JPH10110914A - Heating furnace with radiant tube as heat source - Google Patents

Heating furnace with radiant tube as heat source

Info

Publication number
JPH10110914A
JPH10110914A JP26630996A JP26630996A JPH10110914A JP H10110914 A JPH10110914 A JP H10110914A JP 26630996 A JP26630996 A JP 26630996A JP 26630996 A JP26630996 A JP 26630996A JP H10110914 A JPH10110914 A JP H10110914A
Authority
JP
Japan
Prior art keywords
tube
heat
radiant
tubes
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26630996A
Other languages
Japanese (ja)
Other versions
JP3600696B2 (en
Inventor
Mamoru Matsuo
護 松尾
Kiyobumi Kurita
清文 栗太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP26630996A priority Critical patent/JP3600696B2/en
Publication of JPH10110914A publication Critical patent/JPH10110914A/en
Application granted granted Critical
Publication of JP3600696B2 publication Critical patent/JP3600696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize uniform heating not only in the length direction of a radiant tube but only in the direction between the tubes in a heating furnace using the radiant tube as a heat source. SOLUTION: The heating furnace includes on opposite ends of a radiant tube 5 a pair of regenerative burners 6, 6 for alternately supplying exhaust of waste gas and supply of combustion through a heat storage structure, and uses as a heating source the radiant tube 5 including a regenerative burner system 2 for alternately combusting the pair of the burners 6, 6. In this case, the radiant tube 5 is disposed in a furnace in a range where a ratio Lw of a pitch Lp between the radiant tubes and a distance from the tube to a work is at most 2, preferably 0.75<Lp/Lw<1.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラジアントチュー
ブの両端に一対の蓄熱型バーナを備え、これを交互に燃
焼させてチューブを加熱して熱源とする加熱炉に関す
る。更に詳述すると、本発明はラジアントチューブの炉
内での配置の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace having a pair of regenerative burners at both ends of a radiant tube, which are alternately burned to heat the tube to use as a heat source. More specifically, the present invention relates to improving the placement of radiant tubes in a furnace.

【0002】[0002]

【従来の技術】雰囲気の汚染を嫌う加熱炉例えば雰囲気
炉における従来の熱源としては、通常、ラジアントチュ
ーブとこのチューブ内で長炎燃焼を起こす1基のラジア
ントチューブバーナとが一般的である。ラジアントチュ
ーブによる加熱は電気ヒータによる加熱と同様に雰囲気
を汚さず、かつ電気ヒータなどに比べてコストが格段に
低くできることから、熱源として有用である。
2. Description of the Related Art As a conventional heat source in a heating furnace which refuses to contaminate the atmosphere, for example, in an atmosphere furnace, a radiant tube and one radiant tube burner which causes long flame combustion in the tube are generally used. The heating by the radiant tube is useful as a heat source because it does not pollute the atmosphere similarly to the heating by the electric heater and the cost can be remarkably reduced as compared with the electric heater and the like.

【0003】しかしながら、このラジアントチューブバ
ーナでは、ラジアントチューブの一端から他端の排気口
に向けてチューブ内を一方向に燃焼が進行するので、図
10の(A)に示すように焚き口部付近のチューブ表面
温度が最も高くなり、燃焼量を増やし過ぎると、焚き口
付近が過熱により焼損する。焼損防止には、焚き口付近
のチューブ温度をチューブ材料の使用限界温度以下にす
ることが必要となるために、燃焼量を減らさなければな
らずチューブ表面積当たりの伝熱量が制限される。
However, in this radiant tube burner, combustion proceeds in one direction from one end of the radiant tube toward the exhaust port at the other end, and therefore, as shown in FIG. If the surface temperature of the tube becomes the highest and the amount of combustion is excessively increased, the vicinity of the heating port is burned due to overheating. In order to prevent burning, it is necessary to lower the temperature of the tube in the vicinity of the heating port to a temperature lower than the use limit temperature of the tube material. Therefore, the amount of combustion must be reduced, and the amount of heat transfer per tube surface area is limited.

【0004】また、チューブ内の燃焼ガス温度は、排気
口に向かうにつれて低下し、伝熱量はチューブの長さ方
向に減少する。これは、チューブの長さ方向に大きい温
度勾配を持つことになり、チューブの寿命を短くする。
Further, the temperature of the combustion gas in the tube decreases toward the exhaust port, and the amount of heat transfer decreases in the length direction of the tube. This results in a large temperature gradient along the length of the tube, shortening the life of the tube.

【0005】更に、伝熱量は燃焼ガス温度とワーク温度
の対数平均温度差に比例するから、排気温度を下げて省
エネルギーを図ろうとすると膨大な伝熱面積(チューブ
表面積)を必要とする。そこで、熱交換機を設備して、
排気熱を回収して燃焼空気を予熱することも考えられる
が、この場合でも、焚き口付近のチューブ温度は制限温
度以下にしなければならず、伝熱量を増すことはできな
い。更に、レキュペレータをチューブ排気口・他端側へ
備えて排ガスと燃焼用空気との熱交換を行うことによっ
て熱回収を図っても、多少の省エネルギーは達成される
ものの、用いられる換熱式熱交換機の温度効率は60%
以下の低率のため、その効果は低い。
Further, since the amount of heat transfer is proportional to the logarithmic average temperature difference between the combustion gas temperature and the work temperature, an enormous heat transfer area (tube surface area) is required to reduce the exhaust temperature and save energy. So, install a heat exchanger,
Although it is conceivable to recover the exhaust heat and preheat the combustion air, even in this case, the temperature of the tube in the vicinity of the opening must be lower than the limit temperature, and the heat transfer amount cannot be increased. Furthermore, even if a recuperator is provided at the tube exhaust port / other end side to perform heat exchange between the exhaust gas and the combustion air, although some energy saving is achieved, the heat exchange type heat exchanger used is used. Temperature efficiency of 60%
The effect is low due to the following low rates.

【0006】そこで、本発明者等は、雰囲気炉の熱源と
して、ラジアントチューブの両端にそれぞれ蓄熱型バー
ナを備え、この一対のバーナを交互に燃焼させてチュー
ブを加熱した後の排ガスを燃焼停止中のバーナの蓄熱体
を経て排気する一方、燃焼中のバーナには蓄熱体を経て
高温に予熱された燃焼用空気を供給し、排ガス温度に近
い高温の燃焼用空気で燃焼させることを考えた。
Therefore, the present inventors have provided a heat storage type burner at each end of a radiant tube as a heat source of an atmosphere furnace. The pair of burners are alternately burned to stop the combustion of the exhaust gas after heating the tube. While exhausting through the regenerator of the burner, the burner during combustion was supplied with combustion air preheated to a high temperature via the regenerator and burned with high-temperature combustion air close to the exhaust gas temperature.

