JPH10111037A - Cooler - Google Patents

Cooler

Info

Publication number
JPH10111037A
JPH10111037A JP8283215A JP28321596A JPH10111037A JP H10111037 A JPH10111037 A JP H10111037A JP 8283215 A JP8283215 A JP 8283215A JP 28321596 A JP28321596 A JP 28321596A JP H10111037 A JPH10111037 A JP H10111037A
Authority
JP
Japan
Prior art keywords
cooling
current
heat
refrigerant
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8283215A
Other languages
Japanese (ja)
Inventor
Masanori Enomoto
正徳 榎本
Shingo Kimura
新悟 木村
Masayuki Tanaka
雅之 田中
Tatsuo Fujimoto
龍雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP8283215A priority Critical patent/JPH10111037A/en
Publication of JPH10111037A publication Critical patent/JPH10111037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To prevent trouble in a cooling unit of a heating medium by effecting cooling operation smoothly by the cooling unit. SOLUTION: A cooler is constituted so as to effect room cooling by cooling heating medium, conducted through a medium circulation passage 2 for cooling through a cooling device 9 provided with a refrigerant circulation system 48, having an evaporator 44, an absorber 45, a reproducer 46 and a condenser 47, and a circulation passage 61 of water, absorbing and radiating the heat of refrigerant vapor of the refrigerant circulation system 48. In this case, electrodes 1a, 1b are arranged so as to be opposed in the circulation passage 61 of water with an interval to impress an AC voltage on the electrodes 1a, 1b by an electrode driving unit 64 and restrain the deposit of scale constituents in the water of the circulation passage 61 while a conducted current between the electrodes 1a, 1b is detected by a current detecting sensor 69. When the detected current is higher than a set threshold value of the current, the amount of combustion heat of an absorbing liquid heating burner 60 is reduced to reduce a heat medium cooling efficiency by a cooling device 9 while the combustion of the absorbing liquid heating burner 60 is stopped and a control for stopping the cooling operation is effected by a cooling control unit 68 when the detected current is higher than a cooling stop reference current value, larger than the set threshold value of current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水等の熱媒体を用い
て冷房を行う冷房器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for cooling using a heat medium such as water.

【0002】[0002]

【従来の技術】近年、冷房器および冷・暖房器が広く用
いられている。図6には出願人が試作した未公知であ
る、冷・暖房器のシステム主要構成の一例が示されてお
り、この冷・暖房器は、室内機5と、室外機7と、室外
機5と室外機7を接続している管路34,35とを有して構
成されている。室内機5は冷・温風を冷・暖房領域(室
内)へ供給するもので、放熱ファン6と放熱熱交換器23
を有して構成されており、放熱ファン6の回転による通
風が放熱熱交換器23を通過するときに放熱熱交換器23を
流れる熱媒体(例えば水)の熱によって冷却・加熱さ
れ、その冷・温風が室内へ吹き出すように形成されてお
り、放熱熱交換器23は熱媒体の冷房放熱部と暖房放熱部
の兼用の放熱部を成している。
2. Description of the Related Art In recent years, air conditioners and air conditioners / heaters have been widely used. FIG. 6 shows an example of the main configuration of a cooling / heating system, which is unknown and has been prototyped by the applicant. The cooling / heating device includes an indoor unit 5, an outdoor unit 7, and an outdoor unit 5. And the pipelines 34 and 35 connecting the outdoor unit 7. The indoor unit 5 supplies cold / hot air to a cooling / heating area (indoor), and includes a radiating fan 6 and a radiating heat exchanger 23.
Is cooled and heated by heat of a heat medium (for example, water) flowing through the heat radiating heat exchanger 23 when the ventilation by the rotation of the heat radiating fan 6 passes through the heat radiating heat exchanger 23. The hot air is formed so as to blow out into the room, and the heat radiating heat exchanger 23 forms a heat radiating portion that also serves as a cooling radiating portion and a heating radiating portion of the heat medium.

【0003】上記放熱熱交換器23の入側には管路34の一
端側が接続され、管路34の他端側は室外機7に導かれて
いる。また、放熱熱交換器23の出側には管路35の一端側
が接続され、管路35の他端側は室外機7に導かれてお
り、室外機7から管路34を介して熱媒体が放熱熱交換器
23へ流れ込み、放熱熱交換器23を流れた熱媒体は管路35
を通って室外機7へ戻される管路構成になっている。
[0003] One end of a pipe 34 is connected to the inlet side of the heat radiation heat exchanger 23, and the other end of the pipe 34 is led to the outdoor unit 7. One end of a pipe 35 is connected to the outlet side of the heat radiation heat exchanger 23, and the other end of the pipe 35 is led to the outdoor unit 7. Is a heat radiation heat exchanger
The heat medium flowing into the heat-dissipating heat exchanger 23 flows into the pipe 35
The pipe is configured to return to the outdoor unit 7 through the pipe.

【0004】室外機7は、冷却装置9と、加熱装置4
と、ポンプ18と、熱媒体を貯蔵するタンク19と、切り換
え弁33,36と、管路37,38,39とを有して構成されてお
り、前記管路35はタンク19に接続されている。タンク19
には管路37が接続され、この管路37はポンプ18を介しそ
の下流側で管路38,39に分岐されており、分岐部分には
切り換え弁36が設けられ、熱媒体の流れを管路38側(冷
房側)と管路39側(暖房側)のどちらかに切り換える構
成となっている。管路38は熱媒体を冷却する冷却装置9
を、管路39は熱媒体を加熱する加熱装置4をそれぞれ通
って管路38と39は前記管路34に合流する。この合流部分
には切り換え弁33が設けられ、熱媒体を管路38から管路
34へ流れ込ませる冷房側(管路38側)と、管路39から管
路34へ流れ込ませる暖房側(管路39側)とのどちらかに
切り換える構成となっている。
[0004] The outdoor unit 7 includes a cooling device 9 and a heating device 4.
, A pump 18, a tank 19 for storing a heat medium, switching valves 33, 36, and pipes 37, 38, 39, and the pipe 35 is connected to the tank 19. I have. Tank 19
Is connected to a pipe 37 via a pump 18, and is branched to pipes 38 and 39 at a downstream side thereof. A switching valve 36 is provided at the branch portion, and the flow of the heat medium is controlled. It is configured to switch to either the road 38 side (cooling side) or the pipeline 39 side (heating side). The pipe 38 is a cooling device 9 for cooling the heat medium.
The pipes 39 pass through the heating device 4 for heating the heat medium, and the pipes 38 and 39 join the pipe 34. At the junction, a switching valve 33 is provided, and the heat medium is transferred from the pipe 38 to the pipe.
It is configured to switch between a cooling side (pipe 38 side) flowing into the pipe 34 and a heating side (pipe 39 side) from the pipe 39 to the pipe 34.

【0005】上記タンク19と管路37とポンプ18と切り換
え弁36と管路38と切り換え弁33と管路34と放熱熱交換器
23と管路35により冷房用媒体循環路2が構成され、ま
た、タンク19と管路37とポンプ18と切り換え弁36と管路
39と切り換え弁33と管路34と放熱熱交換器23と管路35に
より暖房用媒体循環路3が構成されている。上記冷房用
媒体循環路2と暖房用媒体循環路3は、上記の如く、切
り換え弁33,36より室内機5側が共通の管路により形成
され、共通の熱媒体が循環する構成となっており、切り
換え弁33,36が管路38側(冷房側)へ切り換えられたと
きには、ポンプ18の駆動により熱媒体はタンク19から管
路37,38,34、放熱熱交換器23、管路35を介してタンク
19に戻る冷房用媒体循環路2の経路で循環し、切り換え
弁33,36が管路39側(暖房側)へ切り換えられたときに
は、ポンプ18の駆動により熱媒体はタンク19から管路3
7,39,34、放熱熱交換器23、管路35を介してタンク19
に戻る暖房用媒体循環路3の経路で循環するように形成
されている。
The tank 19, the pipe 37, the pump 18, the switching valve 36, the pipe 38, the switching valve 33, the pipe 34, and the radiating heat exchanger
The cooling medium circulation path 2 is constituted by 23 and the pipe 35, and the tank 19, the pipe 37, the pump 18, the switching valve 36 and the pipe
The heating medium circulation path 3 is constituted by 39, the switching valve 33, the pipe 34, the heat radiation heat exchanger 23, and the pipe 35. As described above, the cooling medium circulation path 2 and the heating medium circulation path 3 are configured such that the indoor unit 5 side of the switching valves 33 and 36 is formed by a common pipe, and a common heat medium is circulated. When the switching valves 33 and 36 are switched to the pipeline 38 (cooling side), the heat medium is transferred from the tank 19 to the pipelines 37, 38 and 34, the radiating heat exchanger 23 and the pipeline 35 by driving the pump 18. Through the tank
When the refrigerant circulates in the cooling medium circulation path 2 returning to 19 and the switching valves 33 and 36 are switched to the pipe 39 side (heating side), the heat medium is transferred from the tank 19 to the pipe 3 by driving the pump 18.
7, 39, 34, radiating heat exchanger 23, tank 19 via line 35
It is formed so as to circulate through the heating medium circulation path 3 returning to

【0006】そして、上記のように、切り換え弁33,36
が冷房側に切り換えられたときには、熱媒体は冷却装置
9を通って冷却され、この冷却された熱媒体が放熱熱交
換器23を通り室内機5から冷風が吹き出すことになり、
放熱熱交換器23は冷房放熱部と成し、切り換え弁33,36
が暖房側に切り換えられたときには、熱媒体は加熱装置
4を通って加熱され、この加熱された熱媒体が放熱熱交
換器23を通って室内機5から温風が吹き出すことにな
り、放熱熱交換器23は暖房放熱部と成すという如く、切
り換え弁33,36の切り換え動作により放熱熱交換器23を
冷房放熱部と暖房放熱部のいずれかに切り換える構成と
なっている。
Then, as described above, the switching valves 33, 36
When the cooling medium is switched to the cooling side, the heat medium is cooled through the cooling device 9, and the cooled heat medium passes through the radiating heat exchanger 23 and blows cool air from the indoor unit 5.
The radiating heat exchanger 23 forms a cooling radiating section, and has switching valves 33 and 36.
Is switched to the heating side, the heat medium is heated through the heating device 4, and the heated heat medium is blown out of the indoor unit 5 through the radiating heat exchanger 23, and the radiating heat is The heat exchanger 23 is configured to switch the heat radiation heat exchanger 23 to one of the cooling heat radiation part and the heating heat radiation part by the switching operation of the switching valves 33 and 36 so as to form a heat radiation part.

