JPH10106880A - Compound multilayered ceramic components - Google Patents

Compound multilayered ceramic components

Info

Publication number
JPH10106880A
JPH10106880A JP8254130A JP25413096A JPH10106880A JP H10106880 A JPH10106880 A JP H10106880A JP 8254130 A JP8254130 A JP 8254130A JP 25413096 A JP25413096 A JP 25413096A JP H10106880 A JPH10106880 A JP H10106880A
Authority
JP
Japan
Prior art keywords
dielectric constant
constant layer
layer
low dielectric
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8254130A
Other languages
Japanese (ja)
Other versions
JP3225851B2 (en
Inventor
Hidenori Katsumura
英則 勝村
Masahiro Hiraga
将浩 平賀
Shigeo Furukawa
成男 古川
Ryuichi Saito
隆一 斉藤
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25413096A priority Critical patent/JP3225851B2/en
Priority to PCT/JP1997/003381 priority patent/WO1998013932A1/en
Priority to EP97941214A priority patent/EP0872953A4/en
Priority to US09/077,254 priority patent/US6366564B1/en
Priority to EP07123993A priority patent/EP1909390A2/en
Publication of JPH10106880A publication Critical patent/JPH10106880A/en
Application granted granted Critical
Publication of JP3225851B2 publication Critical patent/JP3225851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compound multilayered ceramic component having large bonding strength, by restraining exfoliation of an interface between a low dielectric constant layer and a high dielectric constant layer or cracks in each of the layers, in a compound multilayered ceramic component wherein a conductor layer is formed on the lamination surface of the high dielectric constant layer and a low dielectric constant layer and laminated. SOLUTION: Low dielectric constant layer 1, 4 are composed of mixed material of ceramic powder and amorphous glass. At the time of baking, the layers 1, 4 are fluidized, softened and bonded to high dielectric constant layer 2, 3 and conductor layers 5, 6, 7, 8. Thereby exfoliation of interfaces and generation of cracks in each of the layers are restrained, and a stable compound multilayered ceramic component which has large bonding strength and high reliability can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低誘電率層と高誘電
率層および導体層を積層して一体焼成される複合積層セ
ラミック部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite laminated ceramic component in which a low dielectric constant layer, a high dielectric constant layer, and a conductor layer are laminated and fired integrally.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、多機能化にと
もなってその内部に用いられる電子部品にも軽薄短小化
が求められている。そのために限られた面積のセラミッ
ク基板上に抵抗体や配線パターンなどをより高密度に印
刷したり、チップ部品をより高密度に集積するといった
方法を採用していた。
2. Description of the Related Art In recent years, as electronic devices have become smaller and more multifunctional, electronic components used therein have also been required to be lighter, thinner and shorter. For this purpose, a method of printing a resistor, a wiring pattern, and the like on a ceramic substrate having a limited area at a higher density, and integrating chip components at a higher density have been adopted.

【0003】しかしながら、従来の高密度化の方法では
部品の小型化および部品を実装する基板の小型化には限
界がある。さらに特に高周波用部品では、配線パターン
を緻密にするとノズルやライン間の容量が発生しやすく
なり、ひいては品質の低下を招くといった問題があっ
た。
[0003] However, the conventional method for increasing the density has limitations in miniaturizing components and the substrate on which the components are mounted. In particular, in the case of high-frequency components, when the wiring pattern is made dense, there is a problem that capacitance between nozzles and lines is likely to be generated, and as a result, quality is reduced.

【0004】このようなことから、基板内部にコンデン
サや共振器を設けた構成の新しい複合積層セラミック部
品が開発されつつある。その一例として、コンデンサあ
るいは共振器を形成するための高誘電率層を、配線パタ
ーン形成用の低誘電率層で挟み込み、その各積層面に導
体層を設けた構成のものである。
[0004] Under these circumstances, a new composite multilayer ceramic component having a configuration in which a capacitor and a resonator are provided inside a substrate is being developed. As an example, a high dielectric constant layer for forming a capacitor or a resonator is sandwiched between low dielectric constant layers for forming a wiring pattern, and a conductor layer is provided on each laminated surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、異種積
層体を一体焼成することによって得られる複合積層セラ
ミック部品においては、低誘電率層と高誘電率層の焼成
挙動および熱膨張率の相違により、両者の界面での剥離
あるいは焼成体基板に変形が発生したり、内部に生じる
歪みによりそれぞれの層にクラックが生じやすいといっ
た問題があった。
However, in a composite laminated ceramic component obtained by integrally firing different kinds of laminates, the difference in the firing behavior and thermal expansion coefficient between the low dielectric constant layer and the high dielectric constant layer results in a difference between the two. There is a problem that peeling at the interface or deformation of the fired body substrate occurs, and cracks are easily generated in each layer due to distortion generated inside.

【0006】このような低誘電率層と高誘電率層の界面
での剥離およびそれぞれの層におけるクラックを防ぐた
め、例えば特公平5−13524号公報に示されるよう
に、各層の間に各層の材料の複合物からなる中間層を設
けることにより、前述の剥離やクラックを防いでいた。
この方法においては、電子部品の機能発現のためには本
来必要のない中間層を形成しなければならないため工数
が増加してコスト面で不利になるとともに小型化を図る
うえでの障害になるものであった。
In order to prevent separation at the interface between the low dielectric constant layer and the high dielectric constant layer and cracks in each layer, for example, as shown in Japanese Patent Publication No. 5-13524, the By providing an intermediate layer made of a composite of materials, the aforementioned peeling and cracking were prevented.
In this method, an intermediate layer, which is originally unnecessary, must be formed in order to realize the function of the electronic component, so that the number of steps is increased, which is disadvantageous in terms of cost and is an obstacle to miniaturization. Met.

【0007】本発明は以上のような従来の欠点を除去
し、中間層なしでも界面での剥離や各層でのクラックの
発生、さらには変形のない複合積層セラミック部品を提
供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a composite multilayer ceramic component which eliminates the above-mentioned drawbacks of the prior art and does not cause peeling at the interface, cracks in each layer, and deformation without an intermediate layer. Things.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、高誘電率層と低誘電率層の積層面に導体層
を形成して積層し、前記低誘電率層が非晶質ガラスとセ
ラミック粉末を含んだものから構成されている。
In order to solve the above problems, the present invention provides a method of forming a conductive layer on a laminated surface of a high dielectric constant layer and a low dielectric constant layer, wherein the low dielectric constant layer is amorphous. It is composed of a material containing fine glass and ceramic powder.

【0009】この構成によって焼成したとき、異種材料
の積層界面における剥離、各層におけるクラックの発生
や全体の変形のない複合積層セラミック部品を得ること
ができる。
With this configuration, it is possible to obtain a composite multilayer ceramic component which is free from peeling at the lamination interface between different kinds of materials, generation of cracks in each layer and deformation of the whole.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、高誘電率層と低誘電率層の積層面に導体層を形成し
て積層し、前記低誘電率層が非晶質ガラスとセラミック
粉末の混合物で構成され、一体焼成しても界面に剥離や
各層にクラックおよび全体に変形が発生するといったこ
とが防止できる作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, a conductor layer is formed and laminated on a laminated surface of a high dielectric layer and a low dielectric layer, and the low dielectric layer is amorphous. It is composed of a mixture of glass and ceramic powder, and has the effect of preventing peeling at the interface, cracking of each layer and deformation of the entire layer even when integrally fired.

【0011】請求項2に記載の発明は、低誘電率層がフ
ォルステライト(Mg2SiO4)、ジルコニア(ZrO
2)、アルミナ(Al23)のうち少なくとも一種以上
のセラミック粉末と、非晶質ガラスで構成されたもので
あり、界面での剥離や各層でのクラックの発生をより確
実になくすことができる。
According to a second aspect of the present invention, the low dielectric constant layer is forsterite (Mg 2 SiO 4 ), zirconia (ZrO).
2 ) It is composed of at least one ceramic powder of alumina (Al 2 O 3 ) and amorphous glass, and it is possible to more reliably eliminate peeling at the interface and generation of cracks in each layer. it can.

【0012】請求項3に記載の発明は、低誘電率層の比
誘電率が15未満であり、かつ体積抵抗率が1×1012
Ωcm以上である構成としたものであり、低誘電率層の上
に複数の部品を実装した場合、部品間に発生する不要な
容量やノイズを低減することができるという作用を有す
る。
According to a third aspect of the present invention, the low dielectric constant layer has a relative dielectric constant of less than 15 and a volume resistivity of 1 × 10 12.
Ωcm or more. When a plurality of components are mounted on the low dielectric constant layer, there is an effect that unnecessary capacitance and noise generated between the components can be reduced.