【0007】この場合、チューブ内の燃焼方向が短周期
で交互に変わるので、図10の(B)に示すように燃焼
ガス温度はピークを持たず、チューブの長さ方向に均一
になり、かつ、ピークの無い均一火炎は低NOx化を実
現する。したがってチューブよりワークへの伝熱量はチ
ューブの長さ方向に均一である。加えて、蓄熱型熱交換
では90%以上の温度効率が容易に得られ、チューブ出
口の排気温度に近い高温の空気が得られるから燃焼ガス
とワーク間で均一で、かつ、高い温度落差が得られ、高
い省エネルギーが達成される。したがって、チューブの
制限温度で均一加熱したとき、従来型と同一表面積では
伝熱量を約2倍にできるし、従来型と同じ伝熱量とする
場合には表面積を約半分にできる。従来型と同一表面
積、同一伝熱量ではチューブのピーク温度が下がるため
耐熱性に劣る安価な低級材が使用できる。
In this case, since the combustion direction in the tube alternates in a short cycle, the combustion gas temperature has no peak as shown in FIG. 10 (B), becomes uniform in the length direction of the tube, and A uniform flame without a peak realizes a low NOx. Therefore, the amount of heat transfer from the tube to the work is uniform in the length direction of the tube. In addition, in the heat storage type heat exchange, a temperature efficiency of 90% or more can be easily obtained, and high-temperature air close to the exhaust temperature at the tube outlet can be obtained, so that a uniform and high temperature drop can be obtained between the combustion gas and the work. And high energy saving is achieved. Therefore, when the tube is uniformly heated at the limited temperature, the heat transfer amount can be approximately doubled with the same surface area as the conventional type, and the surface area can be reduced by about half when the heat transfer amount is the same as the conventional type. With the same surface area and the same heat transfer amount as the conventional type, the peak temperature of the tube is lowered, so that an inexpensive low-grade material having poor heat resistance can be used.

【0008】[0008]

【発明が解決しようとする課題】ところが、実際の雰囲
気炉においては上述の効果が必ずしも得られないという
問題が生じた。即ち、従来、ラジアントチューブからワ
ークへの均一な熱伝達は、ラジアントチューブのピッチ
を小さくして密に配列するほど良く、ピッチを大きくし
てラジアントチューブを離すにつれてチューブ間の中間
点の熱伝達が遅れ、ワークの均一熱伝達が阻害されると
考えられていた。そこで、可能な限り密にチューブを配
置することを前提に主として経済性の観点からのみチュ
ーブのピッチが決められて来た。
However, there has been a problem that the above effects cannot always be obtained in an actual atmosphere furnace. That is, conventionally, uniform heat transfer from the radiant tube to the work is better as the pitch of the radiant tubes is reduced and densely arranged, and as the pitch is increased and the radiant tubes are separated, the heat transfer at an intermediate point between the tubes is improved. It was thought that the heat transfer of the work was hindered. Therefore, the pitch of the tubes has been determined mainly from the viewpoint of economy, on the premise that the tubes are arranged as densely as possible.

【0009】しかし、実際にはワークのチューブとチュ
ーブとの間での均一加熱が難しく、さらにチューブのピ
ッチを経済上の要請を無視して小さくしても伝熱の均一
性が保たれないことを見いだした。
However, in practice, it is difficult to uniformly heat the tubes of the work, and even if the pitch of the tubes is reduced ignoring the economic requirement, uniformity of the heat transfer cannot be maintained. Was found.

【0010】本発明はチューブ長さ方向だけでなくチュ
ーブ間方向にも均一加熱が実現可能なラジアントチュー
ブを熱源とする加熱炉を提供することを目的とする。
[0010] It is an object of the present invention to provide a heating furnace using a radiant tube as a heat source capable of realizing uniform heating not only in the tube length direction but also in the inter-tube direction.

【0011】[0011]

【課題を解決するための手段】このことについて、本発
明者等が更に種々研究検討した結果、ラジアントチュー
ブの配列ピッチとワークまでの距離に相関関係を有する
ことを知見した。即ち、チューブからワークへの伝熱を
仔細に検討した結果、従来言われてきたようにチューブ
のピッチを小さくするほど伝熱の均一性が保たれるもの
ではなく、あるピッチの範囲で最も均一性が保たれる領
域が存在し、それよりもピッチが小さくても、また大き
くても伝熱の均一性が阻害されることを見いだした。
As a result of the present inventors' various studies and studies, it was found that the arrangement pitch of the radiant tubes and the distance to the work had a correlation. In other words, as a result of a detailed study of the heat transfer from the tube to the work, the smaller the pitch of the tube is, the more uniform the heat transfer is not maintained, as has been said so far. It has been found that there is a region where the heat transfer is maintained, and even if the pitch is smaller or larger than that, the uniformity of heat transfer is impaired.

【0012】本発明は、かかる知見に基づいて成された
もので、ラジアントチューブの両端にそれぞれ蓄熱体を
通して排ガスの排気と燃焼用空気の供給とを交互に行う
蓄熱型バーナを備え、その一対のバーナを交互に燃焼さ
せる蓄熱バーナシステムを装備したラジアントチューブ
を加熱源とする雰囲気炉において、ラジアントチューブ
間ピッチLpとチューブからワークまでの距離Lwとの
比Lp/Lwが2以下でラジアントチューブを炉内に配
置するようにしている。ここで、チューブ間のピッチL
pとワークまでの距離Lwの比Lp/Lwは、好ましく
は0.75<Lp/Lw<1.75とすることである。
これによって、チューブの長さ方向だけでなくチューブ
とチューブとの間の均一加熱をも可能とする。
The present invention has been made based on this finding, and includes a heat storage type burner at both ends of a radiant tube which alternately supplies exhaust gas and feeds combustion air through a heat storage body. In an atmosphere furnace equipped with a radiant tube as a heating source equipped with a heat storage burner system for alternately burning burners, a radiant tube having a ratio Lp / Lw of a pitch Lp between radiant tubes and a distance Lw from a tube to a work of 2 or less is used as a furnace. To be placed inside. Here, the pitch L between the tubes
The ratio Lp / Lw of p to the distance Lw to the workpiece is preferably set to 0.75 <Lp / Lw <1.75.
This allows for uniform heating between tubes as well as the length of the tubes.