【0007】前記冷却装置9は、冷房用媒体循環路2の
管路38を流れる熱媒体の保有熱を奪って熱媒体を冷却す
る冷却部として機能するものであり、冷媒(例えば水)
の蒸発により冷房用媒体循環路2の管路38を流れる熱媒
体を冷却する蒸発器44を含む冷媒循環系48を有してい
る。冷媒循環系48は、蒸発器44と、吸収器45と、再生器
46と、凝縮器47と、それらを接続する管路53,54,55,
56,57とを有して構成され、蒸発器44と吸収器45と再生
器46と凝縮器47が連接している。この冷媒循環系48には
吸収器45と凝縮器47を通る水の循環路61が設けられてい
る。
The cooling device 9 functions as a cooling unit that cools the heat medium by removing the retained heat of the heat medium flowing through the pipe 38 of the cooling medium circulation path 2, and is a refrigerant (for example, water).
The refrigerant circulation system 48 includes an evaporator 44 for cooling the heat medium flowing through the pipe 38 of the cooling medium circulation path 2 by evaporation of the heat medium. The refrigerant circulation system 48 includes an evaporator 44, an absorber 45, and a regenerator.
46, a condenser 47 and lines 53, 54, 55,
The evaporator 44, the absorber 45, the regenerator 46, and the condenser 47 are connected to each other. The refrigerant circulation system 48 is provided with a water circulation path 61 passing through the absorber 45 and the condenser 47.

【0008】上記蒸発器44の内部空間は、例えば6.5 mm
Hg abs(絶対圧)程度の真空状態に維持され、この内部
空間には前記冷房用媒体循環路2の管路38に介設される
冷却熱交換器22が設けられ、この冷却熱交換器22の下方
側に液体の冷媒50(例えば水)が貯蔵されており、例え
ば6.5 mmHg absの真空状態では約5℃の低温で冷媒であ
る水が蒸発し、この冷媒の蒸発により冷却熱交換器22を
流れる熱媒体が約7℃程度に冷却される。
The internal space of the evaporator 44 is, for example, 6.5 mm.
A vacuum state of about Hg abs (absolute pressure) is maintained, and a cooling heat exchanger 22 is provided in this internal space through a pipe 38 of the cooling medium circulation path 2. A liquid refrigerant 50 (for example, water) is stored in the lower side of the cooling heat exchanger 22. In a vacuum state of, for example, 6.5 mmHabs, water as a refrigerant evaporates at a low temperature of about 5 ° C. Is cooled to about 7 ° C.

【0009】なお、上記熱媒体の冷却温度は予め定めら
れる冷房放熱温度(室内機5から吹き出す冷風の温度)
に基づいて定められるもので、一般的に、冷房放熱温度
は7〜10℃に設定されており、蒸発器44は熱媒体を7〜
10℃に冷却する冷媒の蒸発が生じるようにその内部空間
の真空状態が形成されている。
The cooling temperature of the heat medium is a predetermined cooling heat radiation temperature (the temperature of cold air blown from the indoor unit 5).
In general, the cooling heat radiation temperature is set at 7 to 10 ° C., and the evaporator 44 controls the heat medium at 7 to 10 ° C.
A vacuum is formed in its internal space so that the refrigerant that cools to 10 ° C. evaporates.

【0010】上記蒸発器44で発生した冷媒蒸気は管路53
を通って吸収器45に流れ込む。吸収器45の内部空間には
水の循環路61が通され、また、吸収器45の底部側には冷
媒蒸気を取り込む冷媒吸収液(例えば臭化リチウム液)
51が貯蔵されており、前記水の循環路61を流れる冷却媒
体である水が吸収器45に流れ込んだ冷媒蒸気の熱を吸収
し、つまり、水が冷媒蒸気を冷却し、この冷媒蒸気を冷
媒吸収液51が取り込み吸収する。この冷媒蒸気の取り込
み反応により熱が発生するが、この熱も前記水の循環路
61の水に吸収される。冷媒により薄められた冷媒吸収液
は管路54を通って再生器46へ送られる。
The refrigerant vapor generated in the evaporator 44 is supplied to a pipe 53
Through the absorber 45. A water circulation path 61 is passed through the internal space of the absorber 45, and a refrigerant absorbing liquid (for example, lithium bromide liquid) that takes in refrigerant vapor at the bottom side of the absorber 45.
51 is stored, and water as a cooling medium flowing through the water circulation path 61 absorbs the heat of the refrigerant vapor flowing into the absorber 45, that is, the water cools the refrigerant vapor, and this refrigerant vapor is cooled. The absorption liquid 51 takes in and absorbs. Heat is generated by the reaction of taking in the refrigerant vapor.
Absorbed in 61 water. The refrigerant-absorbed liquid diluted by the refrigerant is sent to the regenerator 46 through the pipe 54.

【0011】再生器46には再生器46を加熱する吸収液加
熱用バーナ60が設けられており、希薄冷媒吸収液は吸収
液加熱用バーナ60により燃焼加熱され、冷媒吸収液中の
冷媒が蒸発・分離し、冷媒吸収液が再生(濃く)され
る。この再生された冷媒吸収液は管路57を介し、途中、
熱交換部で再生器46への入側管路54を流れる希薄冷媒吸
収液に熱を奪われ、前記吸収器45へ戻される。一方、再
生器46で発生した冷媒蒸気は管路55を通って凝縮器47へ
流れ込む。
The regenerator 46 is provided with an absorbent heating burner 60 for heating the regenerator 46. The lean refrigerant absorbent is burned and heated by the absorbent heating burner 60, and the refrigerant in the refrigerant absorbent evaporates. -Separation occurs and the refrigerant absorption liquid is regenerated (concentrated). This regenerated refrigerant absorption liquid passes through a pipe 57,
The heat is deprived by the lean refrigerant absorbing liquid flowing through the inlet pipe 54 to the regenerator 46 in the heat exchange section, and is returned to the absorber 45. On the other hand, the refrigerant vapor generated in the regenerator 46 flows into the condenser 47 through the pipe 55.

【0012】凝縮器47には水の循環路61が通されてお
り、凝縮器47に流れ込んだ冷媒蒸気は水の循環路61の水
によって熱を奪われ、つまり、冷却・液化され、液体の
冷媒は管路56を介して前記蒸発器44へ戻される。
A water circulation path 61 is passed through the condenser 47, and the refrigerant vapor flowing into the condenser 47 is deprived of heat by the water in the water circulation path 61, that is, is cooled and liquefied, and the liquid The refrigerant is returned to the evaporator 44 via the line 56.

【0013】上記のように、冷媒は蒸発器44で蒸発して
冷却熱交換器22(冷房用媒体循環路2の管路38)を流れ
る熱媒体を冷却し、その蒸気となった冷媒は吸収器45、
再生器46、凝縮器47を経て液体の冷媒に再生され蒸発器
44に戻るという如く、冷媒は冷媒循環系48を循環する。
As described above, the refrigerant evaporates in the evaporator 44 and cools the heat medium flowing through the cooling heat exchanger 22 (the pipe 38 of the cooling medium circulation path 2). Container 45,
Regenerated into liquid refrigerant via regenerator 46 and condenser 47 and evaporator
The refrigerant circulates through the refrigerant circulation system 48, such as returning to 44.

【0014】前記水の循環路61には通風によって冷却媒
体の冷却を行う冷却塔62が介設されており、この冷却塔
62は前記吸収器45と凝縮器47で吸収・保有された水の熱
を放熱させ、前記吸収器45と凝縮器47で水が円滑に冷媒
蒸気の保有熱を吸収できるように、通常、31℃〜32℃の
吸収動作温度に水を冷却するように形成されている。
A cooling tower 62 for cooling the cooling medium by ventilation is provided in the water circulation path 61.
Usually, 31 is used to dissipate the heat of the water absorbed and retained in the absorber 45 and the condenser 47, and to allow the water to smoothly absorb the retained heat of the refrigerant vapor in the absorber 45 and the condenser 47. It is configured to cool the water to an absorption operating temperature of between 0C and 32C.