【0013】請求項4に記載の発明は、セラミック粉末
と非晶質ガラスの混合重量比率を、重量比で30:70
〜70:30の範囲としたものであり、界面での剥離や
各層でのクラックの発生を一層確実になくすことができ
るという作用を有する。
According to a fourth aspect of the present invention, the mixing weight ratio of the ceramic powder and the amorphous glass is 30:70 by weight.
7070: 30, which has the effect that the separation at the interface and the occurrence of cracks in each layer can be more reliably eliminated.

【0014】請求項5に記載の発明は、低誘電率層の非
晶質ガラスの主成分がSiO2−Al23−MO(Mは
Ba,Ca,Srの少なくとも1種以上)−La23
23からなる構成としたものであり、界面での剥離や
各層でのクラックの発生をなくすことができ、また高誘
電率層と低誘電率層の界面における接着強度を十分大き
なものとすることができるという作用を有する。
According to a fifth aspect of the present invention, the main component of the amorphous glass of the low dielectric constant layer is SiO 2 —Al 2 O 3 —MO (M is at least one of Ba, Ca and Sr) -La. 2 O 3
It is made of B 2 O 3 , which can eliminate peeling at the interface and generation of cracks in each layer, and has sufficiently high adhesive strength at the interface between the high dielectric constant layer and the low dielectric constant layer. Has the effect of being able to

【0015】請求項6に記載の発明は、非晶質ガラスの
主成分をSiO2が40〜50重量%、Al23が0〜
15重量%、B23が0〜10重量%、および(MO
(MはBa,Ca,Srの少なくとも1種以上)+La
23)量が40〜50重量%でかつLa23が0〜15
重量%となる構成としたものであり、界面での剥離や各
層でのクラックの発生を確実になくすことができ、また
高誘電率層と低誘電率層の界面における接着強度をより
一層大きなものとすることができる作用を有する。
According to a sixth aspect of the present invention, the main component of the amorphous glass is 40 to 50% by weight of SiO 2 and 0 to 50% by weight of Al 2 O 3.
15% by weight, 0 to 10% by weight of B 2 O 3 , and (MO
(M is at least one of Ba, Ca and Sr) + La
2 O 3 ) in an amount of 40 to 50% by weight and La 2 O 3 of 0 to 15%
Wt%, which can reliably eliminate peeling at the interface and cracks in each layer, and further increase the adhesive strength at the interface between the high dielectric layer and the low dielectric layer. It has the action that can be.

【0016】請求項7に記載の発明は、導体層を銀とし
たものであり、導体層の導電率を高くすることができる
という作用を有する。
According to a seventh aspect of the present invention, the conductive layer is made of silver, and has an effect of increasing the conductivity of the conductive layer.

【0017】請求項8に記載の発明は、低誘電率層の副
成分として、セラミック粉末と非晶質ガラスの総量を1
00重量%としたとき、酸化ケイ素、酸化銅、酸化マン
ガンをSiO2,CuO,MnO2に換算して0.05〜
2.0重量%添加したものであり、低誘電率層の焼成温
度を950℃以下に確実に低下させることができ、銀を
導体層として使用することを可能とする作用を有する。
According to the present invention, the total amount of the ceramic powder and the amorphous glass is 1 as a subcomponent of the low dielectric constant layer.
When the content is set to 00% by weight, silicon oxide, copper oxide, and manganese oxide are converted to SiO 2 , CuO, and MnO 2 from 0.05 to
2.0% by weight is added, so that the firing temperature of the low dielectric constant layer can be surely lowered to 950 ° C. or lower, and has an effect that silver can be used as a conductor layer.

【0018】請求項9に記載の発明は、低誘電率層を構
成するセラミック粉末と非晶質ガラスの混合粉体の製造
において、混合粉体の平均粒子径が2.0μm以下とす
るものであり、低誘電率層の焼成温度を950℃以下に
確実に低下させることができ、銀を導体層として使用す
ることを可能とする作用を有する。
According to a ninth aspect of the present invention, in the production of the mixed powder of the ceramic powder and the amorphous glass constituting the low dielectric constant layer, the average particle diameter of the mixed powder is 2.0 μm or less. Yes, the firing temperature of the low dielectric constant layer can be reliably reduced to 950 ° C. or lower, and has an effect of enabling silver to be used as a conductor layer.

【0019】請求項10に記載の発明は、高誘電率層材
料の比誘電率を15以上、無負荷Q値とその共振周波数
(0.5GHz〜5GHz)の積を500以上、共振周
波数の温度変化率の絶対値を50ppm/℃以下としたもの
であり、高誘電率層をマイクロ波用誘電体セラミックと
して利用することを可能とし、例えばトリプレート型の
高性能な積層誘電体フィルタを内蔵することを可能とす
る作用を有する。
According to a tenth aspect of the present invention, the relative dielectric constant of the high dielectric constant layer material is 15 or more, the product of the unloaded Q value and its resonance frequency (0.5 GHz to 5 GHz) is 500 or more, and the temperature of the resonance frequency is The absolute value of the rate of change is set to 50 ppm / ° C. or less, and the high dielectric constant layer can be used as a dielectric ceramic for microwaves. For example, a high performance laminated dielectric filter of a triplate type is incorporated. It has the effect of making it possible.

【0020】請求項11に記載の発明は、高誘電率層を
Bi23,CaO,Nb25を主成分とする誘電体セラ
ミックとしたものであり、比誘電率が15以上、無負荷
Q値とその共振周波数(0.5GHz〜5GHz)との
積が500以上、共振周波数の温度変化率の絶対値が5
0ppm/℃以下、焼成温度が950℃以下で内部導体層を
銀とすることができるマイクロ波用誘電体材料を確実に
得ることができる。
According to an eleventh aspect of the present invention, the high dielectric constant layer is made of a dielectric ceramic mainly composed of Bi 2 O 3 , CaO, and Nb 2 O 5 , and has a relative dielectric constant of 15 or more, The product of the load Q value and its resonance frequency (0.5 GHz to 5 GHz) is 500 or more, and the absolute value of the temperature change rate of the resonance frequency is 5
A microwave dielectric material capable of using silver as the internal conductor layer at 0 ppm / ° C. or lower and a firing temperature of 950 ° C. or lower can be reliably obtained.

【0021】請求項12に記載の発明は、高誘電率層が
Bi23,CaO,Nb25を主成分とする誘電体セラ
ミック材料であり、かつ請求項2に記載の低誘電率層の
セラミック粉末にアルミナが含まれる場合において、前
記アルミナの含有量を50重量%未満と規定した構成と
したものであり、界面での剥離や各層でのクラックの発
生を、一層確実になくすことができるという作用を有す
る。
According to a twelfth aspect of the present invention, the high dielectric constant layer is a dielectric ceramic material containing Bi 2 O 3 , CaO, Nb 2 O 5 as a main component, and the low dielectric constant of the second aspect. When alumina is contained in the ceramic powder of the layer, the content of the alumina is specified to be less than 50% by weight, so that separation at the interface and generation of cracks in each layer can be more reliably eliminated. It has the effect of being able to.

【0022】請求項13に記載の発明は、高誘電率層を
Bi23,CaO,ZnO,CuO,Nb25を主成分
とする誘電体セラミックとしたものであり、請求項11
と同様の作用を有する。
According to a thirteenth aspect of the present invention, the high dielectric constant layer is made of a dielectric ceramic containing Bi 2 O 3 , CaO, ZnO, CuO, and Nb 2 O 5 as main components.
Has the same function as.

【0023】請求項14に記載の発明は、高誘電率層が
Bi23,CaO,ZnO,CuO,Nb25を主成分
とする誘電体セラミック材料であり、かつ請求項2に記
載の低誘電率層のセラミック粉末にアルミナが含まれる
場合において、前記アルミナの含有量が50重量%以上
と規定した構成としたものであり、請求項12と同様の
作用を有する。
According to a fourteenth aspect of the present invention, the high dielectric constant layer is a dielectric ceramic material containing Bi 2 O 3 , CaO, ZnO, CuO, and Nb 2 O 5 as main components. In the case where alumina is contained in the ceramic powder of the low dielectric constant layer, the content of the alumina is specified to be 50% by weight or more, and has the same effect as in claim 12.