【0013】即ち、ラジアントチューブからワークへの
熱伝達は、図2に示すようにして与えられる。このと
き、ラジアントチューブの単位表面積当たりの放射熱量
(チューブの熱流束)qは、次の数式1に示すように表
される。そして、放射を受けるワークの任意の位置にお
ける単位表面積当たりの受熱量(受熱面の熱流束)q”
は、次の数式2に示す基本式(1)で表される。また、
チューブ中心からの熱の放射角度αは数式3に示す基本
式(2)によって表される。
That is, heat transfer from the radiant tube to the work is given as shown in FIG. At this time, the amount of radiant heat per unit surface area of the radiant tube (heat flux of the tube) q is expressed as in the following Expression 1. Then, the amount of heat received per unit surface area (heat flux of the heat receiving surface) q ”at an arbitrary position of the work receiving the radiation.
Is represented by a basic expression (1) shown in the following Expression 2. Also,
The radiation angle α of the heat from the center of the tube is represented by the following basic formula (2) shown in Expression 3.

【0014】[0014]

【数1】 (Equation 1)

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【数3】 (Equation 3)

【0017】ただし、q’はその任意の受熱面において
チューブよりの放射に垂直な仮想受熱面での単位表面積
当たりの仮想受熱量(仮想面の熱流束)、rはラジアン
トチューブの半径、dsはワークの任意位置にαなる角
度で熱を放射するチューブの微小表面積、ds”はワー
ク受熱面の微小表面積、ds’は仮想面の微小表面積、
L1はチューブよりワーク表面までの垂直距離、L2は
チューブより任意のワーク受熱面までの水平距離を示
す。
Here, q ′ is a virtual heat receiving amount per unit surface area (heat flux of the virtual surface) on the virtual heat receiving surface perpendicular to the radiation from the tube on any arbitrary heat receiving surface, r is the radius of the radiant tube, and ds is A small surface area of a tube that radiates heat at an angle α at an arbitrary position on the work, ds "is a small surface area of the work heat receiving surface, ds' is a small surface area of the virtual surface,
L1 indicates the vertical distance from the tube to the work surface, and L2 indicates the horizontal distance from the tube to any work heat receiving surface.

【0018】次に、ピッチが2本のラジアントチューブ
の間にあるワークに対して、その間で最も多くの熱を与
えられる場所の受熱量との比を以て、任意の場所の受熱
量を表示し、受熱量分布を評価することが可能である。
Next, for a workpiece having a pitch between two radiant tubes, the amount of heat received at an arbitrary location is displayed by using a ratio with the amount of heat received at a location to which the most heat is given between the radiant tubes. It is possible to evaluate the distribution of the amount of heat received.

【0019】そこで、ワークに対し平衡に配置された2
本のチューブ間におけるワークへの熱伝達は、次のよう
に考えられる。即ち、2本のラジアントチューブからは
全方向に熱放射し、ワークに対してそれぞれのチューブ
より直接に、および炉壁に反射(炉壁に向かう放射熱は
炉壁に吸収するのは極一部で大半は反射する)して間接
に熱を与える。一方、二本のチューブ間でのワーク上の
任意の場所nに向かっては、チューブから直接n点に向
かって放射する熱と、炉壁に反射してワークのn点に与
えられる熱とがある。炉壁からの反射は、炉壁とワーク
の相対的な位置関係によって様々であるが、この大きさ
を、ワーク上のn点に等角度で反射する放射熱として代
表させると、ワーク上のn点に与える放射熱の大きさは
基本式(1)、(2)によって無次元評価値△Knとし
て以下の数式4のように与えられる。
Therefore, 2
The heat transfer to the work between the tubes is considered as follows. That is, heat is radiated in all directions from the two radiant tubes, and is reflected directly from each tube to the work and to the furnace wall (radiation heat directed toward the furnace wall is absorbed by the furnace wall at a very small portion). Most of them are reflected) and indirectly give heat. On the other hand, for an arbitrary place n on the work between the two tubes, heat radiated directly from the tube to the point n and heat given to the work at the point n by reflecting on the furnace wall are shown. is there. The reflection from the furnace wall varies depending on the relative positional relationship between the furnace wall and the work. When this magnitude is represented as radiant heat reflected at an n-point on the work at an equal angle, n The magnitude of the radiant heat given to the point is given as a dimensionless evaluation value △ Kn by the basic formulas (1) and (2) as in the following Expression 4.

【0020】[0020]

【数4】 (Equation 4)

【0021】ここに、Lpはチューブ間のピッチを、L
wはチューブの中心からワーク表面への垂直距離、Lr
はチューブ中心から炉壁(反射面)までの垂直距離、D
pはチューブの直径を示す。
Here, Lp is the pitch between tubes, Lp
w is the vertical distance from the center of the tube to the work surface, Lr
Is the vertical distance from the tube center to the furnace wall (reflection surface), D
p indicates the diameter of the tube.

【0022】この△Knと、チューブ間における△Kn
の最大値△Kmax との比をn点における熱流束比Knと
定義してKnの分布によってワークの均一加熱を可能に
するラジアントチューブの適正なピッチを評価すること
ができる。
This ΔKn and ΔKn between the tubes
Is defined as the heat flux ratio Kn at the point n, and the distribution of the Kn can evaluate an appropriate pitch of the radiant tube that enables uniform heating of the work.

【0023】以上に基づいて2本のラジアントチューブ
間におけるワークの熱流束比の分布を調べてみる。
The distribution of the heat flux ratio of the work between the two radiant tubes will be examined based on the above.

【0024】以下に、チューブ間を6分割したときの各
点における熱流束比分布の検討結果を表示する。
The results of examining the heat flux ratio distribution at each point when the space between the tubes is divided into six are shown below.

【0025】(1)Lr/Lw=0.5におけるLp/
Lw対熱流束比の分布 Lr/Lwを0.5で一定にした状態で、Lp/Lwを
0.5,1.0,1.5,2.0,2.5と変化させて
それに伴う熱流束比分布の変化を求めた。この結果を図
3に示す。このことから、Lp/Lwが大きくなるにつ
れてチューブ間中心(ワークの分割位置3)付近の熱流
束比が低くなり、2.0での熱流束比は充分に高い値と
言える0.9以上であるが、2.5での熱流束比は高い
とは言えない0.85未満となった。
(1) Lp / at Lr / Lw = 0.5
Distribution of Lw to heat flux ratio With Lr / Lw kept constant at 0.5, Lp / Lw is changed to 0.5, 1.0, 1.5, 2.0, 2.5 to accompany it. The change of the heat flux ratio distribution was determined. The result is shown in FIG. From this, as Lp / Lw increases, the heat flux ratio near the center between the tubes (the division position 3 of the work) decreases, and the heat flux ratio at 2.0 is a sufficiently high value of 0.9 or more. However, the heat flux ratio at 2.5 was less than 0.85, which is not high.

【0026】(2)Lr/Lw=1.0におけるLp/
Lw対熱流束比の分布 Lr/Lwを1.0で一定にした状態で、Lp/Lwを
0.5,1.0,1.5,2.0,2.5と変化させて
それに伴う熱流束比分布の変化を求めた。この結果を図
4に示す。このことから、Lp/Lwが大きくなるにつ
れてチューブ間中心(ワークの分割位置3)付近の熱流
束比が低くなり、2.0での熱流束比は未だ充分に高い
値と言える0.9以上であるが、2.5での熱流束比は
高いとは言えない0.9未満で0.8付近となった。
(2) Lp / Lw / Lw = 1.0
Distribution of Lw to heat flux ratio With Lr / Lw kept constant at 1.0, Lp / Lw is changed to 0.5, 1.0, 1.5, 2.0, 2.5 to accompany it. The change of the heat flux ratio distribution was determined. The result is shown in FIG. From this, as Lp / Lw increases, the heat flux ratio near the center between the tubes (the division position 3 of the work) decreases, and the heat flux ratio at 2.0 can be said to be a sufficiently high value of 0.9 or more. However, the heat flux ratio at 2.5 was close to 0.8 at less than 0.9, which cannot be said to be high.

【0027】(3)Lr/Lw=1.5におけるLp/
Lw対熱流束比の分布 Lr/Lwを1.5で一定にした状態で、Lp/Lwを
0.5,1.0,1.5,2.0,2.5と変化させて
それに伴う熱流束比分布の変化を求めた。この結果を図
5に示す。このことから、Lp/Lwが大きくなるにつ
れてチューブ間中心(ワークの分割位置3)付近の熱流
束比が低くなり、2.0での熱流束比は充分に高い値と
言える0.9をやや下回るが高いと言える値であるが、
2.5での熱流束比は高いとは言えない0.8未満とな
った。
(3) Lp / Lp at Lr / Lw = 1.5
Distribution of Lw to heat flux ratio With Lr / Lw kept constant at 1.5, Lp / Lw was changed to 0.5, 1.0, 1.5, 2.0, 2.5 to accompany it. The change of the heat flux ratio distribution was determined. The result is shown in FIG. From this, as Lp / Lw increases, the heat flux ratio near the center between the tubes (the division position 3 of the work) decreases, and the heat flux ratio at 2.0 is slightly higher than 0.9, which can be said to be a sufficiently high value. It is a value that can be said to be lower but higher,
The heat flux ratio at 2.5 was less than 0.8, which is not high.

【0028】(4)Lr/Lw=2.0におけるLp/
Lw対熱流束比の分布 Lr/Lwを2.0で一定にした状態で、Lp/Lwを
0.5,1.0,1.5,2.0,2.5と変化させて
それに伴う熱流束比分布の変化を求めた。この結果を図
6に示す。このことから、Lp/Lwが大きくなるにつ
れてチューブ間中心(ワークの分割位置3)付近の熱流
束比が低くなり、2.0での熱流束比は充分に高い値と
言える0.9を下回るが高いと言える0.85以上の値
であるが、2.5での熱流束比は高いとは言えない値
0.8を大きく下回る値であった。
(4) Lp / Lp at Lr / Lw = 2.0
Distribution of Lw to heat flux ratio With Lr / Lw kept constant at 2.0, Lp / Lw was changed to 0.5, 1.0, 1.5, 2.0, 2.5 to accompany it. The change of the heat flux ratio distribution was determined. The result is shown in FIG. From this, as Lp / Lw increases, the heat flux ratio near the center between the tubes (the division position 3 of the work) decreases, and the heat flux ratio at 2.0 is below 0.9 which can be said to be a sufficiently high value. Is a value of 0.85 or more which can be said to be high, but the heat flux ratio at 2.5 was a value which was much lower than the value 0.8 which could not be said to be high.

【0029】以上、種々の炉条件下でのチューブ間のワ
ークへの熱流束分布の検討結果から、熱流束分布は、従
来言われていたようにチューブ間のピッチを小さくする
ほど均一性が増すものでは無く、最良の均一分布が得ら
れるピッチの範囲が存在することが分かった。そしてそ
の範囲は図に示されるように、チューブ間において熱流
束がピークを示す点(熱流束比=1の点)が2カ所存在
するピッチ範囲である。
As described above, from the results of the examination of the heat flux distribution to the workpiece between the tubes under various furnace conditions, the uniformity of the heat flux distribution increases as the pitch between the tubes decreases as conventionally known. It was found that there was a pitch range where the best uniform distribution could be obtained. And, as shown in the figure, the range is a pitch range where there are two points where the heat flux peaks between the tubes (points where the heat flux ratio = 1).

【0030】この領域はLr/Lw毎にLp/Lwを変
えたときのワークへの伝熱のばらつきの程度を示す最小
熱流束比をプロットすることでより明確に示される。例
えば、図7に示すように、Lr/Lwをそれぞれ=0.
5,=1.0,=1.5,=2.0としたときの、Lp
/Lw=0.00〜2.50の間での最小熱流束比の変
化を求めた。
This region is more clearly shown by plotting the minimum heat flux ratio indicating the degree of variation in heat transfer to the work when Lp / Lw is changed for each Lr / Lw. For example, as shown in FIG.
Lp when 5, = 1.0, = 1.5, = 2.0
The change in the minimum heat flux ratio between /Lw=0.00 to 2.50 was determined.

【0031】図7からは、ピッチと最小熱流束比には2
つのピークが存在することが分かる。1つはLp/Lw
が0付近と、いま1つは1.5付近に存在するピークで
ある。Lp/Lwが0付近ではチューブ間の最大熱流束
(熱流束比=1)がチューブ間の中心に存在する場合を
示し、1.5付近ではチューブ間の最大熱流束(熱流束
比=1)がチューブ間に2点存在する場合であり、その
境界は、Lp/Lwが0.75付近である。即ち、Lp
/Lwが0〜0.75ではチューブ間の最大熱流束はチ
ューブ間の中心に存在し、0.75〜1.75では最大
熱流束(熱流束比=1)がチューブ間に2カ所存在する
領域であることを示している。そしてこれらの領域では
最小熱流束比も0.9以上と十分に高い数値を示してい
る。Lp/Lwが1.75以上では、最大熱流束(熱流
束比=1)の点は、2本のチューブの直下に存在し、こ
れ以上では最小熱流束比は急激に低下する。
FIG. 7 shows that the pitch and the minimum heat flux ratio are 2
It can be seen that there are two peaks. One is Lp / Lw
Are near 0 and another one is near 1.5. When Lp / Lw is around 0, the maximum heat flux between tubes (heat flux ratio = 1) is present at the center between the tubes, and when Lp / Lw is around 1.5, the maximum heat flux between tubes (heat flux ratio = 1) is shown. Is the case where two points exist between the tubes, and the boundary is Lp / Lw near 0.75. That is, Lp
When / Lw is 0 to 0.75, the maximum heat flux between the tubes exists at the center between the tubes, and when 0.75 to 1.75, the maximum heat flux (heat flux ratio = 1) exists at two places between the tubes. Indicates that this is an area. In these regions, the minimum heat flux ratio also shows a sufficiently high value of 0.9 or more. When Lp / Lw is 1.75 or more, the point of the maximum heat flux (heat flux ratio = 1) exists immediately below the two tubes, and above this point, the minimum heat flux ratio sharply decreases.

【0032】してみると、均一な熱流束分布を示すピッ
チの範囲は、Lp/Lw<1.75にあり、取付上の経
済性等を考慮した適正ピッチの範囲は0.75<Lp/
Lwと考えられる。したがって、Lp/Lwは0.75
よりも大きく、1.75よりも小さい範囲に採ることが
最も好ましい。
As a result, the range of the pitch showing a uniform heat flux distribution is Lp / Lw <1.75, and the range of the appropriate pitch considering the economical efficiency of mounting is 0.75 <Lp / Lw.
Lw. Therefore, Lp / Lw is 0.75
It is most preferable to adopt a range larger than 1.75 and smaller than 1.75.

【0033】次に、一定時間加熱後のワークの上昇温度
が熱流束比Knによってどの程度のばらつきを生じるか
を、一定時間加熱後のワーク温度の上昇率を以てチェッ
クする。温度上昇率te/tfは次の数式5で計算され
る。
Next, it is checked how much the temperature rise of the work after heating for a certain time varies depending on the heat flux ratio Kn, based on the rate of increase of the work temperature after heating for a certain time. The temperature rise rate te / tf is calculated by the following equation (5).

【0034】[0034]

【数5】te/tf=1−Exp(−KnE) 但し、ti=0 E=hAτ/γcv における tf:炉温 ti:ワークの所期温度 te:ワークの終期温度 A :ワークの伝熱面積 h :Kn=1におけるワークへの熱伝達率 c :ワークの比熱 v :ワークの実体積 τ :加熱時間 この計算結果をグラフに示すと、図8に示すようにな
り、Kn>0.85においてワークの上昇温度がほぼ飽
和に達するE=3.5以上の均熱帯域では上昇温度のば
らつきは2%以内に収まり、十分な均一性が保たれるこ
とを示している。これは、Lp/Lwが2以下の範囲で
あれば十分な均一加熱が可能であることを示している。
Te / tf = 1−Exp (−KnE) where ti = 0 E = hAτ / γcv tf: furnace temperature ti: desired temperature of the work te: final temperature of the work A: heat transfer area of the work h: Heat transfer coefficient to the work at Kn = 1 c: Specific heat of the work v: Actual volume of the work τ: Heating time When this calculation result is shown in the graph, it becomes as shown in FIG. 8, where Kn> 0.85. In the soaking zone where E = 3.5 or more at which the temperature of the workpiece almost reaches saturation, the variation of the temperature rise is within 2%, which indicates that sufficient uniformity is maintained. This indicates that sufficient uniform heating is possible if Lp / Lw is in the range of 2 or less.

【0035】以上のことからラジアントチューブ間にお
ける均一加熱を可能にするラジアントチューブ間のピッ
チLpとチューブからワークまでの距離Lwとの比Lp
/Lw<2、より好ましくは0.75<Lp/Lw<
1.75の範囲であることが容易に理解できる。
From the above, the ratio Lp of the pitch Lp between the radiant tubes and the distance Lw from the tube to the work, which enables uniform heating between the radiant tubes.
/ Lw <2, more preferably 0.75 <Lp / Lw <
It can be easily understood that the range is 1.75.

【0036】[0036]

【発明の実施の形態】以下、本発明の構成を図面に示す
最良の形態に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on the best mode shown in the drawings.

【0037】図9の(A),(B)に本発明の一実施形
態として雰囲気炉に適用した例を示す。この雰囲気炉
は、炉体1と熱源となる蓄熱型ラジアントチューブバー
ナシステム2とワーク搬送手段3とから主に構成されて
いる。
FIGS. 9A and 9B show an embodiment applied to an atmosphere furnace as an embodiment of the present invention. This atmosphere furnace mainly includes a furnace body 1, a heat storage type radiant tube burner system 2 serving as a heat source, and a work transfer means 3.

【0038】炉体1は、その構造および材質等に特に限
定を受けず、例えば鋼製のケーシングに耐火物の内張り
を施したものによって構成され、連続炉の場合には炉体
1の長手方向にワークを搬送するワーク搬送手段3を設
けている。また、炉内雰囲気の撹拌のためのファン4が
炉頂部の天井面に設置されている。
The furnace body 1 is not particularly limited in its structure, material and the like. For example, the furnace body 1 is constituted by a steel casing provided with a refractory lining. Is provided with a work transfer means 3 for transferring the work. Further, a fan 4 for stirring the atmosphere in the furnace is installed on the ceiling surface at the top of the furnace.

【0039】蓄熱型ラジアントチューブバーナ2システ
ムは、例えば炉体1の側壁に沿って鉛直方向に炉内を貫
通するように配置されたU形ラジアントチューブ5と、
その両端の炉外に設置された部分に接続されて交互に燃
焼する一対のラジアントチューブバーナ(以下単にバー
ナと呼ぶ)6,6及びこれら一対のバーナ6,6を交互
に燃焼させるために燃焼用空気と燃料を選択的に供給す
る燃焼用空気供給系8と排気系9並びに燃料供給系(図
示省略)から構成されている。バーナ6は、特にガン構
造などには限定されるものではないが、蓄熱体(図示省
略)を内装しあるいは外部に直に接続し、排ガスと燃焼
用空気とを四方弁10を介して交互に蓄熱体に通過させ
ることによって得られる高温の燃焼用空気を用いてラジ
アントチューブ5内の密閉空間で燃焼させるものであ
る。ここで、作動させるバーナの交換の周期は燃焼の有
無に拘わらず一定時間とされている。例えば、30秒程
度の短時間で周期的にバーナは切り替えられ、その間に
必要な燃焼が行われるように設けられている。
The regenerative radiant tube burner 2 system comprises a U-shaped radiant tube 5 arranged, for example, vertically through the inside of the furnace along the side wall of the furnace body 1;
A pair of radiant tube burners (hereinafter simply referred to as burners) 6,6 connected to the parts installed outside the furnace at both ends and burning alternately, and a pair of radiant tube burners 6,6 used for combustion to alternately burn the pair of burners 6,6 It is composed of a combustion air supply system 8 for selectively supplying air and fuel, an exhaust system 9 and a fuel supply system (not shown). The burner 6 is not particularly limited to a gun structure or the like, but includes a heat storage body (not shown) or is directly connected to the outside, and alternately exchanges exhaust gas and combustion air via the four-way valve 10. The combustion is performed in a closed space in the radiant tube 5 using high-temperature combustion air obtained by passing the air through the heat storage body. Here, the replacement cycle of the burner to be operated is a fixed time regardless of the presence or absence of combustion. For example, the burner is periodically switched in a short time of about 30 seconds, and the burner is provided so as to perform necessary combustion.

【0040】尚、ラジアントチューブ5としては特に限
定されるものではないが、通常使用される耐熱鋳鋼など
の金属の他、SiC等のセラミックスを使用することも
ある。セラミックス製チューブの場合、酸化しないばか
りか軽量で含有熱も小さい(比重が小さく薄肉にできる
から)という利点がある。また、蓄熱体は、例えば、通
路断面積が一定でかつ直線的に流路が貫通しているハニ
カム形状のセラミックス(例えばコージライトやムライ
ト等)の使用が好ましい。このハニカム形状のセラミッ
クスは熱容量が大きく耐久性が高い割に比較的圧力損失
が低く、排気と給気とが交互に淀みなく行われる。
Although the radiant tube 5 is not particularly limited, ceramics such as SiC may be used in addition to commonly used metals such as heat-resistant cast steel. In the case of a ceramic tube, there is an advantage that it is not only oxidized but also lightweight and has a low heat content (because the specific gravity is small and the wall thickness can be reduced). Further, as the heat storage body, it is preferable to use, for example, a honeycomb-shaped ceramic (for example, cordierite or mullite) having a constant passage cross-sectional area and a straight passage through the passage. The honeycomb-shaped ceramic has a large heat capacity and a high durability, but has a relatively low pressure loss, so that exhaust and air supply are alternately performed without stagnation.

【0041】この蓄熱型ラジアントチューブバーナシス
テム2は、必要に応じてその数や配置方向等が選定され
るが、ラジアントチューブ5のチューブ間ピッチLpと
ワークWとの間との距離Lwとの間には一定の位置関係
が要求される。即ち、ラジアントチューブ間ピッチLp
とチューブ5からワークWまでの距離Lwとの比Lp/
Lwが2以下でラジアントチューブ5を炉内に配置する
こと、より好ましくは0.75<Lp/Lw<1.75
の範囲にラジアントチューブを配置することである。こ
こで、ラジアントチューブ5と炉体1の固体壁面7との
間の間隔Lrには特に限定を受けず、極端に接近したり
離れない限り任意の間隔に設定しても良い。例えば、実
験によれば、Lr/Lw=0.5、Lr/Lw=1.
0、Lr/Lw=1.5、Lr/Lw=2.0のいずれ
においても熱流束比の分布は大きな影響は受けない。し
たがって、炉体1の固体壁面7からの間隔Lrを一定に
してチューブ5を配置したと仮定して、そのチューブ5
の位置からワークWの被加熱面までの距離・間隔Lw
(あるいはワークWの被加熱面が通過する位置)を仮定
して、その間隔Lwからチューブ5とチューブ5との間
のピッチLpを上述の関係即ちLp/Lwが2以下、よ
り好ましくは0.75<Lp/Lw<1.75の範囲と
なるように決定する。具体的には、チューブ5から放射
される熱によって炉壁がスポルディングを起こさない範
囲で近接させ、また炉内空間が無用に大形化しない範囲
で離間させることが好ましく、ワークWの搬送軌跡ある
いは設置位置にばらつきがあっても、上述の位置関係を
保持しうる範囲にLp/Lwが選択される。
The number and the arrangement direction of the heat storage type radiant tube burner system 2 are selected as required, and the distance between the tube pitch Lp of the radiant tubes 5 and the distance Lw between the work W is determined. Requires a certain positional relationship. That is, the pitch Lp between the radiant tubes
Ratio Lp / to the distance Lw from the tube 5 to the workpiece W
Placing radiant tube 5 in a furnace with Lw of 2 or less, more preferably 0.75 <Lp / Lw <1.75
Is to place a radiant tube in the range. Here, the distance Lr between the radiant tube 5 and the solid wall surface 7 of the furnace body 1 is not particularly limited, and may be set to an arbitrary distance as long as the distance Lr does not extremely approach or separate. For example, according to experiments, Lr / Lw = 0.5, Lr / Lw = 1.
At 0, Lr / Lw = 1.5, and Lr / Lw = 2.0, the distribution of the heat flux ratio is not significantly affected. Therefore, assuming that the tube 5 is arranged at a constant distance Lr from the solid wall surface 7 of the furnace body 1, the tube 5
Distance / interval Lw from the position to the heated surface of the work W
(Or the position through which the heated surface of the workpiece W passes), the pitch Lp between the tubes 5 is determined from the distance Lw as described above, that is, Lp / Lw is 2 or less, more preferably 0. It is determined such that 75 <Lp / Lw <1.75. Specifically, it is preferable that the furnace wall be brought close to the area where sparing does not occur due to the heat radiated from the tube 5, and that the furnace wall be spaced away within a range where the furnace space is not unnecessarily enlarged. Lp / Lw is selected in a range where the above positional relationship can be maintained even if the installation positions vary.

【0042】以上のように構成された雰囲気炉によれ
ば、バーナの燃焼は、蓄熱体を通過して高温例えば80
0℃以上に予熱された二次空気を使用してチューブ5,
5の両端で短時間に交互に行われる。そして、一方のバ
ーナの燃焼で発生した燃焼ガスは、ラジアントチューブ
5を加熱しながら他端側のバーナの蓄熱体を経てから排
気系9へ誘引され、所定の排気処理が施された後大気に
排出される。このため、排ガスの熱は、蓄熱体で回収さ
れる。そして、蓄熱体に回収された熱は、バーナを燃焼
させる際の燃焼用空気の予熱に使用され、再びチューブ
内に戻される。これによって図10の(B)に示すよう
なチューブ表面温度分布を形成し、チューブ長手方向に
均一加熱する。また、チューブ間方向への加熱は、図3
から図6に示すように、Lp/Lw<2の場合には充分
に高い最小熱流束比0.9が得られる。勿論、Lp/L
w<1.75の場合には充分に高い最小熱流束比0.9
5が得られる。そして、図8に示すように、Kn>0.
85においてワークの上昇温度がほぼ飽和に達するE=
1.35以上の均熱帯域では上昇温度のばらつきは2%
以内に収まり、充分均一性が保たれることを示してい
る。このことから、Lp/Lwが2以下の範囲であれば
充分な均一加熱が可能であり、特に0.75<Lp/L
w<1.75の範囲であれば、極めて均一な加熱が可能
となる。
According to the atmosphere furnace configured as described above, the burner burns through the regenerator at a high temperature, for example, 80 ° C.
Tube 5, using secondary air preheated to 0 ° C or higher
5 alternately in a short time at both ends. Then, the combustion gas generated by the combustion of one burner passes through the heat storage body of the burner on the other end while heating the radiant tube 5 and is then led to the exhaust system 9, and after being subjected to a predetermined exhaust treatment, to the atmosphere. Is discharged. For this reason, the heat of the exhaust gas is recovered by the heat storage body. Then, the heat recovered in the heat storage body is used for preheating the combustion air when burning the burner, and is returned to the tube again. Thus, a tube surface temperature distribution as shown in FIG. 10B is formed, and the tube is uniformly heated in the longitudinal direction. The heating in the direction between the tubes is performed as shown in FIG.
As shown in FIG. 6, when Lp / Lw <2, a sufficiently high minimum heat flux ratio 0.9 is obtained. Of course, Lp / L
For w <1.75, a sufficiently high minimum heat flux ratio of 0.9
5 is obtained. Then, as shown in FIG.
At 85, the temperature of the workpiece rises to almost saturation E =
In the soaking zone of 1.35 or more, the variation of the temperature rise is 2%
Within the range, indicating that sufficient uniformity is maintained. From this, when Lp / Lw is in the range of 2 or less, sufficient uniform heating is possible, and in particular, 0.75 <Lp / L
When w <1.75, extremely uniform heating can be achieved.

【0043】[0043]

【発明の効果】以上の説明より明らかなように、請求項
1記載の本発明のラジアントチューブを熱源とする加熱
炉によると、蓄熱型ラジアントチューブバーナの交互燃
焼によって、ラジアントチューブの加熱がチューブ長さ
方向への一様な温度分布によって行われると共にチュー
ブ間の均一加熱も実現される。即ち、ラジアントチュー
ブからは全方向に熱放射し、ワークに対してそれぞれの
チューブより直接に、および炉壁に反射して間接に熱を
与えるが、上述のチューブピッチとワークとの距離をと
る場合、チューブから直接放射される熱と炉壁に反射し
て与えられる熱とがほぼ等しくなり、チューブピッチ方
向にも均一加熱が実現する。したがって、ワークの加熱
がチューブの長手方向のみならずそれと直交するチュー
ブピッチ方向にも温度差が少なくなるようにできる。
As is apparent from the above description, according to the heating furnace using the radiant tube of the present invention as a heat source according to the first aspect, the radiant tube is heated by the alternate length of the heat storage type radiant tube burner. This is achieved by a uniform temperature distribution in the vertical direction and a uniform heating between the tubes. That is, heat is radiated in all directions from the radiant tube, and heat is applied to the work directly from each tube and indirectly by reflecting on the furnace wall, but when the distance between the above-mentioned tube pitch and the work is taken. The heat radiated directly from the tube and the heat reflected on the furnace wall are substantially equal, and uniform heating is realized also in the tube pitch direction. Therefore, it is possible to reduce the temperature difference in the heating of the work not only in the longitudinal direction of the tube but also in the tube pitch direction orthogonal thereto.

【0044】特に、請求項2記載の本発明の雰囲気炉の
場合、更に最小熱流束比が充分に高い値となってその差
がチューブ間で小さくなるので均一加熱が可能となる。
In particular, in the case of the atmosphere furnace according to the present invention, the minimum heat flux ratio becomes a sufficiently high value, and the difference becomes small between the tubes, so that uniform heating becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2本のラジアントチューブ間での熱放射状態を
示す説明図である。
FIG. 1 is an explanatory diagram showing a heat radiation state between two radiant tubes.

【図2】1本のラジアントチューブからの熱放射状態を
示す説明図である。
FIG. 2 is an explanatory diagram showing a state of heat radiation from one radiant tube.

【図3】Lr/Lw=0.5におけるLp/Lw対熱流
束比の分布図である。
FIG. 3 is a distribution diagram of Lp / Lw to heat flux ratio when Lr / Lw = 0.5.

【図4】Lr/Lw=1.0におけるLp/Lw対熱流
束比の分布図である。
FIG. 4 is a distribution diagram of Lp / Lw to heat flux ratio when Lr / Lw = 1.0.

【図5】Lr/Lw=1.5におけるLp/Lw対熱流
束比の分布図である。
FIG. 5 is a distribution diagram of Lp / Lw to heat flux ratio when Lr / Lw = 1.5.

【図6】Lr/Lw=2.0におけるLp/Lw対熱流
束比の分布図である。
FIG. 6 is a distribution diagram of Lp / Lw to heat flux ratio when Lr / Lw = 2.0.

【図7】ラジアントチューブのピッチとワークとの間の
間隔との比Lp/Lwに対する最小熱流束比のLr/L
w毎の変化を示すグラフである。
FIG. 7 shows the minimum heat flux ratio Lr / L with respect to the ratio Lp / Lw between the pitch of the radiant tube and the distance between the workpieces.
It is a graph which shows the change for every w.

【図8】熱流束比に対するワークの温度上昇率の変化を
示すグラフである。
FIG. 8 is a graph showing a change in a temperature rise rate of a work with respect to a heat flux ratio.

【図9】本発明の一形態として雰囲気炉に適用した実施
形態を説明する図で、(A)は雰囲気炉の概略図、
(B)は同雰囲気炉のチューブ配列を示す説明図であ
る。
9A and 9B are diagrams illustrating an embodiment applied to an atmosphere furnace as one embodiment of the present invention. FIG. 9A is a schematic diagram of an atmosphere furnace,
(B) is an explanatory view showing a tube arrangement of the atmosphere furnace.

【図10】従来の雰囲気炉と本発明を適用した雰囲気炉
との温度分布を比較する図で、(A)は従来の雰囲気炉
のもの、(B)は本発明を適用した雰囲気炉のものをそ
れぞれ示す。
10A and 10B are diagrams comparing the temperature distributions of a conventional atmospheric furnace and an atmospheric furnace to which the present invention is applied, wherein FIG. 10A is a conventional atmospheric furnace and FIG. 10B is a diagram of an atmospheric furnace to which the present invention is applied; Are respectively shown.

【符号の説明】[Explanation of symbols]

1 炉体 2 ラジアントチューブバーナシステム 5 ラジアントチューブ 6 バーナ Lp ラジアントチューブ間ピッチ Lw チューブからワークまでの距離 1 Furnace body 2 Radiant tube burner system 5 Radiant tube 6 Burner Lp Pitch between radiant tubes Lw Distance from tube to work

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ラジアントチューブの両端にそれぞれ蓄
熱体を通して排ガスの排気と燃焼用空気の供給とを交互
に行う蓄熱型バーナを備え、その一対のバーナを交互に
燃焼させる蓄熱バーナシステムを装備したラジアントチ
ューブを加熱源とする加熱炉において、ラジアントチュ
ーブ間ピッチLpとチューブからワークまでの距離Lw
との比Lp/Lwが2以下で前記ラジアントチューブを
炉内に配置することを特徴とするラジアントチューブを
熱源とする加熱炉。
1. A radiant equipped with a heat storage burner system for alternately discharging exhaust gas and supplying combustion air through both ends of a radiant tube through a heat storage body, and equipped with a heat storage burner system for alternately burning the pair of burners. In a heating furnace using a tube as a heating source, the pitch Lp between the radiant tubes and the distance Lw from the tube to the work are set.
Wherein the ratio Lp / Lw is 2 or less, and wherein the radiant tube is disposed in the furnace.
【請求項2】 前記Lp/Lwが0.75<Lp/Lw
<1.75の範囲にあることを特徴とする請求項1記載
のラジアントチューブを熱源とする加熱炉。
2. The ratio Lp / Lw is 0.75 <Lp / Lw.
The heating furnace using the radiant tube as a heat source according to claim 1, wherein the heating furnace is in a range of <1.75.
JP26630996A 1996-10-07 1996-10-07 Heating furnace using radiant tube as heat source Expired - Fee Related JP3600696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26630996A JP3600696B2 (en) 1996-10-07 1996-10-07 Heating furnace using radiant tube as heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26630996A JP3600696B2 (en) 1996-10-07 1996-10-07 Heating furnace using radiant tube as heat source

Publications (2)

Publication Number Publication Date
JPH10110914A true JPH10110914A (en) 1998-04-28
JP3600696B2 JP3600696B2 (en) 2004-12-15

Family

ID=17429143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26630996A Expired - Fee Related JP3600696B2 (en) 1996-10-07 1996-10-07 Heating furnace using radiant tube as heat source

Country Status (1)

Country Link
JP (1) JP3600696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078364A (en) * 2016-12-29 2018-07-10 주식회사 효성 Fired heater
KR20180078367A (en) * 2016-12-29 2018-07-10 주식회사 효성 Fired heater with flat tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078364A (en) * 2016-12-29 2018-07-10 주식회사 효성 Fired heater
KR20180078367A (en) * 2016-12-29 2018-07-10 주식회사 효성 Fired heater with flat tube

Also Published As

Publication number Publication date
JP3600696B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
JP3600696B2 (en) Heating furnace using radiant tube as heat source
JPH064171Y2 (en) Radiant chives
JP6821274B2 (en) Recuperator and radiant tube type heating device
JP5211943B2 (en) Heating furnace exhaust equipment
JP3823403B2 (en) Radiant tube burner system and operation method thereof
JP3505076B2 (en) Heating furnace using radiant tube as heat source
JPS6021385Y2 (en) Heating furnace with radiant tube
NO177653B (en) Device for indirect heating of fluids
JPH0987750A (en) Method and device for heating strip
JP3845143B2 (en) Continuous heating method and apparatus
RU2409610C2 (en) Tubular heating furnace
JPH09243056A (en) Heat accumulation switching burner
JPH0324592Y2 (en)
JPH0375609B2 (en)
CN1232755C (en) Superatmospheric combustor for combusting low concentrations of burnable gas
SU1437618A2 (en) Burner
JP2019196855A5 (en)
JP2765353B2 (en) Combustion method in radiant tube type heating device
JP3316811B2 (en) Radiant tube and continuous furnace using the same
JP3017013B2 (en) Radiant heating furnace
JPS62280351A (en) Method for mutually utilizing exhaust gas in heating furnace
JPH0311224Y2 (en)
KR960006377Y1 (en) Radiant tube of continuous heat treatment furnace
RU6607U1 (en) THERMAL ELECTRIC FURNACE WITH PROTECTIVE ATMOSPHERE
JPS59578B2 (en) Strip heating device for continuous annealing furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees