者の周りを回転して
多方向の投影データを計測するX線CT装置を用い、高
エネルギーの放射線を患者の周囲から照射して治療する
放射線治療装置の照射パターンを計画する放射線治療シ
ステムにおいて、前記X線CT装置にて得た画像中に放
射線治療を要する患部を入力設定する手段と、設定され
た患部の周囲を回転するX線CT装置のX線源の複数の
回転位置から見た患部の第一の位置データ群を演算する
手段と、X線CT装置のX線源の回転半径と放射線治療
装置の放射線源の回転半径との比から前記第一の患部位
置データ群を放射線治療装置の放射線源の複数の回転位
置から見た患部の第二の位置データ群に変換する手段
と、前記第二の位置データ群を放射線治療装置のコリメ
ータの制御データへ変換する手段とを備えたことで達成
される。
An object of the present invention is to rotate an X-ray source that emits X-rays toward a patient and an X-ray detector that detects X-rays transmitted through the patient as projection data, around the patient. A radiation treatment system that uses an X-ray CT device that measures projection data in multiple directions to irradiate high-energy radiation from around the patient to plan an irradiation pattern of the radiation treatment device. Means for inputting and setting an affected part requiring radiation treatment in an image obtained by the method, and first position data of the affected part viewed from a plurality of rotation positions of an X-ray source of an X-ray CT apparatus rotating around the set affected part Means for calculating a group, and the first diseased part position data group is obtained from a plurality of radiation sources of the radiation therapy apparatus from the ratio of the rotation radius of the X-ray source of the X-ray CT apparatus to the rotation radius of the radiation source of the radiation therapy apparatus. Of the affected part viewed from the rotation position Means for converting the second position data group, is achieved by the second position data group and means for converting the control data of the collimator of the radiation therapy device.

【0007】また、患者に向けてX線を曝射するX線源
と患者を透過したX線を投影データとして検出するX線
検出器を患者の周りを回転して多方向の投影データを計
測するX線CT装置を用い、高エネルギーの放射線を患
者の周囲から照射して治療する放射線治療装置の照射パ
ターンを計画する放射線治療システムにおいて、前記X
線CT装置にて得た画像中に放射線治療を要する患部を
入力設定する手段と、設定された患部の周囲を回転する
X線CT装置のX線源の複数の回転位置から見た患部の
位置データ群を演算する手段と、前記位置データ群を放
射線治療装置のコリメータの制御データへ変換する手段
とを備えたことで達成される。
In addition, an X-ray source that emits X-rays toward a patient and an X-ray detector that detects X-rays transmitted through the patient as projection data are rotated around the patient to measure projection data in multiple directions. A radiation therapy system for irradiating high-energy radiation from around the patient and treating the radiation pattern using an X-ray CT device,
Means for inputting and setting an affected area requiring radiotherapy in an image obtained by the X-ray CT apparatus, and the position of the affected area viewed from a plurality of rotation positions of an X-ray source of the X-ray CT apparatus rotating around the set affected area This is achieved by providing means for calculating a data group and means for converting the position data group into control data of a collimator of the radiation therapy apparatus.

【0008】[0008]

【発明の実施の形態】本発明の放射線治療システムの一
実施の形態について、図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the radiation therapy system of the present invention will be described with reference to the drawings.

【0009】放射線治療システムに採用したX線CT装
置は、図1に示すような構成をしている。このX線CT
装置は、寝台2とスキャナ3と画像再構成装置4と条件
入力装置5と再投影データ変換装置6と制御データ変換
装置7を有している。
The X-ray CT apparatus employed in the radiation therapy system has a configuration as shown in FIG. This X-ray CT
The apparatus includes a bed 2, a scanner 3, an image reconstruction device 4, a condition input device 5, a reprojection data conversion device 6, and a control data conversion device 7.

【0010】寝台2は患者1を載せる。スキャナ3は患
者1を挿入する開口部があって、この開口部を挟んでX
線源とX線検出器を対向配置して回転板に取り付けら
れ、X線源からX線を照射しながらX線源とX線検出器
を回転する。画像再構成装置4は、X線検出器から得ら
れた投影データをもとに、患者1の体軸方向に沿ってX
線透視画像のようなスキャノ像を得る、またX線源とX
線検出器を患者1の周囲を回転して得る多方向の投影デ
ータからスライス像を得る。条件入力装置5は、オペレ
ータによってX線の照射条件、スキャナ3の回転時間に
よって決まる計測時間、螺旋状スキャンを行う場合にあ
っては寝台2の患者1の体軸方向の移動量などの撮影条
件と、スキャノ像若しくはスライス像を見ながら放射線
を照射するための領域等の入力条件を入力する。投影デ
ータ変換装置6は、照射予定領域に基づき投影データを
再投影データ(以下「サイノグラム」という)に変換す
る。制御データ変換装置7は、サイノグラムを放射線治
療装置の放射線照射領域の制御データに変換する。
The bed 2 places the patient 1 thereon. The scanner 3 has an opening through which the patient 1 is inserted.
The X-ray source and the X-ray detector are opposed to each other and attached to a rotating plate, and the X-ray source and the X-ray detector are rotated while irradiating the X-ray from the X-ray source. The image reconstruction device 4 performs X-ray imaging along the body axis direction of the patient 1 based on the projection data obtained from the X-ray detector.
Obtain a scanogram such as a fluoroscopic image, and use an X-ray source and X-ray
A slice image is obtained from multidirectional projection data obtained by rotating the line detector around the patient 1. The condition input device 5 is an imaging condition such as an X-ray irradiation condition by an operator, a measurement time determined by the rotation time of the scanner 3, and a moving amount of the bed 2 in the body axis direction of the patient 2 when performing a spiral scan. While inputting an input condition such as an area for irradiating radiation while viewing the scano image or the slice image. The projection data conversion device 6 converts the projection data into reprojection data (hereinafter, referred to as “sinogram”) based on the irradiation scheduled area. The control data conversion device 7 converts the sinogram into control data of a radiation irradiation area of the radiation therapy device.

【0011】また、前記X線CT装置を並設されるよう
に、高エネルギー放射線源とこの高エネルギー放射線源
の照射領域を制御するコリメータからなる照射系と、こ
の照射系と対向配置され外部に放射線が基準値以上漏洩
しないように設ける遮蔽体と、これらの照射系と遮蔽体
を回転する機構を有した放射線治療装置8を設置する。
Also, an irradiation system including a high-energy radiation source and a collimator for controlling an irradiation area of the high-energy radiation source is provided in parallel with the X-ray CT apparatus. A shield provided to prevent radiation from leaking beyond the reference value, and a radiation therapy apparatus 8 having a mechanism for rotating these irradiation systems and the shield are installed.

【0012】次に、X線CT装置の動作について説明す
る。患者1を寝台2に乗せてスキャナ3、画像再構成装
置4で治療計画用の投影データを収集する。この収集し
た投影データを患者の体軸方向に沿って得るスキャノ像
若しくは多方向の投影データを再構成演算してスライス
像を得て、スライス像を表示させる。オペレータは表示
された画像を参照しながら操作卓のトラック・ボール等
を用いて、放射線治療装置8で放射線を照射する放射線
照射領域の設定を行う。再投影変換装置6は、前記照射
予定領域のサイノグラムを図2に示すように作成する。
Next, the operation of the X-ray CT apparatus will be described. The patient 1 is placed on the bed 2 and the scanner 3 and the image reconstruction device 4 collect projection data for treatment planning. A scan image or a multi-directional projection data obtained from the acquired projection data along the body axis direction of the patient is reconstructed to obtain a slice image, and the slice image is displayed. The operator sets a radiation irradiation area to be irradiated with radiation by the radiation therapy apparatus 8 using the track ball or the like of the console while referring to the displayed image. The reprojection conversion device 6 creates a sinogram of the irradiation scheduled area as shown in FIG.

【0013】図2は、投影データからサイノグラムを得
る原理を示す図である。図2(a)の軌道AはX線CT
装置のX線源とX線検出器が回転する軌道を示し、軌道
Bは放射線治療装置の高エネルギー放射線源が回転する
軌道を示す。これらの軌道Aと軌道Bは点Oを中心とし
たそれぞれ半径RAとRB(RA>RB)の同心円であ
るとする。
FIG. 2 is a diagram showing the principle of obtaining a sinogram from projection data. The orbit A in FIG. 2A is an X-ray CT
The trajectory of the rotation of the X-ray source and the X-ray detector of the apparatus is shown, and the trajectory B is the trajectory of the rotation of the high energy radiation source of the radiation therapy apparatus. It is assumed that these trajectories A and B are concentric circles of radii RA and RB (RA> RB) centered on the point O, respectively.

【0014】投影データをサイノグラムへ変換する方法
は、投影データをスライス像に画像再構成し、再構成さ
れたスライス像に対するX線源の回転を幾何学敵に仮定
し、X線源の回転角度を複数設定し、X線源の各回転角
度θに対する放射線治療を要する患部の位置を図に示す
角度φ1、φ2として求める。このようにして求めたサ
イノグラムを図2(c)に示す。
A method of converting projection data into a sinogram is to reconstruct the image of the projection data into a slice image, assuming the rotation of the X-ray source with respect to the reconstructed slice image to a geometric enemy, and determining the rotation angle of the X-ray source. Are set, and the position of the affected part requiring radiation treatment with respect to each rotation angle θ of the X-ray source is obtained as angles φ1 and φ2 shown in the figure. The sinogram obtained in this way is shown in FIG.

【0015】しかし、X線CT装置におけるX線源の回
転半径と放射線治療装置における放射線源の回転半径が
異なる場合には、上記サイノグラムのデータを放射線治
療装置の放射線照射領域の設定データとして用いること
はできない。
However, when the rotation radius of the X-ray source in the X-ray CT apparatus is different from the rotation radius of the radiation source in the radiation treatment apparatus, the data of the sinogram is used as the setting data of the radiation irradiation area of the radiation treatment apparatus. Can not.

【0016】そこで、前記第一のサイノグラムを変換し
て、放射線治療装置の放射線照射領域設定用の第二のサ
イノグラムヲ求める。この第一のサイノグラムから第二
のサイノグラムの変換は、X線CT装置におけるX線源
の回転半径をRAとし、放射線治療装置における放射線
源の回転半径RBとした場合、単純に幾何学的な変換を
行うことで実行する。
Then, the first sinogram is converted to obtain a second sinogram 設定 for setting a radiation irradiation area of the radiation therapy apparatus. The conversion from the first sinogram to the second sinogram is simply a geometric conversion, where the radius of gyration of the X-ray source in the X-ray CT apparatus is RA and the radius of gyration of the radiation source in the radiation therapy apparatus is RB. Perform by doing.

【0017】次に、制御データを作る原理について、図
3を用いて説明する。上記第二のサイノグラムでは、X
線CT装置で得た患部の位置データから、放射線治療装
置での照射領域を角度φ1’、φ2’として得ているの
で、これでは放射線治療装置で放射線照射領域を設定す
るためのコリメータの制御データとして直接用いること
はできない。そこで、角度情報φ1、φ2をコリメータ
の移動量又は開口寸法のデータへ変換する必要がある。
以下、その変換方法を説明する。
Next, the principle of creating control data will be described with reference to FIG. In the second sinogram, X
From the position data of the affected part obtained by the X-ray CT apparatus, the irradiation area in the radiation therapy apparatus is obtained as angles φ1 ′ and φ2 ′, so this is the collimator control data for setting the radiation irradiation area in the radiation therapy apparatus Cannot be used directly. Therefore, it is necessary to convert the angle information φ1 and φ2 into data of the amount of movement of the collimator or the size of the aperture.
Hereinafter, the conversion method will be described.

【0018】図3は、サイノグラムから制御データに変
換する原理図を示す。上記角度情報φ1’、φ2’をコ
リメータの移動量又は開口寸法に変換する方法には、数
学的にいくつも考えられるが、本実施の形態では、角度
情報φ1’、φ2’を上記奇跡B上との距離に変換し求
める方法について説明する。
FIG. 3 shows a principle diagram for converting a sinogram into control data. There are several mathematically conceivable methods for converting the angle information φ1 ′ and φ2 ′ into the movement amount or aperture size of the collimator. In the present embodiment, the angle information φ1 ′ and φ2 ′ are A method of converting the distance to the distance and obtaining the distance will be described.

【0019】図3(a)は放射線治療装置の放射線源の
照射幅方向を横軸に、放射線源等の回転角度方向にサイ
ノグラムを配置した図、図3(b)は回転角度pを通り
照射幅方向の中心軸と交わる点O’について照射幅方向
の側面から見た図、図3(c)は点O’を放射線源が通
るときのコリメータの開口幅を説明する図である。
FIG. 3A is a diagram in which the sinogram is arranged in the direction of the rotation angle of the radiation source or the like with the irradiation width direction of the radiation source of the radiation therapy apparatus as the horizontal axis, and FIG. 3B is the irradiation through the rotation angle p. FIG. 3C is a diagram illustrating a collimator opening width when a radiation source passes through a point O ′ at a point O ′ crossing the center axis in the width direction when viewed from a side surface in the irradiation width direction.

【0020】制御データは、放射線源の回転角度、取り
出し方向、コリメータの開口幅、サイノグラムの位置の
各パラメータより求める。この取り出し方向というの
は、放射線源を遮蔽した容器で覆い、一方向だけ放射線
を取り出す窓を設けるときのその方向である。
The control data is obtained from the parameters of the rotation angle of the radiation source, the extraction direction, the aperture width of the collimator, and the position of the sinogram. The extraction direction is the direction when a radiation source is covered with a shielded container and a window for extracting radiation in only one direction is provided.

【0021】図3において回転角度pの放射線源の通る
点Oからサイノグラムを配置した投影面上の点O’まで
の距離をh、点O’とサイノグラムの中心Op’までの
距離をdp、点O’、点O、点Op’の各点を結んでな
す角度をθとすると、角度θは、 θ=dp/h (1) となる。前記取り出し方向は、図3(b)に示されるよ
うに、この角度θで規定される。
In FIG. 3, the distance from the point O through which the radiation source passes through the rotation angle p to the point O 'on the projection plane on which the sinogram is arranged is h, the distance between the point O' and the center Op 'of the sinogram is dp, and the point is dp. Assuming that an angle formed by connecting the points O ′, O, and Op ′ is θ, the angle θ is θ = dp / h (1). The take-out direction is defined by this angle θ, as shown in FIG.

【0022】また、サイノグラムの幅をd、点Oからコ
リメータまでの距離をh’、コリメータの開口幅をwと
すると、開口幅wは、図3(c)に示されるように、 w=h’×tan(d/2×h) (2) となる。
Assuming that the width of the sinogram is d, the distance from the point O to the collimator is h ', and the opening width of the collimator is w, the opening width w is, as shown in FIG. '× tan (d / 2 × h) (2)

【0023】このような回転照射計画は、通常のスライ
ス像が得られる回転角度毎に連続して行う。
Such a rotation irradiation plan is continuously performed for each rotation angle at which a normal slice image is obtained.

【0024】また、放射線治療装置のコリメータが、複
数枚のブレードで形成されるマルチリーフ型と呼ばれる
ものにあっては、各ブレード対毎にコリメータの開口幅
を計算し、設定する。
When the collimator of the radiation therapy apparatus is called a multi-leaf type formed by a plurality of blades, the aperture width of the collimator is calculated and set for each blade pair.

【0025】次に、放射線を照射してはいけない領域、
例えば脊椎などを回避するための例を、図4を用いて説
明する。
Next, the area which should not be irradiated with radiation,
An example for avoiding the spine, for example, will be described with reference to FIG.

【0026】図4(a)は、放射線の照射領域と照射禁
止領域を併せてスライス像に表示するとともに、照射禁
止区間(放射線の照射を切らなければいけない軌道B上
の区間)の例を示す図、図4(b)は、照射領域のサイ
ノグラムから照射禁止領域のサイノグラムを引き算して
修正照射領域のサイノグラムを求めた例を示す図であ
る。
FIG. 4A shows an example of an irradiation prohibited section (a section on the trajectory B where radiation irradiation must be stopped) while displaying a radiation irradiation area and a irradiation prohibition area together in a slice image. FIG. 4B is a diagram showing an example in which the sinogram of the irradiation prohibited area is subtracted from the sinogram of the irradiation area to obtain the sinogram of the corrected irradiation area.

【0027】照射禁止領域に照射しないようにする手順
は、照射領域指定入力後、照射領域と同様に照射禁止領
域を指定入力し、おのおのに対応するサイノグラムを得
て、照射領域のサイノグラムから照射禁止領域のサイノ
グラムを引き算して修正照射領域のサイノグラムを求
め、この修正照射領域のサイノグラムに基づいて制御デ
ータを制御データ変換装置7で作成する。
The procedure for not irradiating the irradiation-prohibited area is as follows. After specifying the irradiation area, specifying and inputting the irradiation-prohibited area in the same manner as the irradiation area, obtaining a sinogram corresponding to each area, and prohibiting the irradiation from the sinogram of the irradiation area. The sinogram of the corrected irradiation area is obtained by subtracting the sinogram of the area, and the control data conversion device 7 creates control data based on the sinogram of the corrected irradiation area.

【0028】以上説明したように、本実施の形態は、放
射線源によって形成される照射域が回転することでサイ
ノグラムを設定入力する条件入力装置5と、該入力した
サイノグラムに基づいて多方向の前記投影データを得
て、これらの投影データについて前記X線CT装置の描
く回転座標系から前記放射線治療装置に描く回転座標系
へ座標変換する再投影データ変換装置6を備えているか
ら、X線CT装置が描く回転座標系と放射線治療装置が
描く回転座標系とを整合できる。
As described above, according to the present embodiment, the condition input device 5 for setting and inputting a sinogram by rotating the irradiation area formed by the radiation source, and the multi-directional sinogram based on the input sinogram. Since a projection data is obtained and the projection data is provided with a reprojection data conversion device 6 for performing coordinate conversion from the rotation coordinate system drawn by the X-ray CT device to the rotation coordinate system drawn by the radiotherapy device, the X-ray CT The rotation coordinate system drawn by the apparatus and the rotation coordinate system drawn by the radiation therapy apparatus can be matched.

【0029】なお、上記実施の形態では、放射線治療装
置の照射野を特定するものとして照射方向とコリメータ
開き角を例に説明したが、3次元情報を得るために、ス
ライス厚方向に適用してもよい。また、サイノグラムを
求めるためにX線CT装置で得る画像をスライス像とし
たが、これに代えてスキャノ像(X線透視像)を用いて
もよい。
In the above embodiment, the irradiation direction and the collimator opening angle have been described as examples for specifying the irradiation field of the radiation therapy apparatus. However, in order to obtain three-dimensional information, the irradiation direction and the collimator opening angle are applied in the slice thickness direction. Is also good. Further, although the image obtained by the X-ray CT apparatus to obtain the sinogram is a slice image, a scanogram (X-ray fluoroscopic image) may be used instead.

【0030】また、X線CT装置のX線照射域を決める
コリメータの開口幅を、放射線治療装置の照射幅として
直接変換して制御してもよい。
Further, the opening width of the collimator that determines the X-ray irradiation area of the X-ray CT apparatus may be directly converted and controlled as the irradiation width of the radiotherapy apparatus.

【0031】[0031]

【発明の効果】本発明は、以上説明したような構成、作
用を有しているから、X線CT装置が描く回転座標系と
放射線治療装置が描く回転座標系とを整合させたX線C
T装置を用いた放射線治療システムを提供するという効
果を奏する。
Since the present invention has the above-described configuration and operation, the X-ray C in which the rotational coordinate system drawn by the X-ray CT apparatus and the rotational coordinate system drawn by the radiotherapy apparatus are matched.
There is an effect of providing a radiation therapy system using the T device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放射線治療システムに採用したX線C
T装置の構成例を示す図。
FIG. 1 shows an X-ray C used in a radiotherapy system according to the present invention.
The figure which shows the structural example of a T apparatus.

【図2】投影データからサイノグラムを得る原理を示す
図。
FIG. 2 is a view showing the principle of obtaining a sinogram from projection data.

【図3】サイノグラムから制御データに変換する原理
図。
FIG. 3 is a principle diagram for converting a sinogram into control data.

【図4】照射禁止領域を回避する例を示す図。FIG. 4 is a diagram showing an example of avoiding an irradiation prohibited area.

【符号の説明】[Explanation of symbols]

5 条件入力装置 6 再投影データ変換装置 7 制御データ変換装置 5 Condition input device 6 Reprojection data conversion device 7 Control data conversion device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 患者に向けてX線を曝射するX線源と患
者を透過したX線を投影データとして検出するX線検出
器を患者の周りを回転して多方向の投影データを計測す
るX線CT装置を用い、高エネルギーの放射線を患者の
周囲から照射して治療する放射線治療装置の照射パター
ンを計画する放射線治療システムにおいて、前記X線C
T装置にて得た画像中に放射線治療を要する患部を入力
設定する手段と、設定された患部の周囲を回転するX線
CT装置のX線源の複数の回転位置から見た患部の第一
の位置データ群を演算する手段と、X線CT装置のX線
源の回転半径と放射線治療装置の放射線源の回転半径と
の比から前記第一の患部位置データ群を放射線治療装置
の放射線源の複数の回転位置から見た患部の第二の位置
データ群に変換する手段と、前記第二の位置データ群を
放射線治療装置のコリメータの制御データへ変換する手
段とを備えたことを特徴とする放射線治療システム。
1. An X-ray source that emits X-rays toward a patient and an X-ray detector that detects X-rays transmitted through the patient as projection data are rotated around the patient to measure projection data in multiple directions. In a radiation therapy system for irradiating high-energy radiation from around a patient and treating the radiation pattern using an X-ray CT device, the X-ray C
Means for inputting and setting an affected part requiring radiotherapy in an image obtained by the T apparatus, and a first part of the affected part viewed from a plurality of rotational positions of an X-ray source of an X-ray CT apparatus rotating around the set affected part. Means for calculating the position data group of the X-ray CT apparatus and the ratio of the rotation radius of the X-ray source of the X-ray CT apparatus to the rotation radius of the radiation source of the radiation treatment apparatus. Means for converting to a second position data group of the affected part viewed from a plurality of rotational positions, and means for converting the second position data group to control data of the collimator of the radiation therapy apparatus, Radiation therapy system.
【請求項2】 患者に向けてX線を曝射するX線源と患
者を透過したX線を投影データとして検出するX線検出
器を患者の周りを回転して多方向の投影データを計測す
るX線CT装置を用い、高エネルギーの放射線を患者の
周囲から照射して治療する放射線治療装置の照射パター
ンを計画する放射線治療システムにおいて、前記X線C
T装置にて得た画像中に放射線治療を要する患部を入力
設定する手段と、設定された患部の周囲を回転するX線
CT装置のX線源の複数の回転位置から見た患部の位置
データ群を演算する手段と、前記位置データ群を放射線
治療装置のコリメータの制御データへ変換する手段とを
備えたことを特徴とする放射線治療システム。
2. An X-ray source for exposing X-rays to a patient and an X-ray detector for detecting X-rays transmitted through the patient as projection data are rotated around the patient to measure projection data in multiple directions. In a radiation therapy system for irradiating high-energy radiation from around a patient and treating the radiation pattern using an X-ray CT device, the X-ray C
Means for inputting and setting an affected area requiring radiotherapy in an image obtained by the T apparatus, and position data of the affected area viewed from a plurality of rotation positions of an X-ray source of an X-ray CT apparatus rotating around the set affected area A radiotherapy system comprising: means for calculating a group; and means for converting the position data group into control data of a collimator of the radiotherapy apparatus.
JP8287296A 1996-10-11 1996-10-11 Radiotherapy system Pending JPH10113400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8287296A JPH10113400A (en) 1996-10-11 1996-10-11 Radiotherapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8287296A JPH10113400A (en) 1996-10-11 1996-10-11 Radiotherapy system

Publications (1)

Publication Number Publication Date
JPH10113400A true JPH10113400A (en) 1998-05-06

Family

ID=17715548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8287296A Pending JPH10113400A (en) 1996-10-11 1996-10-11 Radiotherapy system

Country Status (1)

Country Link
JP (1) JPH10113400A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522576A (en) * 2000-02-18 2003-07-29 ウィリアム・ボーモント・ホスピタル Cone beam computed tomography apparatus with flat panel imaging device
JP2004508086A (en) * 2000-09-07 2004-03-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray imaging system with visualizable beam angle adjustment
JP2006292682A (en) * 2005-04-14 2006-10-26 Mitsubishi Electric Corp Cad/cam apparatus and electron beam irradiation apparatus
JP2008148964A (en) * 2006-12-19 2008-07-03 Ge Medical Systems Global Technology Co Llc Composite apparatus for radiotherapy and data acquisition system for alignment correction
JP2008188368A (en) * 2007-02-08 2008-08-21 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus control device and radiation irradiation method
US7583775B2 (en) 2002-08-14 2009-09-01 Kabushiki Kaisha Toshiba Concentrated irradiation type radiotherapy apparatus
US8983024B2 (en) 2006-04-14 2015-03-17 William Beaumont Hospital Tetrahedron beam computed tomography with multiple detectors and/or source arrays
US9192786B2 (en) 2006-05-25 2015-11-24 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
US9320917B2 (en) 2010-01-05 2016-04-26 William Beaumont Hospital Intensity modulated arc therapy with continuous coach rotation/shift and simultaneous cone beam imaging
US9339243B2 (en) 2006-04-14 2016-05-17 William Beaumont Hospital Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
US9421399B2 (en) 2002-12-18 2016-08-23 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US9498167B2 (en) 2005-04-29 2016-11-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US9630025B2 (en) 2005-07-25 2017-04-25 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US10004650B2 (en) 2005-04-29 2018-06-26 Varian Medical Systems, Inc. Dynamic patient positioning system
USRE46953E1 (en) 2007-04-20 2018-07-17 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US10773101B2 (en) 2010-06-22 2020-09-15 Varian Medical Systems International Ag System and method for estimating and manipulating estimated radiation dose

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522576A (en) * 2000-02-18 2003-07-29 ウィリアム・ボーモント・ホスピタル Cone beam computed tomography apparatus with flat panel imaging device
JP2013146637A (en) * 2000-02-18 2013-08-01 William Beaumont Hospital Imaging system
US8135111B2 (en) 2000-02-18 2012-03-13 William Beaumont Hospital Cone beam computed tomography with a flat panel imager
JP4846963B2 (en) * 2000-09-07 2011-12-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Visualizable X-ray imaging system with adjustable beam angle
JP2004508086A (en) * 2000-09-07 2004-03-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray imaging system with visualizable beam angle adjustment
US7583775B2 (en) 2002-08-14 2009-09-01 Kabushiki Kaisha Toshiba Concentrated irradiation type radiotherapy apparatus
US9901750B2 (en) 2002-12-18 2018-02-27 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US9421399B2 (en) 2002-12-18 2016-08-23 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US11344748B2 (en) 2002-12-18 2022-05-31 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
JP2006292682A (en) * 2005-04-14 2006-10-26 Mitsubishi Electric Corp Cad/cam apparatus and electron beam irradiation apparatus
US9974494B2 (en) 2005-04-29 2018-05-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US9498167B2 (en) 2005-04-29 2016-11-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US10004650B2 (en) 2005-04-29 2018-06-26 Varian Medical Systems, Inc. Dynamic patient positioning system
US9687674B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9764159B2 (en) 2005-07-25 2017-09-19 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9630025B2 (en) 2005-07-25 2017-04-25 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US11642027B2 (en) 2005-07-25 2023-05-09 Siemens Healthineers International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687677B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687673B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687678B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687676B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687675B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US10595774B2 (en) 2005-07-25 2020-03-24 Varian Medical Systems International Methods and apparatus for the planning and delivery of radiation treatments
US9788783B2 (en) 2005-07-25 2017-10-17 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US8983024B2 (en) 2006-04-14 2015-03-17 William Beaumont Hospital Tetrahedron beam computed tomography with multiple detectors and/or source arrays
US9339243B2 (en) 2006-04-14 2016-05-17 William Beaumont Hospital Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
US9192786B2 (en) 2006-05-25 2015-11-24 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
JP2008148964A (en) * 2006-12-19 2008-07-03 Ge Medical Systems Global Technology Co Llc Composite apparatus for radiotherapy and data acquisition system for alignment correction
JP2008188368A (en) * 2007-02-08 2008-08-21 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus control device and radiation irradiation method
USRE46953E1 (en) 2007-04-20 2018-07-17 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US9320917B2 (en) 2010-01-05 2016-04-26 William Beaumont Hospital Intensity modulated arc therapy with continuous coach rotation/shift and simultaneous cone beam imaging
US10773101B2 (en) 2010-06-22 2020-09-15 Varian Medical Systems International Ag System and method for estimating and manipulating estimated radiation dose

Similar Documents

Publication Publication Date Title
US11737714B2 (en) Cone-beam computed tomography imaging devices, systems, and methods
US7356112B2 (en) Computed tomography scanning
JP4948415B2 (en) Medical radiotherapy equipment
US8483363B2 (en) Movable wedge for improved image quality in 3D X-ray imaging
US20070014391A1 (en) System and methods for treating patients using radiation
JPH10113400A (en) Radiotherapy system
WO2010101208A1 (en) X-ray ct device and tomography method
JPH1052421A (en) Device and method for inspecting radioactive rays supplied to object
JPH0732807B2 (en) Radioactive absorption measurement technology used for stereotactic radiotherapy
JP4463688B2 (en) Radiotherapy apparatus and operation method thereof
JP2006297095A (en) Creating and irradiation system for computer tomographic image data set of patient
JP6656841B2 (en) Radiation therapy system
KR20070104924A (en) Tomography equipment comprising a variable reproduction geometry
JP2009006133A (en) X-ray ct apparatus and method of controlling the same
US8644448B2 (en) Method for collimating to an off-center examination sub-object
JP5121482B2 (en) Radiation therapy dose distribution measuring apparatus and radiation therapy dose distribution measuring program
JP2004113785A (en) Image formation method and ct unit for implementing the same in computerized tomography
KR100863747B1 (en) An apparatus for computerized tomography comprising a pair of synchronized gantries
JP4178332B2 (en) X-ray diagnostic equipment
KR20150065611A (en) Cone-Beam CT / Magnetic Resonance hybrid simulation system and method for generating reference images for radiotherapy
JP6411094B2 (en) X-ray CT apparatus and medical information processing apparatus
JP2000116638A (en) Transmission type ct apparatus
JP4326567B2 (en) Radiotherapy apparatus control apparatus and radiation irradiation method
JP4763361B2 (en) X-ray CT system
WO2023176264A1 (en) Medical image processing device, treatment system, medical image processing method, and program