【0024】請求項15に記載の発明は、高誘電率層を
BaO,Nd25,TiO2およびガラスを主成分とす
る誘電体セラミックとしたものであり、請求項11と同
様の作用を有する。
According to a fifteenth aspect of the present invention, the high dielectric constant layer is made of a dielectric ceramic containing BaO, Nd 2 O 5 , TiO 2 and glass as main components. Have.

【0025】請求項16に記載の発明は、高誘電率層の
主成分がBaO,Nd25,TiO 2およびガラスを主
成分とする誘電体セラミック材料であり、かつ請求項2
に記載の低誘電率層のセラミック粉末にアルミナが含ま
れる場合において、前記アルミナの含有量を50重量%
未満と規定した構成としたものであり、請求項12と同
様の作用を有する。
The invention according to claim 16 provides a high dielectric constant layer.
Main component is BaO, NdTwoOFive, TiO TwoAnd mainly glass
3. A dielectric ceramic material as a component, and
Alumina is included in the ceramic powder of the low dielectric constant layer described in
The alumina content is 50% by weight.
It is configured to be less than
It has a similar effect.

【0026】以下本発明の実施の形態について図面を用
いて説明する。図1は本発明の一実施の形態における複
合積層セラミック部品を示す断面図であり、この図1に
おいては誘電体フィルタ内蔵の複合積層セラミック部品
を一例として示した。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a composite multilayer ceramic component according to an embodiment of the present invention. In FIG. 1, a composite multilayer ceramic component with a built-in dielectric filter is shown as an example.

【0027】図1において、非晶質ガラスとセラミック
粉末の混合物を主成分とする低誘電率層4上には、シー
ルド電極としての導体層8が形成されるとともに、マイ
クロ波用誘電体セラミックからなる高誘電率層3が設け
られている。この高誘電率層3上には誘電体フィルタの
電極としての導体層7が形成され、この上に同じく高誘
電率層2が設けられ、この高誘電率層2の上面にはシー
ルド電極としての導体層6が形成されている。
In FIG. 1, a conductor layer 8 as a shield electrode is formed on a low dielectric constant layer 4 containing a mixture of amorphous glass and ceramic powder as a main component. High dielectric constant layer 3 is provided. A conductor layer 7 as an electrode of a dielectric filter is formed on the high dielectric constant layer 3, and a high dielectric constant layer 2 is also provided thereon, and an upper surface of the high dielectric constant layer 2 serves as a shield electrode. The conductor layer 6 is formed.

【0028】この導体層6を設けた高誘電率層2上に
は、非晶質ガラスとセラミック粉末の混合物を主成分と
する低誘電率層1が設けられ、この低誘電率層1の上面
には部品を実装するためのランド電極、あるいはインダ
クタンス成分を形成する電極導体層5が形成され、この
導体層5の一部には、低誘電率層1と高誘電率層2を貫
通するように設けられたスルーホール導体9,10が接
続され、このスルーホール導体9,10は誘電体フィル
タ用の電極としての導体層7にそれぞれ接続されてい
る。
On the high dielectric constant layer 2 on which the conductor layer 6 is provided, a low dielectric constant layer 1 mainly composed of a mixture of amorphous glass and ceramic powder is provided. Is formed with a land electrode for mounting components or an electrode conductor layer 5 for forming an inductance component, and a part of this conductor layer 5 penetrates the low dielectric layer 1 and the high dielectric layer 2. Are connected, and the through-hole conductors 9 and 10 are connected to the conductor layer 7 as an electrode for the dielectric filter, respectively.

【0029】これらの構成のものはグリーンシートを用
いて積層したものを一括焼成して形成されている。これ
らの積層体を一括焼成する時、低誘電率層1,4が流動
軟化し高誘電率層2,3および導体層5,6,7,8と
結着することにより、界面の剥離あるいは各層に発生す
るクラックの発生を抑制し、大きな接着強度を有する複
合セラミック部品を得ることができる。
These components are formed by batch firing a stack of green sheets. When these laminates are fired at one time, the low dielectric layers 1 and 4 flow and soften and bind to the high dielectric layers 2 and 3 and the conductor layers 5, 6, 7, and 8, thereby peeling off the interface or each layer. The composite ceramic component having a large adhesive strength can be obtained by suppressing the occurrence of cracks that occur in the composite ceramic component.

【0030】ここでは誘電体フィルタ内蔵の複合積層セ
ラミック部品を例にしたが、コンデンサ、インダクタ、
セラミックフィルタなど各種電子部品を内蔵する複合積
層セラミック部品を構成することができ、低誘電率層と
高誘電率層を交互に積層する構成も可能である。
Here, a composite multilayer ceramic component with a built-in dielectric filter has been taken as an example.
A composite multilayer ceramic component incorporating various electronic components such as a ceramic filter can be formed, and a configuration in which a low dielectric layer and a high dielectric layer are alternately laminated is also possible.

【0031】次に本発明の特徴とする高誘電率層と低誘
電率層の材料について具体的な実施の形態により説明す
る。
Next, the materials of the high dielectric constant layer and the low dielectric constant layer, which are features of the present invention, will be described with reference to specific embodiments.

【0032】(実施の形態1)高誘電率層に用いた材料
は、Bi23,CaO,Nb25を主成分とする系(以
下BCN)、Bi23,CaO,ZnO,CuO,Nb
25を主成分とする系(以下BCZCN)、BaO,N
25,TiO2,Sm23,Bi23を主成分とする
セラミック粉末90重量%にPbO,B23,SiO2
を主成分とするガラス10重量%からなる混合系(以下
BNTG)の三種類である。
(Embodiment 1) The material used for the high dielectric constant layer is a system containing Bi 2 O 3 , CaO, and Nb 2 O 5 as main components (hereinafter, BCN), Bi 2 O 3 , CaO, ZnO, CuO, Nb
A system containing 2 O 5 as a main component (hereinafter referred to as BCZCN), BaO, N
d 2 O 5, TiO 2, Sm 2 O 3, Bi 2 O 3 PbO to ceramic powder 90 wt% of a main component, B 2 O 3, SiO 2
(Hereinafter referred to as BNTG) composed of 10% by weight of a glass containing as a main component.

【0033】BCNの電気的特性は比誘電率εr=5
8、無負荷Q値と共振周波数の積fQ=2800、共振
周波数の温度特性τf=+23ppm/℃であった。またB
CZCNはεr=100、fQ=2200、τf=+5
ppm/℃、BNTGはεr=55、fQ=2350、τf
=+15ppm/℃であった。
The electrical characteristics of BCN are as follows: dielectric constant εr = 5
8. The product fQ of the no-load Q value and the resonance frequency was fQ = 2800, and the temperature characteristic τf of the resonance frequency was +23 ppm / ° C. Also B
CZCN is εr = 100, fQ = 2200, τf = + 5
ppm / ° C, BNTG: εr = 55, fQ = 2350, τf
= +15 ppm / ° C.

【0034】これらの粉末500gをメチルエチルケト
ン200g中にジブチルフタレート10gとポリビニル
ブチラール樹脂25gを溶かした溶液中に加え、ボール
ミルで24時間混合した。得られたスラリーからドクタ
ーブレード法により厚さ50μmの各組成系の誘電体グ
リーンシートを作製した。
500 g of these powders were added to a solution of 10 g of dibutyl phthalate and 25 g of polyvinyl butyral resin in 200 g of methyl ethyl ketone, and mixed with a ball mill for 24 hours. Dielectric green sheets of each composition having a thickness of 50 μm were prepared from the obtained slurry by a doctor blade method.

【0035】ここで高誘電率層にBCN、BCZCNお
よびBNTG誘電体材料を用いたのは、いずれも焼成温
度が950℃以下であり、内部導体層に導電率の高い銀
を用いて同時焼成が可能であり、かつ上記のようにマイ
クロ波特性に優れているためである。
Here, the reason why BCN, BCZCN and BNTG dielectric materials were used for the high dielectric constant layer was that the firing temperature was 950 ° C. or less, and that simultaneous firing was performed using silver having high conductivity for the internal conductor layer. This is because it is possible and has excellent microwave characteristics as described above.

