JPH10111274A - Residual chlorine meter - Google Patents

Residual chlorine meter

Info

Publication number
JPH10111274A
JPH10111274A JP8264459A JP26445996A JPH10111274A JP H10111274 A JPH10111274 A JP H10111274A JP 8264459 A JP8264459 A JP 8264459A JP 26445996 A JP26445996 A JP 26445996A JP H10111274 A JPH10111274 A JP H10111274A
Authority
JP
Japan
Prior art keywords
voltage
electrode
current
pulse
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8264459A
Other languages
Japanese (ja)
Other versions
JP3354054B2 (en
Inventor
Takashi Kitamoto
尚 北本
Yoichiro Nakamura
陽一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP26445996A priority Critical patent/JP3354054B2/en
Publication of JPH10111274A publication Critical patent/JPH10111274A/en
Application granted granted Critical
Publication of JP3354054B2 publication Critical patent/JP3354054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve miniaturization and cost reduction and to enable highly accurate measurement by applying pulse voltage across an indicating electrode and an opposed electrode. SOLUTION: One terminal of a pulse generator 18 is connected to an opposed electrode 12 and the other terminal thereof is connected to an indicating electrode 13 through a current/voltage converter 21 and the pulse generator 18 applies pulse voltage across the opposed electrode 12 and the indicating electrode 13 on the basis of the command from an operation means CPU 19. Since the voltage applied across both electrodes is pulsative, an electrolytic time is short and no effect is exerted on the thickness of a diffusion layer. An A/D converter 20 inputs the current signal from the indicating electrode 13 outputted through the current/voltage converter 21 to perform analogue/digital conversion. The output of the A/D converter 20 is processed by an operation means 19 to be subjcted to digital/analogue conversion by a D/A converter 22 to be sent to a display means 25 to perform the display related to the concn. of free effective chlorine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は残留塩素計に関し、更に
詳しくは塩素濃度の測定に妨害となる他成分の影響を除
去するとともに、電極上に電解生成した成分を逆電解に
より除去するようにした無試薬形残留塩素計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual chlorine analyzer, and more particularly, to a method for removing the effects of other components that interfere with the measurement of chlorine concentration and removing the components electrolytically formed on the electrodes by reverse electrolysis. To a reagent-free residual chlorine analyzer.

【0002】[0002]

【従来の技術】残留塩素計は指示極と対極とを対向配置
し、溶液中に存在する遊離有効塩素をポーラログラフ法
に従って測定するもので、妨害成分の影響を除くため試
薬を用いてpH調整を行うタイプと無試薬タイプとがあ
る。前者は妨害成分の影響が測定結果に現われないが試
薬を用いる必要がある。
2. Description of the Related Art A residual chlorine meter has an indicator electrode and a counter electrode arranged opposite to each other and measures free available chlorine present in a solution in accordance with a polarographic method. In order to eliminate the influence of interfering components, pH is adjusted using a reagent. There is a type to perform and a non-reagent type. In the former, the effect of interfering components does not appear in the measurement results, but a reagent must be used.

【0003】図6は従来の無試薬形残留塩素計の構成図
である。図中1は電極槽で、流入口1aより槽内に導か
れた測定液Sは測定槽1bに導かれ、オーバフローした
測定液は流出口1c,1eより排出される。測定槽1b
にはガラスビーズ1dが入れられ、この部分に先端のス
ポット電極2aを挿入した回転指示極2が設けられ、更
にこの電極と対向して対極3が設けられている。
FIG. 6 is a block diagram of a conventional reagentless residual chlorine meter. In the figure, reference numeral 1 denotes an electrode tank. The measurement liquid S introduced into the tank from the inlet 1a is guided to the measurement tank 1b, and the overflowing measurement liquid is discharged from the outlets 1c and 1e. Measurement tank 1b
Is provided with a rotation indicator pole 2 into which a spot electrode 2a at the tip is inserted, and a counter electrode 3 is provided opposite to this electrode.

【0004】4はこれら電極間に流れる拡散電流を検出
する電流計、5は電源、6は電解反応を生ずる電極電位
を与える直流加電圧部でボリュームと電圧計とを含んで
いる。このような構成で、塩素ガスが吹き込まれた水中
にはHCLO又はCLO-として遊離有効塩素が存在す
る。これらをまとめてCL2とすると、指示極2におい
て以下の還元反応が起こり Cl2+2e-→2Cl- …(1) 対極3で以下の電解酸化が起こる。 AgCl-←→AgCl+e- …(2)
Reference numeral 4 denotes an ammeter for detecting a diffusion current flowing between these electrodes, 5 denotes a power supply, and 6 denotes a DC voltage applying unit for giving an electrode potential causing an electrolytic reaction, and includes a volume and a voltmeter. In such a configuration, the water chlorine gas was blown HCLO or CLOs - free available chlorine is present as. When these are collectively referred to as CL 2 , the following reduction reaction occurs at the indicator electrode 2, and Cl 2 + 2e → 2Cl (1) The following electrolytic oxidation occurs at the counter electrode 3. AgCl ← → AgCl + e … (2)

【0005】この電気分解の始まる加電圧レベルは既知
であり、直流加電圧部6のボリュームを調整し、指示極
2と対極3との間にこの加電圧が加わるようにセットす
る。このとき流れる拡散電流i4は以下のように被測定
液の濃度Cに関連した値を示し、 i4=KC(但しKは定数) この電流を測定して遊離有効塩素の濃度を求めている。
The applied voltage level at which the electrolysis starts is known, and the volume of the DC applied voltage unit 6 is adjusted so that the applied voltage is applied between the indicator electrode 2 and the counter electrode 3. The diffusion current i 4 flowing at this time indicates a value related to the concentration C of the liquid to be measured as follows: i 4 = KC (where K is a constant) The current is measured to determine the concentration of free available chlorine. .

【0006】なお、加電圧を増加させても拡散電流が増
加しない領域の電位はプラトー電位と呼ばれるが、この
プラトーを生ずる電位は拡散電流が大きくなるほど電極
間のオームの法則に基づく電圧効果が大きくなってずれ
る。このため、拡散電流に応じて加電圧を変化させ、加
電圧がプラトー電位から外れないようにしている。しか
しながら、このような試薬を用いないタイプの残留塩素
計では、測定液中に妨害成分が残り、この妨害成分によ
って測定すべき拡散電流が影響される。
The potential in a region where the diffusion current does not increase even when the applied voltage is increased is called a plateau potential. The potential at which this plateau occurs increases as the diffusion current increases, and the voltage effect based on Ohm's law between the electrodes increases. Misplaced. Therefore, the applied voltage is changed according to the diffusion current so that the applied voltage does not deviate from the plateau potential. However, in such a residual chlorine analyzer that does not use a reagent, an interfering component remains in the measurement solution, and the interfering component affects the diffusion current to be measured.

【0007】図7は妨害成分を含む測定液のポーラログ
ラムを表わす。Pcは遊離有効塩素によるプラトー、P
aは第1の妨害成分によるプラトー、Pbは第2の妨害
成分によるプラトーを表わす。ia,ib,icは夫々
の拡散電流を表わし、Ea,Eb,Ecはこれらプラト
ーを生ずる加電圧を表わす。
FIG. 7 shows a polarogram of a measuring solution containing an interfering component. Pc is a plateau by free available chlorine, P
a represents a plateau caused by the first interference component, and Pb represents a plateau caused by the second interference component. ia, ib, and ic represent respective diffusion currents, and Ea, Eb, and Ec represent applied voltages that cause these plateaus.

【0008】加電圧をEcにセットして測定を行った場
合、Eaで第1の妨害成分が電解(還元)され、Ebで
第1及び第2の妨害成分が電解(還元)されて拡散電流
が流れ、これらが測定すべき遊離有効塩素の拡散電流に
加わり、icは測定すべき真の遊離有効塩素濃度に対応
しなくなる。
When the measurement is performed with the applied voltage set to Ec, the first disturbing component is electrolyzed (reduced) by Ea, and the first and second disturbing components are electrolyzed (reduced) by Eb, resulting in a diffusion current. Flow, which add to the diffusion current of the free available chlorine to be measured, and ic no longer corresponds to the true free available chlorine concentration to be measured.

【0009】[0009]

【発明が解決しようとする課題】ところで、図6に示す
従来例においては拡散律速(加電圧が大きい場合に、電
極表面において未反応塩素が存在せず、従って、電解還
元反応は加電圧には影響されず、反応物質である塩素の
供給速度により制限されることを言い、このときの反応
電流を拡散電流という)を実現するために、回転指示極
を回転させて拡散層(の厚さ)を一定にする。また、測
定液の流速が大きく変わると拡散層の厚さが変わるので
専用の測定槽を用いて流速変動を抑えなければならな
い。その結果、稼働部が増えて故障要因や、ドリフト要
因となり、大型でコスト高にもなる等の問題があった。
By the way, in the conventional example shown in FIG. 6, there is no diffusion control (when the applied voltage is large, there is no unreacted chlorine on the electrode surface. It is not affected and is limited by the supply rate of chlorine, which is the reactant. The reaction current at this time is called diffusion current.) Constant. Further, when the flow rate of the measurement liquid changes greatly, the thickness of the diffusion layer changes, so that the fluctuation of the flow rate must be suppressed by using a dedicated measurement tank. As a result, there is a problem that the number of operating parts increases, which causes a failure factor or a drift factor, resulting in a large size and high cost.

【0010】[0010]

【課題を解決するための手段】本発明は上記問題点を解
決するために成されたもので、請求項1においては、指
示極と対極との間に流れた被測定液中の遊離有効塩素を
還元するのに要した拡散電流に基づいて、前記遊離有効
塩素の濃度を測定する残留塩素計において、前記指示極
と対極間に印加する電圧をパルス電圧としたことを特徴
とし、請求項2においては、指示極を複数個設けると共
にこれら複数の指示極に印加する電圧をパルス電圧と
し、前記指示極へのパルス電圧印加を所定の時間間隔で
順次切換えるように構成し、
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In the present invention, the free available chlorine in the liquid to be measured flowing between the indicator electrode and the counter electrode is described. 3. A residual chlorine meter for measuring the concentration of free available chlorine based on a diffusion current required to reduce the amount of free available chlorine, wherein a voltage applied between the indicator electrode and the counter electrode is a pulse voltage. In the configuration, a plurality of indicator electrodes are provided and the voltage applied to the plurality of indicator electrodes is a pulse voltage, and the pulse voltage application to the indicator electrodes is sequentially switched at predetermined time intervals,

【0011】請求項3においては、前記パルス電圧は予
め測定した妨害成分による拡散電流を生じる電圧をベー
ス電圧として印加したことを特徴とし、請求項4におい
ては、前記パルス電圧印加により流れる電流のうち、パ
ルスを印加する直前の電流値をサンプリングし、サンプ
リングした電流値の差を測定電流(残留塩素濃度)とし
たことを特徴とし、請求項5におていては、前記パルス
電圧は、零を境として正,負に変化するパルス電圧とし
たことを特徴とするものである。
According to a third aspect of the present invention, the pulse voltage is obtained by applying, as a base voltage, a voltage that generates a diffusion current due to a previously measured interference component. The method according to claim 5, wherein a current value immediately before the pulse is applied is sampled, and a difference between the sampled current values is used as a measured current (residual chlorine concentration). It is characterized in that a positive or negative pulse voltage is used as a boundary.

【0012】[0012]

【発明の実施の形態】図1は本発明の実施の形態の一例
を示す要部構成図である。図において10は筒状のプロ
ーブで、このプローブ10の底部にはキャップ状の対極
12が気密に固定され、プローブの側面には対極2に対
して所定の間隔を保って指示極13が気密に固定されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a main part configuration diagram showing an example of an embodiment of the present invention. In the figure, reference numeral 10 denotes a cylindrical probe. A cap-shaped counter electrode 12 is hermetically fixed to the bottom of the probe 10, and an indicator electrode 13 is hermetically sealed on a side surface of the probe at a predetermined distance from the counter electrode 2. Fixed.

【0013】18はパルス発生器で、一方の端子は対極
12に接続され、他方の端子は電流/電圧変換器21を
介して指示極13に接続されており、パルス発生器18
は演算手段(CPU)19からの指令に基づいて対極1
2と指示極13の間にパルス電圧を印加する。20は電
流/電圧変換器21を介して出力される指示極13から
の電流信号を入力してアナログ/デジタル変換を行うA
/D変換器である。このA/D変換器20の出力は演算
手段19により処理されてD/A変換器22によりデジ
タル/アナログ変換が行なわれ、表示手段25に送られ
て遊離有効塩素濃度に関連した表示が行われる。
A pulse generator 18 has one terminal connected to the counter electrode 12 and the other terminal connected to the indicator 13 via a current / voltage converter 21.
Is a counter electrode 1 based on a command from a calculating means (CPU) 19.
A pulse voltage is applied between 2 and the indicator electrode 13. Reference numeral 20 denotes an A for inputting a current signal from the indicator electrode 13 output via the current / voltage converter 21 and performing analog / digital conversion.
/ D converter. The output of the A / D converter 20 is processed by the arithmetic means 19, and the digital / analog conversion is performed by the D / A converter 22. The output is sent to the display means 25, and the display relating to the free available chlorine concentration is performed. .

【0014】図2は上記パルス発生器18により発生し
たパルス加電圧(a)と、このパルス加電圧が対極12
と指示極13間に印加されることにより指示極13に発
生する電流の大きさ(b)を示すものである。なお、こ
こでは測定液に含まれる遊離有効塩素以外の妨害成分の
種類と濃度は既知であり、かつ変化しないものとする。
従って例えば先に説明した図7の様な出力特性を有する
被測定液の遊離有効塩素を測定したい場合、(a)図に
示すパルス加電圧においては、ベースとなるパルスの初
期電圧V0は図7のEbに相当する電圧とし、Vaの電
圧はEcに相当する電圧とする。
FIG. 2 shows the pulse voltage (a) generated by the pulse generator 18 and the pulse voltage applied to the counter electrode 12.
3 shows the magnitude (b) of the current generated in the indicator electrode 13 when applied between the indicator electrode 13 and. Here, it is assumed that the types and concentrations of the interfering components other than the free available chlorine contained in the measurement solution are known and do not change.
Therefore, for example, when it is desired to measure the free available chlorine of the liquid to be measured having the output characteristics as shown in FIG. 7 described above, the initial voltage V 0 of the base pulse is determined by the pulse applied voltage shown in FIG. 7, and the voltage Va is a voltage corresponding to Ec.

【0015】その結果、(b)図に示す様に、指示極1
3には始め大きな電流が流れ、その後次第に安定する。
次にパルス加電圧がOFFになり、初期電圧V0になる
と、今度は逆方向に大きな電流が流れて前記と同様に安
定化する。この初期に流れる大電流は電極界面の容量を
満たすために流れる充電電流と残留塩素の電気分解によ
り流れる電解界電流とからなるが、加電圧変化の初期に
は充電電流が主として流れ、大きく変化する。
As a result, as shown in FIG.
3, a large current flows first and then gradually stabilizes.
Next, when the pulse applied voltage is turned off and becomes the initial voltage V 0 , a large current flows in the opposite direction, and the voltage is stabilized as described above. The large current flowing in the initial stage is composed of a charging current flowing to fill the capacity of the electrode interface and an electrolytic field current flowing due to the electrolysis of residual chlorine. In the initial stage of the applied voltage change, the charging current mainly flows and changes greatly. .

【0016】本発明では電流値の測定をパルス印加の直
前AとパルスがOFFとなる直前図中Bで示すポイント
でサンプリングし、それらの電流値の差を演算手段19
(図1参照)により演算する。この差電流が遊離有効塩
素に関連した値となる。上記の構成によれば、電極間に
印加する電圧がパルス状なので電解時間が短いため拡散
層の厚さに影響を与えることがない。
In the present invention, the measurement of the current value is sampled at a point A shown immediately before the pulse application and at a point B shown in FIG.
(See FIG. 1). This difference current becomes a value related to free available chlorine. According to the above configuration, since the voltage applied between the electrodes is pulse-shaped, the electrolysis time is short, so that the thickness of the diffusion layer is not affected.

【0017】図3は請求項2の実施の形態の一例を示す
構成図である。図において図1と同一要素には同一符号
を付して重複する説明は省略する。図においてA〜Dは
指示極であり、この例においては4つの指示極が対極1
2に対して等距離に配置されている。30は切換え手段
で、演算手段19から指令された切換え信号に基づいて
各指示極に発生する電流信号を電流/電圧変換器21に
伝送する。
FIG. 3 is a block diagram showing an example of the second embodiment of the present invention. In the figure, the same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted. In the figure, A to D are indicator poles, and in this example, four indicator poles are counter electrodes 1
2 are equidistant from each other. A switching means 30 transmits a current signal generated at each indicator electrode to the current / voltage converter 21 based on a switching signal instructed by the arithmetic means 19.

【0018】図4はパルス加電圧と切換え手段30の切
換えタイミングの一例を示すもので、指示極Aのパルス
aの立下がりのタイミングに同期して指示極Bのパルス
が発され、順次C,Dの指示極からパルスが発されて指
示極Aの次のパルスbが発されるまでの間に各指示極に
発生した電気信号が電流/電圧変換器21に伝送され
る。なお、この場合も一つの電極に印加するパルス電圧
のベース電圧やサンプリングのタイミングは図1で説明
した場合と同条件で行うものとする。
FIG. 4 shows an example of the pulse applied voltage and the switching timing of the switching means 30. The pulse of the indicator pole B is emitted in synchronization with the falling timing of the pulse a of the indicator pole A. An electric signal generated at each indicator electrode is transmitted to the current / voltage converter 21 until a pulse is emitted from the indicator electrode D and a pulse b next to the indicator electrode A is emitted. Also in this case, the base voltage of the pulse voltage applied to one electrode and the timing of sampling are performed under the same conditions as those described with reference to FIG.

【0019】図4の構成によれば一つの指示極に印加す
るパルス間隔を長くすることができるので、非測定時に
おける指示極表面の拡散層がより確実に定常状態に復元
することができ、正確な遊離有効塩素の測定ができる。
According to the configuration of FIG. 4, the pulse interval applied to one indicator electrode can be lengthened, so that the diffusion layer on the indicator electrode surface during non-measurement can be restored to a steady state more reliably. Accurate free available chlorine measurement.

【0020】図5(a)はベース電圧V0に対しパルス
加電圧Va(例えば−500mV)を印加し所定の時間
(パルス幅)経過後逆電圧(Vb…例えば200mV)
を印加し、その結果指示極に生ずる拡散電流の状態を示
すものである。このように零を境として正,負に変化す
るパルスを印加すれば、正の電圧が印加されている間に
指示極に電気分解により付着する金属膜を除去すること
ができる。
[0020] FIG. 5 (a) relative to the base voltage V 0 pulse applied voltage V a (e.g. -500 mV) applied to a predetermined time (pulse width) after reverse voltage (V b ... for example 200 mV)
Is applied, and as a result, the state of the diffusion current generated in the indicator electrode is shown. By applying a pulse that changes positively and negatively from zero as described above, the metal film adhered to the indicator electrode by electrolysis while the positive voltage is applied can be removed.

【0021】[0021]

【発明の効果】以上詳しく説明したように本発明によれ
ば、指示極と対極との間に流れた被測定液中の遊離有効
塩素を還元するのに要した拡散電流に基づいて、前記遊
離有効塩素の濃度を測定する残留塩素計において、前記
指示極に印加する電圧をパルス電圧とした。従って、拡
散層への影響を本質的に除去することができ、従来直流
電圧を定常的に印加するために必要であった指示極の回
転機構や測定槽が不要となり、故障要因や、ドリフト要
因を少なくすることができた。その結果、小形,低コス
トの残留塩素計を実現することができた。また、複数の
指示極を設けたので、指示極表面の拡散層がより確実に
定常状態に復元することができ、正確な遊離有効塩素の
測定が可能となった。さらに、正,負に変化するパルス
を印加するようにしたので電気分解により指示極に付着
する金属膜が除去され精度の高い残留塩素計を実現する
ことができた。
As described above in detail, according to the present invention, based on the diffusion current required for reducing free available chlorine in the liquid to be measured flowing between the indicator electrode and the counter electrode, the free In a residual chlorine meter for measuring the concentration of available chlorine, the voltage applied to the indicator electrode was a pulse voltage. Therefore, the influence on the diffusion layer can be essentially eliminated, and a rotating mechanism and a measuring tank of the indicator electrode, which were conventionally required for applying a DC voltage constantly, become unnecessary. Could be reduced. As a result, a small-sized, low-cost residual chlorine analyzer was realized. In addition, since a plurality of indicator electrodes were provided, the diffusion layer on the indicator electrode surface could be more reliably restored to a steady state, and accurate measurement of free available chlorine became possible. Further, since positive and negative pulses were applied, the metal film adhering to the indicator electrode was removed by electrolysis, and a highly accurate residual chlorine meter could be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す構成図であ
る。
FIG. 1 is a configuration diagram illustrating an example of an embodiment of the present invention.

【図2】パルス加電圧と測定電流の関係を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a relationship between a pulse applied voltage and a measured current.

【図3】指示極を複数とした場合の実施の形態の一例を
示す構成図である。
FIG. 3 is a configuration diagram showing an example of an embodiment when a plurality of indicator electrodes are provided.

【図4】パルス加電圧と切換えタイミングの一例を示す
図である。
FIG. 4 is a diagram showing an example of a pulse applied voltage and a switching timing.

【図5】正,負のパルスを印加したときに流れる拡散電
流の状態を示す図である。
FIG. 5 is a diagram showing a state of a diffusion current flowing when positive and negative pulses are applied.

【図6】従来の残留塩素計の一例を示す構成図である。FIG. 6 is a configuration diagram showing an example of a conventional residual chlorine meter.

【図7】妨害成分を含む測定液のポーラログラムを示す
図である。
FIG. 7 is a diagram showing a polarogram of a measurement solution containing an interfering component.

【符号の説明】[Explanation of symbols]

10 プロープ 12 対極 13 指示極 18 パルス発生器 19 演算手段 20 A/D変換器 21 電流/電圧変換器 22 D/A変換器 25 表示手段 DESCRIPTION OF SYMBOLS 10 Probe 12 Counter electrode 13 Indicator electrode 18 Pulse generator 19 Computing means 20 A / D converter 21 Current / voltage converter 22 D / A converter 25 Display means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 指示極と対極との間に流れた被測定液中
の遊離有効塩素を還元するのに要した拡散電流に基づい
て、前記遊離有効塩素の濃度を測定する残留塩素計にお
いて、前記指示極と対極間に印加する電圧をパルス電圧
としたことを特徴とする残留塩素計。
1. A residual chlorine meter for measuring the concentration of free available chlorine based on a diffusion current required to reduce free available chlorine in a liquid to be measured flowing between an indicator electrode and a counter electrode, A residual chlorine meter, wherein the voltage applied between the indicator electrode and the counter electrode is a pulse voltage.
【請求項2】 前記指示極を複数個設けると共に前記複
数の指示極に印加する電圧をパルス電圧とし、前記指示
極へのパルス電圧印加を所定の時間間隔で順次切換える
ように構成したことを特徴とする請求項1記載の残留塩
素計。
2. The method according to claim 1, wherein a plurality of said indicator poles are provided, and a voltage applied to said plurality of indicator poles is a pulse voltage, and application of the pulse voltage to said indicator poles is sequentially switched at predetermined time intervals. The residual chlorine meter according to claim 1, wherein
【請求項3】 前記パルス電圧は予め測定した妨害成分
による拡散電流を生じる電圧をベース電圧として印加し
たことを特徴とする請求項1または2記載の残留塩素
計。
3. The residual chlorine meter according to claim 1, wherein the pulse voltage is applied as a base voltage that generates a diffusion current due to a previously measured interference component.
【請求項4】 前記パルス電圧印加により流れる電流の
うち、パルスを印加する直前の電流値をサンプリング
し、サンプリングした電流値の差を測定電流(残留塩素
濃度)としたことを特徴とする請求項1又は2記載の残
留塩素計。
4. The method according to claim 1, wherein a current value immediately before application of a pulse is sampled from a current flowing by applying the pulse voltage, and a difference between the sampled current values is used as a measured current (residual chlorine concentration). 3. The residual chlorine meter according to 1 or 2.
【請求項5】前記パルス電圧は、零を境として正,負に
変化するパルス電圧としたことを特徴とする請求項1ま
たは2記載の残留塩素計。
5. The residual chlorine meter according to claim 1, wherein the pulse voltage is a pulse voltage that changes positively and negatively with zero as a boundary.
JP26445996A 1996-10-04 1996-10-04 Residual chlorine meter Expired - Lifetime JP3354054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26445996A JP3354054B2 (en) 1996-10-04 1996-10-04 Residual chlorine meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26445996A JP3354054B2 (en) 1996-10-04 1996-10-04 Residual chlorine meter

Publications (2)

Publication Number Publication Date
JPH10111274A true JPH10111274A (en) 1998-04-28
JP3354054B2 JP3354054B2 (en) 2002-12-09

Family

ID=17403512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26445996A Expired - Lifetime JP3354054B2 (en) 1996-10-04 1996-10-04 Residual chlorine meter

Country Status (1)

Country Link
JP (1) JP3354054B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262612A (en) * 2002-03-08 2003-09-19 Kurita Water Ind Ltd Method for detecting residual oxidizer in water and method for controlling amount of injection of oxidizer and reducer using the same
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2012521504A (en) * 2009-03-24 2012-09-13 ヴェオリア オ − コンパニ ジェネラル デ ゾ Equipment and methods for water quality monitoring in drinking water networks
CN104792831A (en) * 2013-12-23 2015-07-22 赛默飞世尔科技水份传感器有限公司 Chlorine detection with pulsed amperometric detection
JP2017053746A (en) * 2015-09-10 2017-03-16 東亜ディーケーケー株式会社 Residual chlorine measurement device and residual chlorine measurement method
CN114137037A (en) * 2020-09-03 2022-03-04 横河电机株式会社 Measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262612A (en) * 2002-03-08 2003-09-19 Kurita Water Ind Ltd Method for detecting residual oxidizer in water and method for controlling amount of injection of oxidizer and reducer using the same
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2012521504A (en) * 2009-03-24 2012-09-13 ヴェオリア オ − コンパニ ジェネラル デ ゾ Equipment and methods for water quality monitoring in drinking water networks
CN104792831A (en) * 2013-12-23 2015-07-22 赛默飞世尔科技水份传感器有限公司 Chlorine detection with pulsed amperometric detection
JP2017053746A (en) * 2015-09-10 2017-03-16 東亜ディーケーケー株式会社 Residual chlorine measurement device and residual chlorine measurement method
US10473618B2 (en) 2015-09-10 2019-11-12 Kurita Water Industries Ltd. Residual chlorine measuring apparatus and method of measuring residual chlorine
CN114137037A (en) * 2020-09-03 2022-03-04 横河电机株式会社 Measuring device
CN114137037B (en) * 2020-09-03 2024-06-07 横河电机株式会社 Measuring device

Also Published As

Publication number Publication date
JP3354054B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
US5059908A (en) Amperimetric measurement with cell electrode deplating
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
CA1148218A (en) Apparatus for oxygen partial pressure measurement
JP3354054B2 (en) Residual chlorine meter
US4321113A (en) Electronic calibration of electrochemical sensors
JPH1082761A (en) Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
JPH06213867A (en) Method for monitoring component in plating bath
US4244800A (en) Apparatus for use in rapid and accurate controlled-potential coulometric analysis
JP3390154B2 (en) Residual chlorine meter and water purification device using it
EP0626577A1 (en) Method of monitoring metal ion content in plating baths
JP2783725B2 (en) Moisture measurement method
JPH0298661A (en) Method for measuring residual chlorine without being affected by disturbing component
JPH0641168Y2 (en) Reagentless residual chlorine meter
JPS63198861A (en) Method for electrochemical measurement of solute concentration
JPH11118756A (en) Oxidation reduction potential-measuring device
JPS6097247A (en) Continuous liquid-concentration measuring device
EP0942280A1 (en) Automatic measuring device for the concentration of a developing agent
JP3162836B2 (en) Measuring method of water concentration and oxygen concentration in exhaust gas
Czajkowski et al. Automatic apparatus for precise measuring and recording of pzc value of liquid electrodes and its application
JP3504127B2 (en) Chlorine concentration measuring device
JPH11148914A (en) Apparatus for measuring concentration of chlorine
JPH0736009B2 (en) Ion concentration measuring device
SU1548275A1 (en) Electroplating apparatus
JPH02108955A (en) Method and device for density measurement
SU915014A1 (en) Device for forming electrolyte gap in mercury coulometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10