【0015】なお、前記加熱装置4は、燃焼室8と、該
燃焼室8に設けられる暖房用バーナ10と、この暖房用バ
ーナ10にガスを導くガス供給路11と、ガス供給路11に設
けられ該ガス供給路11の開閉を行う元電磁弁12および電
磁弁14と、暖房用バーナ10へのガス供給量を開弁量によ
り制御する比例弁13と、前記暖房用媒体循環路3の管路
39に介設され暖房用バーナ10の上方側に設けられる熱交
換器16と、暖房用バーナ10の下方側に設けられ空気の給
排気を行う燃焼ファン17とを有して構成されている。
The heating device 4 includes a combustion chamber 8, a heating burner 10 provided in the combustion chamber 8, a gas supply path 11 for introducing gas to the heating burner 10, and a gas supply path 11. A solenoid valve 12 and a solenoid valve 14 for opening and closing the gas supply passage 11, a proportional valve 13 for controlling a gas supply amount to the heating burner 10 by an opening amount, and a pipe for the heating medium circulation passage 3. Road
The heat exchanger 16 includes a heat exchanger 16 provided above the heating burner 10 and a combustion fan 17 provided below the heating burner 10 to supply and exhaust air.

【0016】また、図中、26は室外機7に流れ込む熱媒
体の温度を検出する室外機入側温度センサを示し、27は
熱交換器16から流れ出た熱媒体の温度を検出する加熱部
出側温度センサを示し、30は放熱ファン6のファン回転
数を検出する放熱ファン回転数検出センサを示し、31は
放熱ファン6のファン風量を検出する放熱ファン風量検
出センサを示し、32は放熱ファン6の回転により放熱フ
ァン6に取り込まれる空気温度を検出する空気温度セン
サを示すものである。
In the figure, reference numeral 26 denotes an outdoor unit inlet side temperature sensor for detecting the temperature of the heat medium flowing into the outdoor unit 7, and reference numeral 27 denotes a heating unit output for detecting the temperature of the heat medium flowing out of the heat exchanger 16. 30 indicates a heat-dissipating fan rotation speed detecting sensor for detecting the fan rotation speed of the heat-dissipating fan 6, 31 indicates a heat-dissipating fan airflow detecting sensor for detecting the fan airflow of the heat-dissipating fan 6, and 32 indicates a heat-dissipating fan. 3 shows an air temperature sensor that detects the temperature of the air taken into the heat radiating fan 6 by the rotation of the fan 6.

【0017】上記システム構成の冷・暖房器(器具)に
は、通常、リモコン(図示せず)付きの制御装置25が設
けられており、この制御装置25は、前記加熱部出側温度
センサ27等の様々なセンサ出力やリモコンの情報を取り
込んで、ポンプ18の駆動制御や、冷却装置9の吸収液加
熱用バーナ60の加熱制御や、加熱装置4の暖房用バーナ
10および燃焼ファン17等の駆動制御や、放熱ファン6の
回転制御や、切り換え弁33,36の切り換え制御等の器具
動作を制御し、冷房運転や暖房運転を行う。
The cooling / heating device (apparatus) having the above-mentioned system configuration is usually provided with a control device 25 having a remote controller (not shown). And the like, the drive control of the pump 18, the heating control of the absorbent heating burner 60 of the cooling device 9, the heating burner of the heating device 4, etc.
It controls the operation of appliances such as the drive control of the 10 and the combustion fan 17, the rotation control of the radiating fan 6, and the switching control of the switching valves 33 and 36, and performs the cooling operation and the heating operation.

【0018】例えば、冷房運転時には、切り換え弁33,
36を冷房側(管路38側)へ切り換え、冷却装置9の吸収
液加熱用バーナ60を燃焼させる等の冷却装置9の起動を
行い、ポンプ18を駆動させることにより、熱媒体がタン
ク19から管路37,38を通って冷却装置9に流れ込み、冷
却装置9の冷却動作により、例えば、約7℃に冷却さ
れ、この冷却された熱媒体が管路34を介して放熱熱交換
器23ヘ搬送され、放熱ファン6の通風を冷却し(通風の
熱を吸収し)、その冷風が冷房領域(室内)へ吹き出し
て(冷房放熱を行って)室内の冷房を行う。そして、通
風の熱を吸収した(冷房放熱した)熱媒体は管路35を介
して室外機7に戻されて冷却装置9で冷却され、再び室
内機5へ送られる。このように、熱媒体を冷却用媒体循
環路2で循環させると共に、熱媒体の冷却・冷房放熱
(通風の熱の吸収)を繰り返し行わせることで冷房領域
の冷房を行う。
For example, during the cooling operation, the switching valve 33,
The heat medium is transferred from the tank 19 by switching the cooling device 36 to the cooling side (the pipe line 38 side), starting the cooling device 9 such as burning the absorption liquid heating burner 60 of the cooling device 9, and driving the pump 18. The heat flows into the cooling device 9 through the pipes 37 and 38 and is cooled to, for example, about 7 ° C. by the cooling operation of the cooling device 9, and the cooled heat medium is transferred to the heat-radiating heat exchanger 23 through the pipe 34. The heat is conveyed and cools the ventilation of the radiating fan 6 (absorbs the heat of the ventilation), and the cool air blows out to the cooling area (room) to perform cooling of the room. Then, the heat medium that has absorbed the ventilation heat (cooled and radiated heat) is returned to the outdoor unit 7 via the pipe 35, cooled by the cooling device 9, and sent to the indoor unit 5 again. As described above, while the heat medium is circulated in the cooling medium circulation path 2, the cooling of the cooling area is performed by repeatedly performing the cooling and the heat radiation of the heat medium (absorption of heat of ventilation).

【0019】なお、制御装置25は、室外機7に設けられ
たり、室内機5に設けられたり、室外機7と室内機5に
分けて設けられる等、必要に応じ適宜の場所に設けられ
る。また、放熱ファン6に取り込まれる空気温度が冷・
暖房領域である室内温度とほぼ等しいと考えられる場合
には、図6に示す空気温度センサ32と別個に室内温度セ
ンサを設けずに空気温度センサ32が室内温度センサを兼
用する構成としてもよい。
The control device 25 is provided at an appropriate place as required, such as provided in the outdoor unit 7, provided in the indoor unit 5, or provided separately from the outdoor unit 7 and the indoor unit 5. Further, the temperature of the air taken into the radiating fan 6 is low.
When it is considered that the room temperature is substantially equal to the room temperature in the heating area, the air temperature sensor 32 may be configured to also serve as the room temperature sensor without providing the room temperature sensor separately from the air temperature sensor 32 shown in FIG.

【0020】図5には、本出願人が試作した冷房器のシ
ステム主要構成の一例が示されており、この冷房器も未
公知である。なお、同図において、図6に示した冷・暖
房器と同一名称部分には同一符号が付してある。この図
5に示す冷房器は、図6に示した冷・暖房器において加
熱装置4側を省略した構成と成しており、したがって、
暖房用媒体循環路3および切り換え弁33,36は省略さ
れ、暖房用媒体循環路3の管路38が直接ポンプ18に接続
されている。また、この器具においては、室内機5の放
熱熱交換器23は冷房放熱部を成している。
FIG. 5 shows an example of the main configuration of a cooling device system prototyped by the present applicant, and this cooling device is also unknown. Note that, in the same figure, the same reference numerals are assigned to the same parts as those of the cooling / heating unit shown in FIG. The air conditioner shown in FIG. 5 has a configuration in which the heating device 4 side is omitted in the air conditioner / heater shown in FIG.
The heating medium circulation path 3 and the switching valves 33 and 36 are omitted, and the pipe line 38 of the heating medium circulation path 3 is directly connected to the pump 18. Further, in this appliance, the heat radiation heat exchanger 23 of the indoor unit 5 forms a cooling heat radiation part.

【0021】この冷房器においても、制御装置25によっ
て冷却装置9の吸収液加熱用バーナ60の加熱制御が行わ
れて冷却装置9の冷却動作が行われ、この冷却動作によ
り、冷房用媒体循環路2を循環する熱媒体が冷却され、
この冷却された熱媒体によって室内機5の放熱ファン6
の通風の冷却が行われ、冷房領域の冷房が行われる。
Also in this cooling device, the control device 25 controls the heating of the burner 60 for heating the absorbing liquid of the cooling device 9 to perform the cooling operation of the cooling device 9, and the cooling operation causes the cooling medium circulation path. The heat medium circulating in 2 is cooled,
The cooled heat medium allows the radiating fan 6 of the indoor unit 5 to operate.
Is cooled, and cooling in the cooling area is performed.

【0022】[0022]

【発明が解決しようとする課題】ところで、この種の冷
房器や冷・暖房器において、冷房用媒体循環路2を循環
する熱媒体の冷却を円滑に行うためには、冷媒循環系48
の循環動作を円滑に行う必要があり、そのためには、冷
媒循環系48内の冷媒の蒸発により得た熱を吸収・放熱す
る水の循環系61の循環動作を滞りなく行えることが重要
となる。
In order to smoothly cool the heat medium circulating in the cooling medium circulation path 2 in this type of air conditioner or air conditioner / cooler / heater, a refrigerant circulation system 48 is required.
It is necessary to perform the circulation operation of the water smoothly, and for that purpose, it is important that the circulation operation of the water circulation system 61 that absorbs and radiates the heat obtained by the evaporation of the refrigerant in the refrigerant circulation system 48 can be performed smoothly. .

【0023】しかしながら、周知のように、水中にはカ
ルシウムやマグネシウム等の物質が含まれ、一般に、こ
れらのカルシウムやマグネシウム等がスケールとして析
出したり、水中に含まれるシリカ(SiO2 )が析出し
たりすることはよくある。そのため、これらの析出物が
例えば水の循環路61の内壁面に付着成長することが考え
られ、そうなると、水の循環路61を流れる水の流れが悪
くなってしまう。
However, as is well known, water contains substances such as calcium and magnesium, and these calcium and magnesium generally precipitate as scales and silica (SiO 2 ) contained in water precipitates. Is common. For this reason, it is conceivable that these precipitates adhere to and grow on, for example, the inner wall surface of the water circulation path 61. In such a case, the flow of the water flowing through the water circulation path 61 deteriorates.

【0024】そうすると、水の循環路61を流れる水によ
って行われる動作、すなわち、冷媒循環系48内の蒸気の
熱を吸収・放熱する動作(吸収器45および凝縮器47にお
ける冷媒蒸気の熱吸収等)に支障が生じ、最終的には、
例えば冷媒吸収液51として用いられている臭化リチウム
液の結晶化を招き、冷却装置9の故障を招くといった問
題が考えられる。
Then, the operation performed by the water flowing through the water circulation path 61, that is, the operation of absorbing and releasing the heat of the vapor in the refrigerant circulation system 48 (the heat absorption of the refrigerant vapor in the absorber 45 and the condenser 47, etc.) ), And ultimately,
For example, a problem may be considered in which crystallization of the lithium bromide liquid used as the refrigerant absorbing liquid 51 causes crystallization of the cooling device 9.

【0025】本発明は、上記課題を解決するためになさ
れたものであり、その目的は、冷媒の蒸発によって熱媒
体の熱を吸収して冷却する、いわゆる吸収式の冷却部を
備えた冷房器において、冷却部による冷却動作を円滑に
行うことが可能であり、装置の故障を未然に防ぐことが
できる冷房器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an air conditioner having a so-called absorption type cooling unit for absorbing and cooling heat of a heat medium by evaporating a refrigerant. It is an object of the present invention to provide a cooler that can smoothly perform a cooling operation by a cooling unit and that can prevent a failure of the device.

【0026】[0026]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のような構成により課題を解決するため
の手段としている。すなわち、本発明は、熱媒体が循環
する冷房用媒体循環路が設けられ、該冷房用媒体循環路
は、熱媒体の保有熱を奪って熱媒体を冷却する冷却部
と、空気を取り込んでその空気の熱を熱媒体に吸収させ
て冷却した空気を冷房領域へ供給する冷房放熱部とを通
り循環形成されており、前記冷却部には冷媒の蒸発によ
り熱媒体を冷却する蒸発器とこの蒸発器で発生した蒸気
を冷却吸収液によって吸収する吸収器とこの蒸気を吸収
した冷却吸収液を吸収液加熱用バーナによって加熱して
蒸気を分離し冷却吸収液を再生する再生器を含む冷媒循
環系が連接されて設けられ、この冷媒循環系には冷媒の
蒸発により得た熱を吸収・放熱する水の循環路が設けら
れており、この水の循環路内には互いに間隔を介して電
極が対向配置されており、該電極に交流電圧を印加する
電極駆動部と、該電極間の通電電流を検出する電流検出
センサと、該電流検出センサの検出電流を予め定められ
た電流設定閾値と比較して該検出電流が電流設定閾値以
上のときには前記吸収液加熱用バーナの燃焼熱量を小さ
くして前記冷却部による熱媒体冷却効率を小さくする冷
却制御部とを有することを特徴として構成されている。
Means for Solving the Problems To achieve the above object, the present invention provides means for solving the problems by the following constitution. That is, in the present invention, a cooling medium circulation path through which the heat medium circulates is provided, and the cooling medium circulation path takes in the heat retained in the heat medium and cools the heat medium. The cooling medium is circulated through a cooling radiator that absorbs the heat of the air into the heat medium and supplies the cooled air to the cooling area.The cooling unit includes an evaporator that cools the heat medium by evaporating the refrigerant and the evaporator. Refrigerant circulation system including an absorber that absorbs the steam generated by the cooler with the cooling absorbing liquid, and a regenerator that separates the steam by heating the cooling absorbing liquid that has absorbed the vapor with the burner for heating the absorbing liquid to separate the steam and regenerate the cooling absorbing liquid The refrigerant circulation system is provided with a water circulation path for absorbing and radiating heat obtained by evaporation of the refrigerant, and electrodes are provided in the water circulation path with an interval therebetween. The electrodes are arranged facing each other, and An electrode driving unit for applying pressure, a current detection sensor for detecting a current flowing between the electrodes, and comparing the detection current of the current detection sensor with a predetermined current setting threshold, and detecting the detected current with a current setting threshold or more. In this case, a cooling control unit is provided for reducing the amount of combustion heat of the burner for heating the absorbent to reduce the cooling efficiency of the heat medium by the cooling unit.

【0027】また、前記電流設定閾値よりも大きい冷却
停止基準電流値が与えられており、冷却制御部は電流検
出センサの検出電流が該冷却停止基準電流値以上のとき
には吸収液加熱用バーナの燃焼を停止して冷却部による
冷却を停止させる構成としたことも本発明の特徴的な構
成とされている。
Further, a cooling stop reference current value larger than the current setting threshold value is provided, and the cooling control unit determines that the combustion of the absorbent heating burner is performed when the current detected by the current detection sensor is equal to or greater than the cooling stop reference current value. Is stopped, and the cooling by the cooling unit is stopped, which is a characteristic configuration of the present invention.

【0028】上記構成の本発明において、冷媒循環系に
設けられている水の循環路内には互いに間隔を介して電
極が対向配置されており、電極駆動部によってこの電極
に交流電圧が印加される。そうすると、電極間には、こ
の交流印加電圧によって交流電流(極性反転電流)が流
れ、この極性反転切り替えによりスケール等が反転する
ときの慣性エネルギーによって、スケール等の分子と分
子の結合が切れることにより、スケール等が非常に小さ
くなって水中に溶けるために、スケール等の発生が緩
和、抑制される。
In the present invention having the above-described structure, electrodes are arranged opposite to each other with a space therebetween in a water circulation path provided in the refrigerant circulation system, and an AC voltage is applied to the electrodes by an electrode driving unit. You. Then, an alternating current (polarity reversal current) flows between the electrodes due to the AC applied voltage, and the inertia energy when the scale or the like is reversed by the polarity reversal switching breaks the bonds between the molecules such as the scale. Since the scale and the like become very small and are dissolved in water, the generation of the scale and the like is reduced and suppressed.

【0029】そのため、このスケール等の発生の緩和、
抑制によって、水の循環路内を循環する水の流れがほぼ
滞りなく行われるようになり、この水によって、前記冷
媒循環系内の冷媒の蒸発により得た熱の吸収・放熱が円
滑に行われ、それにより、冷却部による冷媒の冷却動作
が円滑に行われる。
Therefore, the occurrence of scale and the like can be reduced.
By the suppression, the flow of water circulating in the water circulation path is performed almost without interruption, and the water smoothly absorbs and radiates heat obtained by evaporation of the refrigerant in the refrigerant circulation system. Thereby, the cooling operation of the refrigerant by the cooling unit is performed smoothly.

【0030】また、水中のスケール成分等が濃縮される
と、水の電気伝導度が上昇するが、この電気伝導度の上
昇に伴い、水中に互いに間隔を介して対向配置された電
極間の通電電流も電気伝導度の上昇分に対応して大きく
なる。そのため、上記構成の本発明において、電極間の
電圧を一定にしたときの電極間の通電電流を電流検出セ
ンサによって検出することにより、水の循環路内の水中
のスケール成分等の濃縮状態が検出される。そして、冷
却制御部によって、この電流検出センサの検出電流と予
め定められた電流設定閾値とが比較され、電流検出値が
電流設定閾値以上のときには、前記冷媒循環系において
冷媒の蒸気を吸収した冷却吸収液を加熱する吸収液加熱
用バーナの燃焼熱量を小さくして冷却部による熱媒体冷
却効率を小さくする制御が行われる。
When the scale components and the like in the water are concentrated, the electric conductivity of the water increases. With the increase of the electric conductivity, the electric current flows between the electrodes arranged in the water and opposed to each other with an interval therebetween. The current also increases in accordance with the increase in the electric conductivity. Therefore, in the present invention having the above configuration, the enrichment state of scale components and the like in the water in the water circulation path is detected by detecting the current flowing between the electrodes when the voltage between the electrodes is kept constant by the current detection sensor. Is done. Then, the cooling control unit compares the current detected by the current detection sensor with a predetermined current setting threshold value, and when the current detection value is equal to or greater than the current setting threshold value, the cooling device absorbs refrigerant vapor in the refrigerant circulation system. Control is performed to reduce the amount of combustion heat of the absorbent heating burner that heats the absorbent to reduce the heat medium cooling efficiency of the cooling unit.

【0031】そのため、たとえ、前記の如く、電極の通
電駆動(交流電圧印加)によって水中のスケール成分等
の発生を緩和、抑制しているにもかかわらず、この電極
の通電駆動のみではスケール成分濃縮に伴うスケール析
出等を完全に防ぐことができずに水の循環路内の流れが
多少悪くなったとしても、このときには、冷却制御部に
よる吸収液加熱用バーナの燃焼制御によって冷却部によ
る熱媒体冷却効率を小さくする制御が行われるために、
冷媒循環系内の冷媒の蒸発により生じる熱が小さくな
り、水の循環路内の水の流れが多少悪くなった状態で
も、冷媒の蒸発により生じる熱の吸収・放熱が十分に行
われる。したがって、冷媒循環系内の冷媒の蒸発により
生じる熱の吸収・放熱が十分に行われないがために、例
えば冷却吸収液の結晶化が生じて冷却部の故障を招くと
いったことが未然に防止され、上記課題が解決される。
For this reason, as described above, even though the generation of scale components and the like in water is reduced or suppressed by the drive of the electrodes (application of an AC voltage) as described above, the scale components are concentrated only by the drive of the electrodes. Even if the flow in the water circulation path is slightly deteriorated without completely preventing scale precipitation and the like caused by the above, at this time, the cooling medium is controlled by the cooling medium by the combustion control of the absorption liquid heating burner by the cooling control section. Because control to reduce the cooling efficiency is performed,
Even when the heat generated by the evaporation of the refrigerant in the refrigerant circulation system is reduced, and the flow of water in the water circulation path is slightly deteriorated, the heat generated by the evaporation of the refrigerant is sufficiently absorbed and dissipated. Therefore, since the heat generated by the evaporation of the refrigerant in the refrigerant circulation system is not sufficiently absorbed and dissipated, it is possible to prevent, for example, the crystallization of the cooling absorption liquid from causing the failure of the cooling unit. Thus, the above problems are solved.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。なお、本実施形態例の説明におい
て、これまでの説明の冷房器および冷・暖房器と同一名
称部分には同一符号を付し、その重複説明は省略する。
図1には、本発明に係る冷房器の一実施形態例の要部構
成が示されており、本実施形態例の冷房器のシステム主
要構成は、図5に示した冷房器のシステム主要構成とほ
ぼ同様に構成されている。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same parts as those of the cooling device and the cooling / heating device described so far, and the overlapping description will be omitted.
FIG. 1 shows a main configuration of a cooling unit according to an embodiment of the present invention. The main system configuration of the cooling unit according to the embodiment is the same as the main system configuration of the cooling unit shown in FIG. The configuration is almost the same.

【0033】本実施形態例が図5に示した冷房器と異な
る特徴的なことは、水の循環路61内に、互いに間隔を介
して電極1a,1bを対向配置したことと、制御装置25
内に、図1に示す本発明の特有な制御回路を設けたこと
である。この回路は、電極駆動部64、電流値メモリ部6
6、電流検出センサ69、冷却制御部68を有して構成され
ている。
The present embodiment is different from the air conditioner shown in FIG. 5 in that the electrodes 1a and 1b are opposed to each other with a space therebetween in the water circulation path 61, and the control device 25
Inside, a control circuit unique to the present invention shown in FIG. 1 is provided. This circuit includes an electrode driving unit 64 and a current value memory unit 6
6. It has a current detection sensor 69 and a cooling control unit 68.

【0034】電極1a,1bは、例えばステンレスによ
り形成されており、図2の(a)に示すように、ステン
レス等で形成されたハウジング29の内部に設けられ、導
伝体49および図示されていない絶縁部材を介してハウジ
ング29に気密に取り付けられている。このように、本実
施形態例では、電極1a,1bはハウジング29によって
ユニット化されており、ハウジング29の両端側に設けら
れた接続部43を水の循環路61に接続することにより水の
循環路61に容易に取り付けられるようになっている。な
お、ハウジング29には必要に応じて流通孔42を設けるこ
とができる。
The electrodes 1a and 1b are made of, for example, stainless steel. As shown in FIG. 2 (a), the electrodes 1a and 1b are provided inside a housing 29 made of stainless steel or the like, and the conductor 49 and the conductor 49 are shown. It is hermetically attached to the housing 29 via an insulating member. As described above, in the present embodiment, the electrodes 1 a and 1 b are unitized by the housing 29, and the connection portions 43 provided at both ends of the housing 29 are connected to the water circulation path 61 to circulate the water. It can be easily attached to the road 61. The housing 29 may be provided with a communication hole 42 as needed.

【0035】電極駆動部64は、電極1a,1bに交流電
圧を印加して電極1a,1bを通電駆動するものであ
り、交流印加電圧として例えば1V〜15Vの電圧範囲の
うちの適宜の値が電圧駆動部64に与えられており、電圧
駆動部64はこの与えられた交流電圧を印加する。本実施
形態例では、この通電駆動により、図2の(b)に示す
ような矩形の極性反転電圧を印加して電極1a,1b間
に極性反転電流を流すようにしており、この通電駆動に
より、電極1a,1bの表面に汚れや酸化膜が付きにく
く、水の循環路61内の水に十分な活性化エネルギーを与
えてスケール等の析出を抑制、防止するようにしてい
る。なお、電極1a,1b間に与える電圧は、矩形以外
の、例えばサイン波状の電圧としてもよい。
The electrode drive section 64 applies an AC voltage to the electrodes 1a and 1b to energize and drive the electrodes 1a and 1b. The AC applied voltage has an appropriate value in a voltage range of, for example, 1V to 15V. The voltage is applied to the voltage driver 64, and the voltage driver 64 applies the given AC voltage. In the present embodiment, by this energization drive, a rectangular polarity inversion voltage as shown in FIG. 2B is applied to flow a polarity inversion current between the electrodes 1a and 1b. The surface of the electrodes 1a and 1b is hardly contaminated with dirt or an oxide film, and sufficient activation energy is given to water in the water circulation path 61 to suppress or prevent deposition of scale and the like. The voltage applied between the electrodes 1a and 1b may be a voltage other than a rectangle, for example, a sine wave.

【0036】電流検出センサ69は、電極1a,1b間の
通電電流を検出するものであり、電極駆動部64から電極
1a,1bに低電圧を印加したときの電極1a,1b間
に流れる電流を検出し、この検出電流値を冷却制御部68
に加える。
The current detecting sensor 69 detects a current flowing between the electrodes 1a and 1b, and detects a current flowing between the electrodes 1a and 1b when a low voltage is applied to the electrodes 1a and 1b from the electrode driving unit 64. The cooling current is detected and the detected current value is
Add to

【0037】電流値メモリ部66には、予め定められた電
流設定閾値と、この電流設定閾値よりも大きい冷却停止
基準電流値が与えられている。
The current value memory unit 66 is provided with a predetermined current setting threshold value and a cooling stop reference current value larger than the current setting threshold value.

【0038】冷却制御部68は、電流値メモリ部66に与え
られている電流設定閾値および冷却停止基準電流値と、
前記電流検出センサ69の検出電流を比較し、吸収液加熱
用バーナ60の燃焼制御を行うものである。具体的には、
例えば図3の特性線aに示すように、電流検出センサ69
の検出電流が電流設定閾値R以上のときには、吸収液加
熱用バーナ60の燃焼熱量をA0 レベルからA1 レベルに
小さくして冷却装置9による冷房用媒体循環路2内の熱
媒体冷却効率を小さくする制御を行い、電流検出センサ
の検出電流が冷却停止基準電流値以上のときには、吸収
液加熱用バーナ60の燃焼を停止して、冷却装置9による
冷房用媒体循環路2内の熱媒体の冷却動作を停止させる
制御を行う。
The cooling control unit 68 includes a current setting threshold value and a cooling stop reference current value provided to the current value memory unit 66.
The detection current of the current detection sensor 69 is compared, and the combustion control of the absorbent heating burner 60 is performed. In particular,
For example, as shown by a characteristic line a in FIG.
Of when the detected current is greater than the current set threshold value R, the heat medium cooling efficiency of the absorption liquid heating burner 60 for cooling medium circulation path 2 a combustion heat by A 1 level to reduce to a cooling device 9 A 0 level When the detection current of the current detection sensor is equal to or larger than the cooling stop reference current value, the combustion of the absorbent heating burner 60 is stopped, and the cooling device 9 controls the heating medium in the cooling medium circulation path 2. Control to stop the cooling operation is performed.

【0039】本実施形態例は以上のように構成されてお
り、本実施形態例でも、図5に示した冷房器および、図
6に示した冷・暖房器における冷却装置9側の動作と同
様の動作が行われ、この冷却装置9の動作によって冷房
用媒体循環路2の熱媒体の冷却が行われ、それにより、
室内機5を介しての冷房領域の冷房が行われる。
The present embodiment is configured as described above. In this embodiment, the operation of the cooling device 9 in the cooling device shown in FIG. 5 and the cooling / heating device shown in FIG. Is performed, and the cooling medium 9 is cooled by the operation of the cooling device 9 to cool the heating medium in the cooling medium circulation path 2.
Cooling of the cooling area via the indoor unit 5 is performed.

【0040】また、本実施形態例では、この冷却装置9
による冷却動作に際し、吸収器45および凝縮器47におい
ては、水の循環路61を流れる水によって冷媒蒸気の熱の
吸収が図5,6の装置と同様にして行われるが、本実施
形態例では、この水の循環路61内に設けられた電極1
a,1b間に制御装置25の電極駆動部64によって交流電
圧の印加が行われる。そして、例えば図2の(b)に示
すような極性反転電圧が電極1a,1b間に加えられる
と、電極1a,1b間には同様の形状の極性反転電流が
流れ、この極性反転切り替えによりスケール等が反転す
るときの瞬間的な慣性エネルギーによって、スケール等
の分子と分子の結合が切れる。そして、スケール等が非
常に小さくなって水中に溶けるようになり、スケール等
の発生(析出)の抑制が行われる。
In this embodiment, the cooling device 9
In the cooling operation by the above, in the absorber 45 and the condenser 47, the heat of the refrigerant vapor is absorbed by the water flowing through the water circulation path 61 in the same manner as in the apparatus of FIGS. The electrode 1 provided in the water circulation path 61
An AC voltage is applied between the electrodes a and 1b by the electrode driving section 64 of the control device 25. When a polarity reversal voltage as shown in FIG. 2B is applied between the electrodes 1a and 1b, a polarity reversal current having a similar shape flows between the electrodes 1a and 1b. Due to the momentary inertial energy at the time of the reversal, the bond between molecules such as scale is broken. Then, the scale or the like becomes very small and becomes soluble in water, thereby suppressing the generation (precipitation) of the scale or the like.

【0041】さらに、本実施形態例では、例えば図4に
示すように、冷房器の運転スイッチがオンされたときに
(同図のステップ101 )、ステップ102 で、電極1a,
1b間への通電駆動が定電圧で行われているときに電極
1a,1b間に流れる通電電流の検出が電流検出センサ
69によって行われる。次に、ステップ103 で、冷却制御
部68によって、この検出電流Iと電流値メモリ部66に予
め定められている電流設定閾値(例えば図3のR)との
比較が行われ、検出電流Iが電流設定閾値以上のときに
はステップ104 に進み、検出電流Iが設定閾値未満のと
きにはステップ105 に進む。
Further, in this embodiment, as shown in FIG. 4, for example, when the operation switch of the cooler is turned on (step 101 in FIG. 4), in step 102, the electrodes 1a,
The current detection sensor detects the current flowing between the electrodes 1a and 1b when the current driving between the electrodes 1a and 1b is performed at a constant voltage.
Done by 69. Next, in step 103, the cooling control unit 68 compares the detected current I with a current setting threshold value (for example, R in FIG. 3) predetermined in the current value memory unit 66, and the detected current I When the current is equal to or larger than the current set threshold, the process proceeds to step 104, and when the detected current I is smaller than the set threshold, the process proceeds to step 105.

【0042】そして、ステップ105 に進んだ場合には、
吸収液加熱用バーナ60の燃焼熱量を変えずに吸収液加熱
用バーナ60の燃焼が継続して行われ、一方、ステップ10
4 に進んだときには冷却制御部68により、吸収液加熱用
バーナ60の燃焼熱量を例えばA0 レベルに小さくして吸
収液加熱用バーナ60の燃焼が行われる。そして、この吸
収液加熱用バーナ60の燃焼熱量の低下燃焼により、冷却
装置9によって冷却する熱媒体(冷房用媒体循環路2の
管路38を流れる熱媒体)の冷却効率が小さく制御がされ
る。なお、ステップ104 、ステップ105 における吸収液
加熱用バーナ60の燃焼制御中にも、電流検出センサ69に
よる電極1a,1b間の通電電流検出は継続して行われ
る。
When proceeding to step 105,
The combustion of the absorbent heating burner 60 is continued without changing the heat of combustion of the absorbent heating burner 60.
When the process proceeds to 4, the cooling control unit 68 reduces the amount of heat of combustion of the absorbent heating burner 60 to, for example, the A0 level, and burns the absorbent heating burner 60. Then, the cooling efficiency of the heat medium (heat medium flowing through the pipe 38 of the cooling medium circulation path 2) cooled by the cooling device 9 is controlled to be small by the reduced combustion of the combustion heat of the absorbent heating burner 60. . During the combustion control of the absorbent heating burner 60 in steps 104 and 105, the current detection sensor 69 continuously detects the current flowing between the electrodes 1a and 1b.

【0043】次に、ステップ106 では、冷却制御部68に
より、電流検出センサ69によって検出される検出電流I
と電流値メモリ部66に与えられている冷却停止基準電流
値との比較が行われる。そして、検出電流Iが冷却停止
基準電流値以上のときにはステップ107 に進み、検出電
流Iが冷却停止基準電流値未満のときにはステップ104
に戻るか、あるいは、ステップ103 に戻る。そして、電
流検出センサ69の検出電流Iが冷却停止基準電流値以上
となってステップ107 に進んだときには、冷却制御部68
により、吸収液加熱用バーナ60の燃焼停止が行われ、冷
却装置9による冷却動作が停止される。
Next, at step 106, the cooling control unit 68 detects the detected current I detected by the current detecting sensor 69.
Is compared with the cooling stop reference current value provided to the current value memory unit 66. When the detected current I is equal to or larger than the cooling stop reference current value, the process proceeds to step 107. When the detected current I is smaller than the cooling stop reference current value, the process proceeds to step 104.
Or return to step 103. When the detection current I of the current detection sensor 69 is equal to or more than the cooling stop reference current value and the process proceeds to step 107, the cooling control unit 68
As a result, the combustion of the burner 60 for heating the absorbing liquid is stopped, and the cooling operation by the cooling device 9 is stopped.

【0044】なお、以上のような、冷却制御部68による
吸収液加熱用バーナ60の燃焼制御に際し、例えば室外機
7又は室内機5に、表示や警報を用いて冷却装置9によ
る熱媒体冷却効率の報知を行う報知装置等を設け、冷却
制御部68による図4のステップ104 での吸収液加熱用バ
ーナ60の燃焼熱量低下制御や、ステップ107 での吸収液
加熱用バーナ60の燃焼停止制御に連動して、冷却装置9
の熱媒体冷却効率低下又は冷却停止状態を報知するよう
にしてもよい。
When the combustion control of the absorbent heating burner 60 is performed by the cooling control unit 68 as described above, the heat medium cooling efficiency of the cooling device 9 is displayed on the outdoor unit 7 or the indoor unit 5 by using a display or an alarm. A notifying device or the like for notifying the temperature is provided, and the cooling control unit 68 controls the combustion heat reduction of the absorbent heating burner 60 in step 104 in FIG. 4 and the combustion stop control of the absorbent heating burner 60 in step 107. In conjunction with the cooling device 9
The heat medium cooling efficiency may be lowered or the cooling may be stopped.

【0045】本実施形態例によれば、上記のように、電
極駆動部64によって電極1a,1b間に極性反転電流を
流すことにより、水の循環路61内にスケール等が析出す
ることを効果的に緩和、抑制することが可能となり、さ
らに、この電極1a,1b間の通電電流を電流検出セン
サ69によって検出し、この検出電流に基づいて吸収液加
熱用バーナ60の燃焼制御を行うことにより、冷却装置9
の故障等を未然に防ぐことができる。
According to the present embodiment, as described above, by causing the polarity inversion current to flow between the electrodes 1a and 1b by the electrode driving section 64, the scale and the like are deposited in the water circulation path 61. The current flowing between the electrodes 1a and 1b is detected by the current detection sensor 69, and the combustion control of the burner 60 for heating the absorbent is performed based on the detected current. , Cooling device 9
Can be prevented beforehand.

【0046】すなわち、前記のような電極1a,1b間
の通電駆動によってスケール等の析出の抑制を行っても
スケールの析出を完全に防ぐことができずに、スケール
等が析出してしまい、水の循環路61を流れる水の流れが
悪くなってしまうと、この水によって行われる吸収器45
および凝縮器47における冷媒蒸気の熱の吸収・放熱動作
を十分に行えなくなることが懸念されるが、電極1a,
1b間の通電電流の検出によって検出される水の循環路
61内のスケール成分濃縮状態に対応させて、スケール成
分等の濃縮度が大きくなったと判断されるときには、冷
却装置9の熱媒体冷却効率を小さくすれば、冷媒循環系
48で生じる冷媒50の蒸発により生じる熱が小さくなるた
めに、たとえ水の循環路61内を流れる水の流れが悪くな
っても、水の循環路61の水によって行われる冷媒蒸気の
熱の吸収・放熱が十分に行われる。したがって、冷媒循
環系48の冷媒循環動作および冷却装置9による熱媒体冷
却動作を円滑に行えるようになり、例えば冷媒吸収液と
しての臭化リチウム液の結晶化等が生じることを防ぎ、
冷却装置9の故障を防止することができる。
That is, even if the deposition of the scale or the like is suppressed by the drive of the electric current between the electrodes 1a and 1b as described above, the deposition of the scale cannot be completely prevented. If the flow of water flowing through the circulation path 61 becomes poor, the absorber 45
There is a concern that the operation of absorbing and radiating the heat of the refrigerant vapor in the condenser 47 may not be performed sufficiently.
Circulation path of water detected by detection of current flowing between 1b
When it is determined that the enrichment of the scale component or the like has increased in accordance with the scale component enrichment state in 61, if the heat medium cooling efficiency of the cooling device 9 is reduced, the refrigerant circulation system
Since the heat generated by the evaporation of the refrigerant 50 generated at 48 becomes small, even if the flow of the water flowing in the water circulation path 61 becomes poor, the heat of the refrigerant vapor absorbed by the water in the water circulation path 61 is absorbed.・ Sufficient heat radiation. Therefore, the refrigerant circulating operation of the refrigerant circulating system 48 and the heat medium cooling operation by the cooling device 9 can be smoothly performed, and for example, crystallization of the lithium bromide liquid as the refrigerant absorbing liquid is prevented from occurring,
The failure of the cooling device 9 can be prevented.

【0047】さらに、本実施形態例によれば、電流検出
センサ69によって検出される検出電流Iが、前記電流設
定閾値よりも大きい冷却停止基準電流値以上となったと
きには、吸収液加熱用バーナ60の燃焼を停止させるため
に、水の循環路61内のスケール成分等の濃縮がさらに大
きくなり、水の循環路61内の水による冷媒蒸気の熱の吸
収・放熱効率がさらに低下していると判断されるときに
は、冷却装置9による冷却動作そのものを停止させるこ
とにより、より一層確実に冷却装置9の故障等を未然に
防止することができる。
Further, according to the present embodiment, when the detection current I detected by the current detection sensor 69 becomes equal to or larger than the cooling stop reference current value larger than the current setting threshold value, the absorption liquid heating burner 60 is controlled. In order to stop the combustion of the water, the concentration of scale components and the like in the water circulation path 61 is further increased, and the efficiency of absorption and heat radiation of the refrigerant vapor by the water in the water circulation path 61 is further reduced. When the determination is made, by stopping the cooling operation itself by the cooling device 9, it is possible to more reliably prevent the failure of the cooling device 9 or the like.

【0048】なお、本発明は上記実施形態例に限定され
ることはなく様々な実施の態様を採り得る。例えば、上
記実施形態例では、電流設定閾値および冷却停止基準電
流値を予め定めて電流値メモリ部66に与えたが、電流設
定閾値や冷却停止基準電流値を可変設定する可変設定部
等を設け、電流設定閾値や冷却基準電流値を適宜可変設
定して定めてもよい。
The present invention is not limited to the above-described embodiment, but can adopt various embodiments. For example, in the above-described embodiment, the current setting threshold value and the cooling stop reference current value are predetermined and given to the current value memory unit 66. However, a variable setting unit and the like for variably setting the current setting threshold value and the cooling stop reference current value are provided. The current setting threshold value and the cooling reference current value may be variably set and determined.

【0049】また、上記実施形態例では、1つの電流設
定閾値を与え、電流検出センサ69の検出電流がこの電流
設定閾値以上のときには吸収液加熱用バーナ60の燃焼熱
量を小さくするようにしたが、電流設定閾値は複数設け
ることもできる。そして、例えば図3の特性線bに示す
ように、電流検出センサ69の検出電流が第1の電流設定
閾値R1 以上となったときには、吸収液加熱用バーナ60
の燃焼熱量をA0 からA1 レベルに小さくし(A0 >A
1 )、電流検出センサ69の検出電流が、第1の電流設定
閾値R1 よりも大きい第2の電流設定閾値R2 以上とな
ったときには、吸収液加熱用バーナ60の燃焼熱量をA1
レベルからA2 レベルに小さくする(A1 >A2 )とい
ったように、複数の各電流設定閾値に対応させて、冷却
制御部68によって吸収液加熱用バーナ60の燃焼熱量を段
階的に小さくするようにしてもよい。
In the above-described embodiment, one current setting threshold is given, and when the current detected by the current detection sensor 69 is equal to or greater than the current setting threshold, the amount of combustion heat of the absorbent heating burner 60 is reduced. In addition, a plurality of current setting thresholds may be provided. For example, as shown in characteristic curve b in FIG. 3, when the detected current of the current detecting sensor 69 becomes a first current preset threshold R 1 or more, the absorption liquid heating burner 60
Of combustion heat from A 0 to A 1 level (A 0 > A
1), the detection current of the current detecting sensor 69 is, when it becomes the first current setting threshold R 1 second is greater than the current setting threshold R 2 or more, the heat of combustion of the absorbent heating burner 60 A 1
The cooling control unit 68 gradually reduces the amount of combustion heat of the absorbent heating burner 60 in correspondence with the plurality of current setting thresholds, such as reducing the level from the level to the level A 2 (A 1 > A 2 ). You may do so.

【0050】また、電流検出センサ69の検出電流が電流
設定閾値以上のときに、冷却制御部68により、吸収液加
熱用バーナ60の燃焼熱量をある一定のレベルに小さくす
る制御を行う代わりに、図3の特性線cに示すように、
検出電流が電流設定閾値以上となってからの吸収液加熱
用バーナ60の燃焼熱量を連続的に小さくするようにして
もよい。
When the current detected by the current detection sensor 69 is equal to or greater than the current setting threshold, instead of performing control to reduce the amount of combustion heat of the absorbent heating burner 60 to a certain level by the cooling control unit 68, As shown by the characteristic line c in FIG.
The amount of combustion heat of the absorbent heating burner 60 after the detected current has become equal to or greater than the current setting threshold may be continuously reduced.

【0051】さらに、上記実施形態例では、電流設定閾
値よりも大きい冷却停止基準値を与え、冷却制御部68
は、電流検出センサ69の検出電流がこの冷却停止基準電
流値以上のときには吸収液加熱用バーナ60の燃焼を停止
するようにしたが、冷却停止基準電流値の設定は省略す
ることもできる。ただし、冷却停止基準電流値を与え、
この冷却停止基準電流値に基づいて冷却制御部68により
吸収液加熱用バーナ60の燃焼停止制御を行うことによ
り、水の循環路61内のスケール成分濃縮度が非常に高く
なったと判断されたときに、吸収液加熱用バーナ60の燃
焼停止による冷却装置9の冷却動作停止を行えば、冷却
装置9の故障等をより一層確実に未然に防ぐことができ
る。
Further, in the above embodiment, a cooling stop reference value larger than the current setting threshold is given, and the cooling control unit 68
Although the combustion of the absorbent heating burner 60 is stopped when the current detected by the current detection sensor 69 is equal to or more than the cooling stop reference current value, the setting of the cooling stop reference current value may be omitted. However, given the cooling stop reference current value,
When it is determined that the enrichment of scale components in the water circulation path 61 has become extremely high by performing the combustion stop control of the absorbent heating burner 60 by the cooling control unit 68 based on the cooling stop reference current value. If the cooling operation of the cooling device 9 is stopped by stopping the combustion of the absorbent heating burner 60, the failure of the cooling device 9 can be more reliably prevented.

【0052】さらに、電極駆動部64によって電極1a,
1b間に印加する交流電圧の大きさ等は特に限定される
ものではなく、適宜設定されるものであり、例えばこの
交流印加電圧の可変設定部を設けて交流印加電圧の可変
設定を行えるようにしてもよい。
Further, the electrodes 1a,
The magnitude of the AC voltage applied between 1b and the like is not particularly limited and may be appropriately set. For example, a variable setting section for the AC applied voltage is provided so that the AC applied voltage can be variably set. You may.

【0053】さらに、例えば電極1a,1b間を通る水
の温度を検出する水温検出センサ等を設け、この水温検
出センサによって検出される検出温度に基づいて、電流
検出センサ69の検出電流を温度補正するようにしてもよ
い。
Further, for example, a water temperature detection sensor for detecting the temperature of water passing between the electrodes 1a and 1b is provided, and the current detected by the current detection sensor 69 is corrected based on the temperature detected by the water temperature detection sensor. You may make it.

【0054】さらに、上記実施形態例では、図1に示す
システム構成の冷房器を例にして説明したが、本発明の
冷房器は図1のシステム構成の冷房器に限定されるもの
ではなく、熱媒体を用いて冷房領域の冷房を行うもので
あって、この熱媒体の冷却を冷媒循環系および水の循環
路を有する冷却部によって行うものであれば他のシステ
ム構成の冷房器でも構わない。また、例えば図6に示し
たような冷房機能と暖房機能の両方を備えた冷・暖房器
に本発明を適用することもできる。
Further, in the above embodiment, the cooling device having the system configuration shown in FIG. 1 has been described as an example. However, the cooling device of the present invention is not limited to the cooling device having the system configuration shown in FIG. A cooling device having another system configuration may be used as long as cooling of the cooling region is performed by using a heat medium and cooling of the heat medium is performed by a cooling unit having a refrigerant circulation system and a water circulation path. . Further, the present invention can be applied to, for example, a cooling / heating device having both a cooling function and a heating function as shown in FIG.

【0055】[0055]

【発明の効果】本発明によれば、冷媒の蒸発により熱媒
体の保有熱を奪って熱媒体を冷却する冷却部を備えた冷
房器において、冷却部の冷媒の蒸発により得た熱を吸収
・放熱する水の循環路内に互いに間隔を介して対向配置
した電極に交流電圧を印加することによって、水中のス
ケール成分等の分子と分子の結合を切り、スケール等の
析出を抑制すると共に、前記電極間の通電電流を検出
し、この電流検出値に基づき、電流検出値が大きくなっ
て水の循環路内のスケール成分濃縮度が大きくなったと
判断されるときには冷却器の熱媒体冷却効率を小さくす
るようにしたものであるから、電極間への交流電圧印加
によって効果的にスケール等の析出を抑制すると共に、
電極への通電駆動を行ってもスケール等の析出抑制が不
十分となり、スケール等の析出が懸念されるときには、
冷却部の熱媒体冷却効率を小さくすることにより、冷媒
の蒸発により生じる熱を小さくし、たとえ水の循環路内
を流れる水の流れが多少悪くなっても、前記冷媒の蒸発
により生じる熱の吸収・放熱を十分に行えるようにする
ことができる。
According to the present invention, in a cooling device provided with a cooling unit for cooling the heat medium by removing heat possessed by the heat medium by evaporating the refrigerant, the heat obtained by the evaporation of the refrigerant in the cooling unit is absorbed and absorbed. By applying an AC voltage to the electrodes disposed opposite to each other with an interval in the circulation path of the radiating water, the molecules such as scale components in the water are cut off the bonds between the molecules, and the precipitation of scales and the like is suppressed. The current flowing between the electrodes is detected, and based on this current detection value, when it is determined that the current detection value has increased and the scale component enrichment in the water circulation path has increased, the heat medium cooling efficiency of the cooler is reduced. Because it is made to do, while applying the AC voltage between the electrodes to effectively suppress the deposition of scale and the like,
Even if the electrode is energized, suppression of deposition such as scale becomes insufficient, and when deposition of scale or the like is concerned,
By reducing the heat medium cooling efficiency of the cooling unit, the heat generated by the evaporation of the refrigerant is reduced, and even if the flow of water flowing in the water circulation path is somewhat deteriorated, the heat generated by the evaporation of the refrigerant is absorbed.・ Sufficient heat radiation can be achieved.

【0056】そのため、水の循環路内の水による冷媒蒸
発熱の吸収・放熱が十分に行われないがために、例えば
冷却部の冷却吸収液が結晶化して冷却部が故障するとい
ったことを確実に未然に防ぐことができる。
Therefore, since the refrigerant in the water circulation path does not sufficiently absorb and dissipate the heat of evaporation of the refrigerant by the water, it is ensured that, for example, the cooling absorption liquid in the cooling unit crystallizes and the cooling unit breaks down. Can be prevented beforehand.

【0057】また、前記電流設定閾値よりも大きい冷却
停止基準電流値が与えられており、冷却制御部は電流検
出センサの検出電流が該冷却停止基準電流値以上のとき
には吸収液加熱用バーナの燃焼を停止して冷却部による
冷却を停止させる構成とした本発明によれば、電流検出
センサの検出電流が冷却停止基準電流値以上となり、水
の循環路内のスケール成分等の濃縮度がより一層大きく
なったと判断されるときには、冷却部による冷却そのも
のを停止させるために、たとえ水の循環路内にスケール
成分等が析出しても、その状態で冷却部による冷却動作
を継続することにより冷却部の故障を招くといったこと
を完全に防止することができる。
Further, a cooling stop reference current value larger than the current setting threshold value is provided, and the cooling control unit determines that the combustion of the burner for heating the absorbent is performed when the current detected by the current detection sensor is equal to or greater than the cooling stop reference current value. According to the present invention in which the cooling by the cooling unit is stopped by stopping the cooling, the detection current of the current detection sensor becomes equal to or larger than the cooling stop reference current value, and the enrichment of scale components and the like in the water circulation path is further increased. When it is determined that the size has increased, the cooling operation by the cooling unit is continued by continuing the cooling operation by the cooling unit in that state even if scale components and the like are deposited in the water circulation path in order to stop the cooling itself by the cooling unit. Can be completely prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷房器の一実施形態冷を示す要部
構成図である。
FIG. 1 is a main part configuration diagram showing cooling of an embodiment of a cooling device according to the present invention.

【図2】上記実施形態例に設けられる電極の配設状態
(a)と、この電極への駆動電圧およびその電圧によっ
て生じる極性反転電流の一例(b)を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an arrangement state (a) of electrodes provided in the embodiment, and an example (b) of a drive voltage to the electrodes and a polarity reversal current generated by the voltage.

【図3】本発明に係る冷房器における冷却制御部による
吸収液加熱用バーナの熱量制御例を示すグラフである。
FIG. 3 is a graph showing an example of controlling the amount of heat of a burner for heating an absorbent by a cooling control unit in the air conditioner according to the present invention.

【図4】上記実施形態例の冷房器の動作の一例を示すフ
ローチャートである。
FIG. 4 is a flowchart showing an example of the operation of the air conditioner of the embodiment.

【図5】本出願人が以前に提案している冷房器の一例の
システム構成を示す説明図である。
FIG. 5 is an explanatory diagram showing a system configuration of an example of a cooler previously proposed by the present applicant.

【図6】本出願人が以前に提案している冷・暖房器の一
例のシステム構成を示す説明図である。
FIG. 6 is an explanatory diagram showing a system configuration of an example of a cooling / heating device proposed by the present applicant before.

【符号の説明】[Explanation of symbols]

1,1a,1b 電極 2 冷房用媒体循環路 9 冷却装置 22 冷却熱交換器 44 蒸発器 45 吸収器 46 再生器 47 凝縮器 48 冷媒循環系 1, 1a, 1b Electrode 2 Cooling medium circulation path 9 Cooling device 22 Cooling heat exchanger 44 Evaporator 45 Absorber 46 Regenerator 47 Condenser 48 Refrigerant circulation system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 龍雄 神奈川県大和市深見台3丁目4番地 株式 会社ガスター内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Tatsuo Fujimoto 3-4 Fukamidai, Yamato City, Kanagawa Prefecture Inside Gaster Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱媒体が循環する冷房用媒体循環路が設
けられ、該冷房用媒体循環路は、熱媒体の保有熱を奪っ
て熱媒体を冷却する冷却部と、空気を取り込んでその空
気の熱を熱媒体に吸収させて冷却した空気を冷房領域へ
供給する冷房放熱部とを通り循環形成されており、前記
冷却部には冷媒の蒸発により熱媒体を冷却する蒸発器と
この蒸発器で発生した蒸気を冷却吸収液によって吸収す
る吸収器とこの蒸気を吸収した冷却吸収液を吸収液加熱
用バーナによって加熱して蒸気を分離し冷却吸収液を再
生する再生器を含む冷媒循環系が連接されて設けられ、
この冷媒循環系には冷媒の蒸発により得た熱を吸収・放
熱する水の循環路が設けられており、この水の循環路内
には互いに間隔を介して電極が対向配置されており、該
電極に交流電圧を印加する電極駆動部と、該電極間の通
電電流を検出する電流検出センサと、該電流検出センサ
の検出電流を予め定められた電流設定閾値と比較して該
検出電流が電流設定閾値以上のときには前記吸収液加熱
用バーナの燃焼熱量を小さくして前記冷却部による熱媒
体冷却効率を小さくする冷却制御部とを有することを特
徴とする冷房器。
A cooling medium circulation path through which a heat medium circulates is provided. The cooling medium circulation path takes a heat retained in the heat medium and cools the heat medium, and a cooling section that takes in air and converts the air into air. The cooling medium is circulated through a cooling radiator that absorbs the heat of the heat medium into the heat medium and supplies the cooled air to the cooling area.The cooling unit includes an evaporator that cools the heat medium by evaporating the refrigerant and the evaporator. The refrigerant circulating system includes an absorber that absorbs the steam generated by the cooling absorption liquid, and a regenerator that separates the steam by heating the cooling absorption liquid that has absorbed the vapor with an absorption liquid heating burner to regenerate the cooling absorption liquid. It is provided connected,
The refrigerant circulation system is provided with a water circulation path that absorbs and radiates heat obtained by evaporation of the refrigerant.In the water circulation path, electrodes are arranged to face each other with an interval therebetween. An electrode driving unit that applies an AC voltage to the electrodes; a current detection sensor that detects a current flowing between the electrodes; and a detection current that is detected by comparing the detection current of the current detection sensor with a predetermined current setting threshold. A cooling unit configured to reduce the amount of combustion heat of the burner for heating the absorbent when the temperature is equal to or greater than a set threshold value, thereby reducing the efficiency of cooling the heat medium by the cooling unit.
【請求項2】 電流設定閾値よりも大きい冷却停止基準
電流値が与えられており、冷却制御部は電流検出センサ
の検出電流が該冷却停止基準電流値以上のときには吸収
液加熱用バーナの燃焼を停止して冷却部による冷却を停
止させる構成としたことを特徴とする請求項1記載の冷
房器。
2. A cooling stop reference current value greater than a current setting threshold value is provided, and the cooling control unit performs combustion of the absorbent heating burner when a detection current of the current detection sensor is equal to or greater than the cooling stop reference current value. The air conditioner according to claim 1, wherein the air conditioner is stopped to stop cooling by the cooling unit.
JP8283215A 1996-10-04 1996-10-04 Cooler Pending JPH10111037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8283215A JPH10111037A (en) 1996-10-04 1996-10-04 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8283215A JPH10111037A (en) 1996-10-04 1996-10-04 Cooler

Publications (1)

Publication Number Publication Date
JPH10111037A true JPH10111037A (en) 1998-04-28

Family

ID=17662607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8283215A Pending JPH10111037A (en) 1996-10-04 1996-10-04 Cooler

Country Status (1)

Country Link
JP (1) JPH10111037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535645A (en) * 2010-07-22 2013-09-12 コーニンクレッカ フィリップス エヌ ヴェ Prevention or reduction of scale on heating element of water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535645A (en) * 2010-07-22 2013-09-12 コーニンクレッカ フィリップス エヌ ヴェ Prevention or reduction of scale on heating element of water heater
US9986600B2 (en) 2010-07-22 2018-05-29 Koninklijke Philips N.V Prevention or reduction of scaling on a heater element of a water heater

Similar Documents

Publication Publication Date Title
JPH10111037A (en) Cooler
JP2000186868A (en) Controller for absorption air conditioning apparatus
JP2002195628A (en) Controller for air conditioner
JP2001099474A (en) Air conditioner
JP3399663B2 (en) Air conditioner using absorption refrigerator
JP3081472B2 (en) Control method of absorption refrigerator
JP3281189B2 (en) Crystal melting method and apparatus in absorption refrigerator / chiller / heater
JP3056990B2 (en) Absorption air conditioner
KR100193750B1 (en) Absorption Cooling Unit
JP4310566B2 (en) Air conditioner
JP3197725B2 (en) Air conditioner using absorption refrigerator
JP3124662B2 (en) Air conditioner using absorption refrigerator
JP3313481B2 (en) Air conditioner using absorption refrigerator
JP2000186867A (en) Controller for absorption air conditioning apparatus
JPH11182965A (en) Air conditioner and air conditioning method using absorption hot and chilled water generator
KR100322260B1 (en) Absorption refrigerator
JP3399664B2 (en) Air conditioner using absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP3313876B2 (en) Air conditioner using absorption refrigerator
JP2003042588A (en) Absorption type cooling and heating machine
JPH07133967A (en) Air conditioner using absorption freezer
JPH0618119A (en) Absorption type refrigerating machine
JPH0798164A (en) Air-conditioner using absorptive freezer
JP2002195687A (en) Operation method for waste heat utilizing absorption freezer
JPH08320168A (en) Control method for absorption type cold/hot water machine