【0036】低誘電率層に用いられるガラスはSi
2,H3BO3,Al(OH)3,CaCO3,BaC
3,SrCO3,La23等の原料を白金または白金ロ
ジウム坩堝中で溶融し、冷却後粉砕してガラス粉末を作
製した。得られたガラス粉末と、フォルステライト(M
2SiO4)、ジルコニア(ZrO2)、アルミナ(A
2 3)の粉末を任意の重量比で配合し、ジルコニアボ
ールによって湿式混合、粉砕、乾燥させて低誘電率層粉
末を作製した。
The glass used for the low dielectric constant layer is Si
OTwo, HThreeBOThree, Al (OH)Three, CaCOThree, BaC
OThree, SrCOThree, LaTwoOThreeRaw materials such as platinum or platinum
Melted in a crucible, cooled and ground to produce glass powder.
Made. The obtained glass powder and forsterite (M
gTwoSiOFour), Zirconia (ZrO)Two), Alumina (A
lTwoO Three) Powder in any weight ratio and zirconia
Powder, wet mixed, crushed and dried
A powder was prepared.

【0037】低誘電率層材粉末の平均粒子径はレーザー
回折測定法により計測した。またこの粉末にポリビニル
アルコール水溶液をバインダーとして加え造粒した後、
金型プレスによって直径13mm、厚さ1mmの円板を成形
し、500℃でバインダーを飛散させた後850℃から
950℃の温度で焼成した。この焼成体の上下面にAu
−Cr蒸着によって電極を形成し、LCRメーターによ
って1MHzにおける比誘電率を、絶縁抵抗計によって
抵抗率(500Vdc,1分間)を測定した。
The average particle diameter of the low dielectric layer material powder was measured by a laser diffraction measurement method. After adding a polyvinyl alcohol aqueous solution to this powder as a binder and granulating,
A disk having a diameter of 13 mm and a thickness of 1 mm was formed by a die press, and the binder was scattered at 500 ° C., followed by firing at a temperature of 850 ° C. to 950 ° C. Au on the upper and lower surfaces of this fired body
An electrode was formed by -Cr vapor deposition, and the relative permittivity at 1 MHz was measured by an LCR meter, and the resistivity (500 Vdc, 1 minute) was measured by an insulation resistance meter.

【0038】得られた低誘電率層材粉末500gをメチ
ルエチルケトン300g中にジブチルフタレート25
g、ポリビニルブチラール樹脂50gを溶かした溶液中
に加え、ボールミルで24時間混合した。得られたスラ
リーからドクターブレード法により厚さ50μmのグリ
ーンシートを作製した。
500 g of the obtained low dielectric constant layer material powder was added to 300 g of methyl ethyl ketone in 25 g of dibutyl phthalate.
g of polyvinyl butyral resin and 50 g of the resin, and mixed with a ball mill for 24 hours. From the obtained slurry, a green sheet having a thickness of 50 μm was produced by a doctor blade method.

【0039】前述の方法で作製した高誘電率シートを積
層し、60℃で熱圧着することにより高誘電率層2およ
び3(各500μm厚)を作製した。同様に低誘電率シ
ートを積層し、60℃で熱圧着することにより低誘電率
層1,4(各200μm厚)を作製した。これらの1,
2層中に導体層間の導通を得るためスルーホール9およ
び10を形成し、銀ペーストを充填した。その後、1〜
4層上に銀ペーストをスクリーン印刷法により所定の導
体パターンに印刷し、それぞれ導体層5,6,7,8を
形成した。次いで各層1〜4を順次位置決めして積層
し、80℃で熱圧着した後500℃で脱バインダーし、
その後850℃〜950℃の温度で焼成し、図1に示す
複合積層セラミック部品を形成した。
The high dielectric constant sheets produced by the above-described method were laminated and thermocompression-bonded at 60 ° C. to produce high dielectric constant layers 2 and 3 (each having a thickness of 500 μm). Similarly, low dielectric constant sheets were laminated and thermocompression bonded at 60 ° C. to produce low dielectric constant layers 1 and 4 (each having a thickness of 200 μm). These one
Through holes 9 and 10 were formed in the two layers to obtain conduction between the conductor layers, and filled with silver paste. Then,
Silver paste was printed on the four layers in a predetermined conductor pattern by a screen printing method to form conductor layers 5, 6, 7, and 8, respectively. Next, the respective layers 1 to 4 are sequentially positioned and laminated, and after thermocompression bonding at 80 ° C., the binder is removed at 500 ° C.
Thereafter, firing was performed at a temperature of 850 ° C. to 950 ° C. to form a composite multilayer ceramic component shown in FIG.

【0040】以下に具体的な実施の形態2〜6について
述べる。 (実施の形態2)低誘電率層材料として様々な組成のガ
ラスに対し、高誘電率層材料を前記実施の形態1のよう
に焼成一体化して得られた基板について、低誘電率層と
高誘電率層界面における接着強度、剥離および基板のう
ねりの有無など焼成状態について外観から判断した。界
面接着強度は引っ張り試験によって評価を行った。さら
に、厚さ0.2mmのブレードを用いたダイサーで1.0
mm/secの速度でそれぞれの基板を切断したときの切断面
のクラックの有無を観察した。またガラスの熱膨張率は
TMA測定、軟化点はDTA(示唆熱分析)測定により
求めた。
Hereinafter, specific embodiments 2 to 6 will be described. (Embodiment 2) A substrate obtained by firing and integrating a high dielectric constant layer material as in the first embodiment with glass having various compositions as a low dielectric constant layer material is used. The appearance of the fired state, such as the adhesive strength at the interface of the dielectric layer, peeling, and the presence or absence of undulation of the substrate, was determined from the appearance. The interfacial adhesive strength was evaluated by a tensile test. Furthermore, a dicer using a 0.2 mm thick blade
The presence or absence of cracks on the cut surface when each substrate was cut at a speed of mm / sec was observed. The coefficient of thermal expansion of the glass was determined by TMA measurement, and the softening point was determined by DTA (indicative thermal analysis) measurement.

【0041】[0041]

【表1】 [Table 1]

【0042】成分量を固定したSiO2−Al23−B
aO−CaO−B23系の非晶質ガラスに対し、フォル
ステライト、ジルコニア、アルミナの各セラミック粉末
の混合量を変えて混合した低誘電率材料と、BCN、B
CZCN、BNTGの各高誘電率材料を、実施の形態1
に基づいて一体同時焼成した評価結果を(表1)の試料
番号1〜16に示す。なお低誘電率層の非晶質ガラスと
セラミック粉末の重量混合比は50:50とした。
SiO 2 —Al 2 O 3 —B with a fixed component amount
to aO-CaO-B 2 O 3 based amorphous glass, forsterite, and a low dielectric constant material mixed by changing zirconia, a mixed amount of each ceramic powder alumina, BCN, B
Each of the high dielectric constant materials of CZCN and BNTG was used in Embodiment 1.
The evaluation results of the simultaneous co-firing based on Table 1 are shown in Sample Nos. 1 to 16 in (Table 1). The weight mixing ratio between the amorphous glass and the ceramic powder in the low dielectric constant layer was 50:50.

【0043】試料番号1〜5の低誘電率材料はBCN、
BNTGと界面の接着強度がやや弱いものの同時焼成可
能であったが、BCZCNとは同時焼成できず焼成体は
破壊していた。BCNの熱膨張率は93×10-7/℃、
BNTGは95×10-7/℃であるのに対し、BCZC
Nは76×10-7/℃と低い。そのため熱膨張率が88
〜93×10-7/℃でBCNおよびBNTGと比較的熱
膨張の近い試料番号1〜5の低誘電率材料は、BCNお
よびBNTGと同時焼成可能であるが、BCZCNに対
しては高誘電率層に大きな圧縮応力がかかったため焼成
体が破壊したものと考えられる。
The low dielectric constant materials of Sample Nos. 1 to 5 are BCN,
Although the bonding strength between BNTG and the interface was slightly low, simultaneous firing was possible, but simultaneous firing with BCZCN was not possible, and the fired body was broken. The coefficient of thermal expansion of BCN is 93 × 10 −7 / ° C.,
BNTG is 95 × 10 -7 / ° C, whereas BCZC
N is as low as 76 × 10 −7 / ° C. Therefore, the coefficient of thermal expansion is 88
The low dielectric constant materials of Sample Nos. 1 to 5, which have relatively close thermal expansion to BCN and BNTG at ~ 93 × 10 -7 / ° C, can be co-fired with BCN and BNTG, but have a high dielectric constant for BCZCN. It is considered that the fired body was broken because a large compressive stress was applied to the layer.

【0044】試料番号6の低誘電率材料ではアルミナの
含有量が増え熱膨張係数が小さくなったため、BCZC
Nに対しても同時焼成可能であったが、内部応力の大き
な蓄積があり、ダイサーで切断した際応力が解放され破
壊した。
In the low dielectric constant material of Sample No. 6, since the content of alumina increased and the coefficient of thermal expansion decreased, the BCZC
Simultaneous firing was also possible with N, but there was a large accumulation of internal stress, and the stress was released and cut when cut with a dicer.

【0045】試料番号7ではアルミナの含有量が増え、
熱膨張係数がさらに小さくなったため、BCZCNに対
して焼成しダイサーで切断しても、切断面のクラックの
発生は見られなかった。しかしBCN、BNTGに対し
ては、焼成体をダイサーによって切断した際高誘電率層
にクラックが多数発生した。低誘電率層の熱膨張率が高
誘電率層よりも小さくなりすぎたため、高誘電率層に大
きな引っ張り応力が作用し、クラックを発生させたと考
えられる。
In sample No. 7, the alumina content increased,
Since the coefficient of thermal expansion was further reduced, no crack was generated on the cut surface even when baked on BCZCN and cut with a dicer. However, as for BCN and BNTG, many cracks occurred in the high dielectric constant layer when the fired body was cut with a dicer. It is considered that the thermal expansion coefficient of the low dielectric constant layer was too small as compared with that of the high dielectric constant layer, so that a large tensile stress acted on the high dielectric constant layer to cause cracks.

【0046】試料番号8のようにアルミナの量が増え、
熱膨張係数が79×10-7/℃に低下すると、BCN、
BNTGとは同時焼成できず、界面で完全に剥離する。
一方BCZCNに対しては、接着強度がやや弱いものの
良好な焼成体を得ることができた。
As shown in sample 8, the amount of alumina increased,
When the coefficient of thermal expansion drops to 79 × 10 −7 / ° C., BCN,
It cannot be fired at the same time as BNTG, and completely peels off at the interface.
On the other hand, it was possible to obtain a good fired body with slightly weaker adhesive strength to BCZCN.

【0047】試料番号9〜16の場合でも1〜8と同様
の傾向であり、アルミナの含有量が50%以上となり熱
膨張係数が小さくなるとBCZCNとの同時焼成が可能
となり、アルミナの含有量が50%未満で熱膨張係数が
大きくなるとBCN,BNTGとの同時焼成が可能とな
る。
In the case of Sample Nos. 9 to 16, the tendency is the same as that of 1 to 8. When the content of alumina becomes 50% or more and the coefficient of thermal expansion becomes small, simultaneous firing with BCZCN becomes possible, and the content of alumina becomes If the coefficient of thermal expansion increases below 50%, simultaneous firing with BCN and BNTG becomes possible.

【0048】以上の結果より高誘電率層がBCNおよび
BNTGの場合には、フォルステライト、アルミナ、ジ
ルコニアで構成されるセラミック混合粉末内のアルミナ
の含有量は50重量%未満であることが好ましい。また
高誘電率層がBCZCNの場合には、アルミナの含有量
は50重量%以上であることが好ましい。
From the above results, when the high dielectric constant layer is made of BCN and BNTG, the content of alumina in the ceramic mixed powder composed of forsterite, alumina and zirconia is preferably less than 50% by weight. When the high dielectric constant layer is made of BCZCN, the content of alumina is preferably 50% by weight or more.

【0049】(実施の形態3)続いて、低誘電率層の非
晶質ガラス組成の各成分の最適化を図った。
(Embodiment 3) Subsequently, each component of the amorphous glass composition of the low dielectric constant layer was optimized.

【0050】[0050]

【表2】 [Table 2]

【0051】ここでは高誘電率層としてBCNを用い
た。評価方法は実施の形態2と同様である。また(表
1)の試料番号1と同様、低誘電率層のセラミック粉末
はフォルステライト100重量%とし、非晶質ガラスと
セラミック粉末との重量混合比は50:50とした。
Here, BCN was used as the high dielectric constant layer. The evaluation method is the same as in the second embodiment. Similarly to Sample No. 1 in (Table 1), the ceramic powder of the low dielectric constant layer was forsterite 100% by weight, and the weight mixing ratio between the amorphous glass and the ceramic powder was 50:50.

【0052】(表2)の試料番号1および17〜20は
非晶質ガラス中のSiO2とMO(MはBa,Ca)の
比について検討を行ったものである。SiO2はガラス
形成酸化物であると同時にガラスの熱膨張率を低下させ
る働きがある。そのためSiO2の量が多すぎる場合
(試料番号20)には低誘電率層の熱膨張率が低下し、
前記と同様の理由で高誘電率層に多数のクラックが発生
した。逆に少なすぎる場合には(試料番号17)熱膨張
率が大きくなり焼成体は破壊する。したがってSiO2
の量は40〜50重量%が好ましい。
Sample Nos. 1 and 17 to 20 in Table 2 were obtained by examining the ratio between SiO 2 and MO (M is Ba, Ca) in the amorphous glass. SiO 2 is a glass-forming oxide and has a function of lowering the coefficient of thermal expansion of glass. Therefore, when the amount of SiO 2 is too large (sample No. 20), the coefficient of thermal expansion of the low dielectric constant layer decreases,
Many cracks occurred in the high dielectric constant layer for the same reason as described above. On the other hand, if it is too small (Sample No. 17), the coefficient of thermal expansion becomes large and the fired body is broken. Therefore, SiO 2
Is preferably 40 to 50% by weight.

【0053】(表2)の試料番号21〜24はMO/L
23比について検討したものである。試料番号19の
非晶質ガラスを基本とし、MO(MはBa,Ca)の一
部をLa23に置換した。La23の量を増やすとBC
Nと低誘電率材料との反応性が向上し界面の接着強度が
強固となる。一方熱膨張率はほとんど変化しない。しか
しLa23の量が多すぎると低誘電率層とBCNとの反
応が激しくなりすぎ、焼成体全体にうねりが生じてしま
う。試料番号17〜24の結果から(MO+La23
の量は40〜50重量%でかつLa23の量は15重量
%以下であることが好ましい。
Sample numbers 21 to 24 in (Table 2) are MO / L
The a 2 O 3 ratio was studied. Based on the amorphous glass of Sample No. 19, MO (M is Ba, Ca) was partially replaced with La 2 O 3 . Increasing the amount of La 2 O 3 causes BC
The reactivity between N and the low dielectric constant material is improved, and the bonding strength at the interface becomes strong. On the other hand, the coefficient of thermal expansion hardly changes. However, if the amount of La 2 O 3 is too large, the reaction between the low dielectric constant layer and BCN becomes too violent, and the entire fired body will undulate. From the results of sample numbers 17 to 24 (MO + La 2 O 3 )
Is preferably 40 to 50% by weight, and the amount of La 2 O 3 is preferably 15% by weight or less.

【0054】(表2)の試料番号25〜39はBaO/
CaO/SrO比、40〜42はSiO2/B23比、
43〜46はAl23/SiO2比の最適化を図ったも
のである。
The sample numbers 25 to 39 in Table 2 were BaO /
CaO / SrO ratio, 40-42: SiO 2 / B 2 O 3 ratio,
Reference numerals 43 to 46 are for optimizing the Al 2 O 3 / SiO 2 ratio.

【0055】試料番号25〜39の結果より、BaOは
10〜40重量%、CaOは0〜30重量%、SrOは
0〜10重量%が好ましい。BaO、SrOが高含有に
なると低膨張側にシフトし、CaOが高含有になると高
膨張側にシフトする。
From the results of Sample Nos. 25 to 39, it is preferable that BaO is 10 to 40% by weight, CaO is 0 to 30% by weight, and SrO is 0 to 10% by weight. When the content of BaO and SrO becomes high, it shifts to the low expansion side, and when the content of CaO becomes high, it shifts to the high expansion side.

【0056】また試料番号40〜42の結果よりB23
の量は0〜10重量%が好ましい。10重量%を越える
とガラスの軟化点が下がりすぎ、高誘電率層との反応が
激しくなって焼成体にうねりを生じるためである。
From the results of Sample Nos. 40 to 42, B 2 O 3
Is preferably 0 to 10% by weight. If the content exceeds 10% by weight, the softening point of the glass is too low, and the reaction with the high dielectric constant layer becomes intense, causing undulations in the fired body.

【0057】さらに試料番号43〜46の結果よりAl
23の量は、15重量%を越えると熱膨張が大きくなり
過ぎ高誘電率層にクラックが発生するため、0〜15重
量%が好ましい。
Further, from the results of sample numbers 43 to 46,
If the amount of 2 O 3 exceeds 15% by weight, the thermal expansion becomes too large and cracks occur in the high dielectric constant layer, so the amount is preferably 0 to 15% by weight.

【0058】なお本発明は実施の形態3に限定されるも
のではなく、低誘電率層の非晶質ガラスに添加可能な成
分としてSnO2,P25,K2Oなどを挙げることがで
きる。
The present invention is not limited to the third embodiment, but includes SnO 2 , P 2 O 5 , K 2 O and the like as components which can be added to the amorphous glass of the low dielectric constant layer. it can.

【0059】(実施の形態4)次に非晶質ガラスとセラ
ミック粉末の重量混合比について検討した。非晶質ガラ
スの組成は実施の形態3の結果より試料番号21の組成
を使用した。
(Embodiment 4) Next, the weight mixing ratio between the amorphous glass and the ceramic powder was examined. As the composition of the amorphous glass, the composition of Sample No. 21 was used from the result of Embodiment 3.

【0060】[0060]

【表3】 [Table 3]

【0061】(表3)の試料番号21および47〜52
は、セラミック粉末としてフォルステライトを使用し、
それと非晶質ガラスの重量混合比を変化させたときの評
価結果である。また試料番号53〜59はセラミック粉
末にアルミナを、60,61はジルコニアを用いたとき
の結果である。
Sample Nos. 21 and 47 to 52 in Table 3
Uses forsterite as ceramic powder,
It is an evaluation result when the weight mixing ratio of the amorphous glass and the amorphous glass was changed. Sample numbers 53 to 59 are the results when alumina was used for the ceramic powder, and 60 and 61 were the results when zirconia was used.

【0062】セラミック粉末がいずれの場合であって
も、セラミック粉末の重量混合比が多くなると低誘電率
層材料の焼結性が悪くなる。セラミック粉末と非晶質ガ
ラスの重量混合比が75:25となると焼成温度が95
0℃でも焼成できず、絶縁抵抗の低下を引き起こしてい
る。なおそれ以上の焼成温度では銀との同時焼成が不可
能となる。
Regardless of the type of the ceramic powder, the sinterability of the low dielectric constant layer material deteriorates when the weight ratio of the ceramic powder increases. When the weight mixing ratio of the ceramic powder and the amorphous glass becomes 75:25, the firing temperature becomes 95.
It cannot be fired even at 0 ° C., causing a decrease in insulation resistance. At a higher firing temperature, simultaneous firing with silver becomes impossible.

【0063】逆に非晶質ガラスの混合比が増えると焼結
性は良くなるが、混合比が25:75になると非晶質ガ
ラスと高誘電率層との反応が激しくなり過ぎ、焼成体の
反りやうねりを引き起こす。
On the contrary, when the mixing ratio of the amorphous glass increases, the sinterability improves, but when the mixing ratio becomes 25:75, the reaction between the amorphous glass and the high dielectric constant layer becomes too vigorous, and Cause warping and swelling.

【0064】以上の結果から、セラミック粉末と非晶質
ガラスの重量混合比は30:70〜70:30が好まし
い。
From the above results, the weight mixing ratio between the ceramic powder and the amorphous glass is preferably from 30:70 to 70:30.

【0065】(実施の形態5)低誘電率材料の粉砕平均
粒子径が、低誘電率材料の低温焼成化におよぼす効果に
ついて検討した。
(Embodiment 5) The effect of the pulverized average particle size of the low dielectric constant material on the low temperature firing of the low dielectric constant material was examined.

【0066】[0066]

【表4】 [Table 4]

【0067】(表3)の試料番号51のセラミック粉末
(フォルステライト)と非晶質ガラスの重量混合比が7
0:30であるとき、銀との同時焼成の限界である焼成
温度950℃でようやく焼結できる状態であった。この
低誘電率材料の粉砕時間を長くして平均粒子径を小さく
し低温焼結化を図った結果が(表4)の試料番号63,
64である。低誘電率材料の粉砕平均粒子径が2.0μ
m以下となると焼成温度は20℃以上低下し、試料番号
51のような焼結性の若干劣る組成であっても銀の溶融
温度(約960℃)と確実に30℃以上の差ができる。
したがって銀電極の一部溶融や、導電率の低下の防止が
可能になる。
The weight ratio of the ceramic powder (forsterite) of sample number 51 in Table 3 to the amorphous glass was 7
When the ratio was 0:30, sintering was finally achieved at a firing temperature of 950 ° C., which is the limit of simultaneous firing with silver. The results obtained by lengthening the pulverization time of this low dielectric constant material, reducing the average particle diameter, and achieving low-temperature sintering are shown in Table 4 for sample numbers 63 and 63.
64. The average crushed particle diameter of low dielectric constant material is 2.0μ
m or less, the sintering temperature drops by 20 ° C. or more, and even if the composition is slightly inferior in sinterability as in Sample No. 51, a difference of 30 ° C. or more from the melting temperature of silver (about 960 ° C.) can be ensured.
Therefore, it is possible to prevent partial melting of the silver electrode and a decrease in the conductivity.

【0068】したがって低誘電率材料の平均粒子径は
2.0μm以下であることが好ましい。
Therefore, the average particle diameter of the low dielectric constant material is preferably 2.0 μm or less.

【0069】(実施の形態6)低誘電率材料に対して添
加した副成分が、低誘電率材料の低温焼成化におよぼす
影響について検討した。
(Embodiment 6) The effect of a subcomponent added to a low dielectric constant material on low temperature firing of the low dielectric constant material was examined.

【0070】(表4)の試料番号65〜67は副成分と
して二酸化珪素(SiO2)、試料番号68〜70は酸
化銅(CuO)、試料番号71〜73は二酸化マンガン
(MnO2)を添加した場合の評価結果である。
Sample Nos. 65 to 67 in Table 4 contain silicon dioxide (SiO 2 ) as an auxiliary component, Sample Nos. 68 to 70 contain copper oxide (CuO), and Sample Nos. 71 to 73 contain manganese dioxide (MnO 2 ). It is an evaluation result in the case of doing.

【0071】いずれの副成分の場合においても、焼成温
度は20℃以上低下し低温焼成化に効果が認められる。
しかし副成分が二酸化珪素の場合添加量が3.0重量%
となると焼成体にうねりが発生するようになる。また酸
化銅および二酸化マンガンの添加量が3.0重量%とな
ると、低誘電率材料の絶縁抵抗の低下を引き起こし、1
×1012(Ωcm)以下となってしまう。
In the case of any of the subcomponents, the firing temperature is lowered by 20 ° C. or more, and the effect of firing at a low temperature is recognized.
However, when the auxiliary component is silicon dioxide, the addition amount is 3.0% by weight.
Then, swelling occurs in the fired body. Further, when the added amount of copper oxide and manganese dioxide is 3.0% by weight, the insulation resistance of the low dielectric constant material is reduced, and
× 10 12 (Ωcm) or less.

【0072】以上の結果から、低誘電率材料に対する副
成分として、二酸化珪素、酸化銅、二酸化マンガンを
0.05〜2.0重量%添加することが好ましい。
From the above results, it is preferable to add 0.05 to 2.0% by weight of silicon dioxide, copper oxide, and manganese dioxide as subcomponents to the low dielectric constant material.

【0073】[0073]

【発明の効果】以上の結果から、本発明の複合積層セラ
ミック部品の低誘電率層材料を非晶質ガラスとセラミッ
ク粉末の混合材料とすることにより、BCN、BCZC
NあるいはBNTGの高誘電率マイクロ波用誘電体セラ
ミック材料と一体焼成することが可能である。さらにそ
の場合に焼成体の異種材料接着界面における剥離および
各層におけるクラックの発生を抑止できる。その結果、
信頼性が高く安定した複合積層セラミック部品を得るこ
とができる。
From the above results, it can be seen that BCN, BCZC can be obtained by using a mixed material of amorphous glass and ceramic powder as the low dielectric constant layer material of the composite multilayer ceramic part of the present invention.
It is possible to co-fire with N or BNTG high dielectric constant dielectric ceramic material for microwave. Further, in this case, peeling of the fired body at the interface between the different materials and the generation of cracks in each layer can be suppressed. as a result,
A highly reliable and stable composite multilayer ceramic component can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合積層セラミック部品の一実施の形
態を示す断面図
FIG. 1 is a sectional view showing an embodiment of a composite multilayer ceramic component according to the present invention.

【符号の説明】[Explanation of symbols]

1 低誘電率層 2 高誘電率層 3 高誘電率層 4 低誘電率層 5 導体層(配線パターン) 6 導体層(シールド層) 7 導体層(共振器) 8 導体層(シールド層) 9 スルーホール導体 10 スルーホール導体 REFERENCE SIGNS LIST 1 low dielectric constant layer 2 high dielectric constant layer 3 high dielectric constant layer 4 low dielectric constant layer 5 conductor layer (wiring pattern) 6 conductor layer (shield layer) 7 conductor layer (resonator) 8 conductor layer (shield layer) 9 through Hole conductor 10 Through-hole conductor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/03 610 H05K 3/46 H 3/46 C04B 35/16 Z (72)発明者 斉藤 隆一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 涼 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 1/03 610 H05K 3/46 H 3/46 C04B 35/16 Z (72) Inventor Ryuichi Saito 1006 Okadoma, Kadoma, Osaka Address Matsushita Electric Industrial Co., Ltd. (72) Inventor Ryo Kimura 1006 Oji Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 高誘電率層と低誘電率層の積層面に導体
層を形成して積層し、前記低誘電率層が非晶質ガラスと
セラミック粉末の混合物で構成された複合積層セラミッ
ク部品。
1. A composite multilayer ceramic component wherein a conductor layer is formed and laminated on a laminated surface of a high dielectric constant layer and a low dielectric constant layer, and said low dielectric constant layer is composed of a mixture of amorphous glass and ceramic powder. .
【請求項2】 低誘電率層がフォルステライト(Mg2
SiO4)、ジルコニア(ZrO2)、アルミナ(Al2
3)のうち少なくとも一種以上のセラミック粉末と、
非晶質ガラスで構成された請求項1記載の複合積層セラ
ミック部品。
2. The method according to claim 1, wherein the low dielectric constant layer is forsterite (Mg 2
SiO 4 ), zirconia (ZrO 2 ), alumina (Al 2
O 3 ) at least one ceramic powder;
The composite multilayer ceramic component according to claim 1, wherein the component is made of amorphous glass.
【請求項3】 低誘電率層の比誘電率が15未満であ
り、かつ体積抵抗率が1×1012Ωcm以上である請求項
2記載の複合積層セラミック部品。
3. The composite monolithic ceramic component according to claim 2, wherein the low dielectric constant layer has a relative dielectric constant of less than 15 and a volume resistivity of 1 × 10 12 Ωcm or more.
【請求項4】 セラミック粉末と非晶質ガラスの混合重
量比率が30:70〜70:30である請求項2記載の
複合積層セラミック部品。
4. The composite multilayer ceramic component according to claim 2, wherein the mixing weight ratio of the ceramic powder and the amorphous glass is 30:70 to 70:30.
【請求項5】 低誘電率層の非晶質ガラスの主成分がS
iO2−Al23−MO(MはBa,Ca,Srから少
なくとも1種以上)−La23−B23からなる請求項
2記載の複合積層セラミック部品。
5. The method according to claim 1, wherein the main component of the amorphous glass of the low dielectric constant layer is S.
iO 2 -Al 2 O 3 -MO ( M is Ba, Ca, at least one kind from Sr) composite multilayer ceramic part according to claim 2, wherein comprising a -La 2 O 3 -B 2 O 3 .
【請求項6】 非晶質ガラスの主成分をSiO2が40
〜50重量%、Al2 3が0〜15重量%、B23が0
〜10重量%、および(MO(MはBa,Ca,Srか
ら少なくとも1種以上)+La23)量が40〜50重
量%でかつLa 23を0〜15重量%とする請求項5記
載の複合積層セラミック部品。
6. The main component of the amorphous glass is SiO.TwoIs 40
~ 50% by weight, AlTwoO ThreeIs 0 to 15% by weight, BTwoOThreeIs 0
-10% by weight, and (MO (M is Ba, Ca, Sr
At least one or more) + LaTwoOThree) 40 to 50 weight
% And La TwoOThree6. The composition according to claim 5, wherein
Composite multilayer ceramic parts.
【請求項7】 導体層は銀であることを特徴とする請求
項1記載の複合積層セラミック部品。
7. The composite multilayer ceramic component according to claim 1, wherein the conductor layer is silver.
【請求項8】 低誘電率層の副成分として、セラミック
粉末と非晶質ガラスの総量を100重量%としたとき、
酸化ケイ素、酸化銅、酸化マンガンをSiO2,Cu
O,MnO2に換算して0.05〜2.0重量%添加し
たものからなる請求項2記載の複合積層セラミック部
品。
8. When the total amount of ceramic powder and amorphous glass is 100% by weight as subcomponents of the low dielectric constant layer,
Silicon oxide, copper oxide, and manganese oxide are converted to SiO 2 , Cu
O, composite multilayer ceramic part according to claim 2, wherein comprising a material obtained by adding 0.05 to 2.0 wt% in terms of MnO 2.
【請求項9】 低誘電率層を構成するセラミック粉末と
非晶質ガラスの混合粉体の製造において、混合粉体の平
均粒子径が2.0μm以下である請求項2記載の複合積
層セラミック部品。
9. The composite multilayer ceramic component according to claim 2, wherein in the production of the mixed powder of the ceramic powder and the amorphous glass constituting the low dielectric constant layer, the average particle diameter of the mixed powder is 2.0 μm or less. .
【請求項10】 高誘電率層は比誘電率が15以上、無
負荷Q値とその共振周波数の積が500以上、共振周波
数の温度変化率の絶対値が50ppm/℃以下であるマイク
ロ波用誘電体材料からなる請求項1記載の複合積層セラ
ミック部品。
10. A high dielectric constant layer for a microwave having a relative dielectric constant of 15 or more, a product of an unloaded Q value and its resonance frequency of 500 or more, and an absolute value of a temperature change rate of the resonance frequency of 50 ppm / ° C. or less. The composite multilayer ceramic component according to claim 1, which is made of a dielectric material.
【請求項11】 高誘電率層はBi23,CaO,Nb
25を主成分とする誘電体セラミック材料である請求項
1に記載の複合積層セラミック部品。
11. The high dielectric constant layer is made of Bi 2 O 3 , CaO, Nb.
Composite multilayer ceramic part according to claim 1, which is a dielectric ceramic material for the 2 O 5 as a main component.
【請求項12】 高誘電率層がBi23,CaO,Nb
25を主成分とする誘電体セラミック材料であり、かつ
請求項2に記載の低誘電率層のセラミック粉末にアルミ
ナが含まれる場合において、前記アルミナの含有量が5
0重量%未満である請求項2記載の複合積層セラミック
部品。
12. The high dielectric constant layer is made of Bi 2 O 3 , CaO, Nb.
3. In the case where the ceramic powder is a dielectric ceramic material containing 2 O 5 as a main component and the ceramic powder of the low dielectric constant layer according to claim 2 contains alumina, the alumina content is 5%.
The composite multilayer ceramic component according to claim 2, wherein the content is less than 0% by weight.
【請求項13】 高誘電率層はBi23,CaO,Zn
O,CuO,Nb25を主成分とする誘電体セラミック
材料である請求項1に記載の複合積層セラミック部品。
13. The high dielectric constant layer is made of Bi 2 O 3 , CaO, Zn.
O, CuO, composite multilayer ceramic part according to claim 1, which is a dielectric ceramic material mainly composed of Nb 2 O 5.
【請求項14】 高誘電率層がBi23,CaO,Zn
O,CuO,Nb25を主成分とする誘電体セラミック
材料であり、かつ請求項2に記載の低誘電率層のセラミ
ック粉末にアルミナが含まれる場合において、前記アル
ミナの含有量が50重量%以上である請求項2記載の複
合積層セラミック部品。
14. The high dielectric constant layer is made of Bi 2 O 3 , CaO, Zn.
3. A dielectric ceramic material containing O, CuO, and Nb 2 O 5 as main components, and when the ceramic powder of the low dielectric constant layer according to claim 2 contains alumina, the content of the alumina is 50% by weight. %.
【請求項15】 高誘電率層はBaO,Nd25,Ti
2およびガラスを主成分とする誘電体セラミック材料
である請求項1に記載の複合積層セラミック部品。
15. The high dielectric constant layer is made of BaO, Nd 2 O 5 , Ti.
O 2 and composite multilayer ceramic part according to claim 1 glass is a dielectric ceramic material composed mainly of.
【請求項16】 高誘電率層がBaO,Nd25,Ti
2およびガラスを主成分とする誘電体セラミック材料
であり、かつ請求項2に記載の低誘電率層のセラミック
粉末にアルミナが含まれる場合において、前記アルミナ
の含有量が50重量%未満である請求項2記載の複合積
層セラミック部品。
16. The high dielectric constant layer is made of BaO, Nd 2 O 5 , Ti
3. When the ceramic powder of the low dielectric constant layer according to claim 2 is alumina, which is a dielectric ceramic material containing O 2 and glass as main components, the alumina content is less than 50% by weight. The composite multilayer ceramic component according to claim 2.
JP25413096A 1996-09-26 1996-09-26 Composite multilayer ceramic parts Expired - Fee Related JP3225851B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25413096A JP3225851B2 (en) 1996-09-26 1996-09-26 Composite multilayer ceramic parts
PCT/JP1997/003381 WO1998013932A1 (en) 1996-09-26 1997-09-24 Branch filter and shared device and 2-frequency band mobile communication apparatus using the branch filter
EP97941214A EP0872953A4 (en) 1996-09-26 1997-09-24 Branch filter and shared device and 2-frequency band mobile communication apparatus using the branch filter
US09/077,254 US6366564B1 (en) 1996-09-26 1997-09-24 Diplexer duplexer and two-channel mobile communications equipment
EP07123993A EP1909390A2 (en) 1996-09-26 1997-09-24 Diplexer, duplexer, and two-channel mobile communications equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25413096A JP3225851B2 (en) 1996-09-26 1996-09-26 Composite multilayer ceramic parts

Publications (2)

Publication Number Publication Date
JPH10106880A true JPH10106880A (en) 1998-04-24
JP3225851B2 JP3225851B2 (en) 2001-11-05

Family

ID=17260645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25413096A Expired - Fee Related JP3225851B2 (en) 1996-09-26 1996-09-26 Composite multilayer ceramic parts

Country Status (1)

Country Link
JP (1) JP3225851B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076938A1 (en) * 1999-06-16 2000-12-21 Matsushita Electric Industrial Co., Ltd. Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JP2001284807A (en) * 2000-03-29 2001-10-12 Kyocera Corp Circuit board
JP2002104870A (en) * 2000-09-28 2002-04-10 Kyocera Corp Dielectric porcelain and laminate
US6448696B2 (en) 1999-12-20 2002-09-10 Murata Manufacturing Co., Ltd. Outer coating substrate for electronic component and piezoelectric resonant component
US6623845B1 (en) 1998-03-17 2003-09-23 Matsushita Electric Industrial Co., Ltd. Glass-ceramic composition, and electronic component and multilayer LC composite component using the same
US7189668B2 (en) 2000-08-23 2007-03-13 Norsk Hydro Asa Barium lanthanum silicate glass-ceramics
WO2007074606A1 (en) * 2005-12-27 2007-07-05 Murata Manufacturing Co., Ltd. Method for production of forsterite powder, forsterite powder, sintered forsterite, ceramic insulator composition, and laminated ceramic electronic element
JP2008032753A (en) * 2002-08-07 2008-02-14 Matsushita Electric Ind Co Ltd Load sensor and manufacturing method therefor
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2008109053A (en) * 2006-10-27 2008-05-08 Kyocera Corp Glass ceramic multilayer circuit board
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2010109323A (en) * 2008-10-28 2010-05-13 Samsung Electro-Mechanics Co Ltd Method of manufacturing multilayer ceramic substrate
JP2011216521A (en) * 2010-03-31 2011-10-27 Tdk Corp Ceramic electronic component and method of manufacturing ceramic electronic component
JP2012167008A (en) * 2012-04-06 2012-09-06 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same, and mounting structure of the same
JP2013134999A (en) * 2011-12-23 2013-07-08 Murata Mfg Co Ltd Laminated ceramic electronic component
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
JP2018083746A (en) * 2016-11-25 2018-05-31 京セラ株式会社 Ceramic porcelain, wiring board and electronic component

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623845B1 (en) 1998-03-17 2003-09-23 Matsushita Electric Industrial Co., Ltd. Glass-ceramic composition, and electronic component and multilayer LC composite component using the same
WO2000076938A1 (en) * 1999-06-16 2000-12-21 Matsushita Electric Industrial Co., Ltd. Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
US6448696B2 (en) 1999-12-20 2002-09-10 Murata Manufacturing Co., Ltd. Outer coating substrate for electronic component and piezoelectric resonant component
US6865090B2 (en) 1999-12-20 2005-03-08 Murata Manufacturing Co., Ltd. Outer coating substrate for electronic component and piezoelectric resonant component
JP2001284807A (en) * 2000-03-29 2001-10-12 Kyocera Corp Circuit board
US7189668B2 (en) 2000-08-23 2007-03-13 Norsk Hydro Asa Barium lanthanum silicate glass-ceramics
JP2002104870A (en) * 2000-09-28 2002-04-10 Kyocera Corp Dielectric porcelain and laminate
JP4535592B2 (en) * 2000-09-28 2010-09-01 京セラ株式会社 Laminated body
JP2008032753A (en) * 2002-08-07 2008-02-14 Matsushita Electric Ind Co Ltd Load sensor and manufacturing method therefor
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP5076907B2 (en) * 2005-12-27 2012-11-21 株式会社村田製作所 Method for producing forsterite powder, forsterite powder, forsterite sintered body, insulator ceramic composition, and multilayer ceramic electronic component
WO2007074606A1 (en) * 2005-12-27 2007-07-05 Murata Manufacturing Co., Ltd. Method for production of forsterite powder, forsterite powder, sintered forsterite, ceramic insulator composition, and laminated ceramic electronic element
JP2008109053A (en) * 2006-10-27 2008-05-08 Kyocera Corp Glass ceramic multilayer circuit board
JP2010109323A (en) * 2008-10-28 2010-05-13 Samsung Electro-Mechanics Co Ltd Method of manufacturing multilayer ceramic substrate
JP2011216521A (en) * 2010-03-31 2011-10-27 Tdk Corp Ceramic electronic component and method of manufacturing ceramic electronic component
US8508914B2 (en) 2010-03-31 2013-08-13 Tdk Corporation Ceramic electronic component and method of manufacturing ceramic electronic component
JP2013134999A (en) * 2011-12-23 2013-07-08 Murata Mfg Co Ltd Laminated ceramic electronic component
US9148109B2 (en) 2011-12-23 2015-09-29 Murata Manufacturing Co. Ltd. Monolithic ceramic electronic component
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
JPWO2013121929A1 (en) * 2012-02-13 2015-05-11 株式会社村田製作所 Composite multilayer ceramic electronic components
US9190211B2 (en) 2012-02-13 2015-11-17 Murata Manufacturing Co., Ltd. Composite laminated ceramic electronic component
JP2012167008A (en) * 2012-04-06 2012-09-06 Kyocera Corp Glass ceramic composition, glass ceramic sintered compact, wiring board using the same, and mounting structure of the same
JP2018083746A (en) * 2016-11-25 2018-05-31 京セラ株式会社 Ceramic porcelain, wiring board and electronic component

Also Published As

Publication number Publication date
JP3225851B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JP3225851B2 (en) Composite multilayer ceramic parts
JP4883228B2 (en) Low-temperature sintered ceramic sintered body and multilayer ceramic substrate
JP3297569B2 (en) Low temperature firing porcelain composition
KR101290089B1 (en) Ceramic material for low-temperature sintering, and ceramic substrate
JP2008273817A (en) Composition for insulating ceramics and insulating ceramics using the same
JPWO2008018408A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP3843912B2 (en) Glass ceramic material for multilayer circuit board and multilayer circuit board
JP5533674B2 (en) Low temperature sintered ceramic material and ceramic substrate
US6207905B1 (en) Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
JP4673086B2 (en) Conductor paste for via conductor metallization and method of manufacturing ceramic wiring board using the same
JPH10135073A (en) Composite ceramic electronic part and its manufacture
JP3903781B2 (en) Composite multilayer ceramic electronic component and method for manufacturing the same
JP2002193691A (en) Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same
JP3934841B2 (en) Multilayer board
JP2005217170A (en) Composite multilayer ceramic electronic component
JP3764605B2 (en) Circuit board manufacturing method
JPH1022162A (en) Composite laminated ceramic component
JP7056764B2 (en) Glass-ceramic materials, laminates, and electronic components
JP5132387B2 (en) Multilayer wiring board and manufacturing method thereof
JP2007173857A (en) Multilayer substrate and method for manufacturing same
JP2003347732A (en) Ceramic substrate and method for its manufacturing
JP3643264B2 (en) Conductive paste and wiring board using the same
JPH10158032A (en) Glass-ceramic sintered body and multilayer wiring substrate using the same
JPH1160266A (en) Glass and glass ceramic material
JPH11209178A (en) Composite laminated ceramic part and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees