JPH10106472A - Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device - Google Patents

Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device

Info

Publication number
JPH10106472A
JPH10106472A JP8258582A JP25858296A JPH10106472A JP H10106472 A JPH10106472 A JP H10106472A JP 8258582 A JP8258582 A JP 8258582A JP 25858296 A JP25858296 A JP 25858296A JP H10106472 A JPH10106472 A JP H10106472A
Authority
JP
Japan
Prior art keywords
detector
charged particle
particle beam
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8258582A
Other languages
Japanese (ja)
Inventor
Noriyuki Hirayanagi
徳行 平柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8258582A priority Critical patent/JPH10106472A/en
Publication of JPH10106472A publication Critical patent/JPH10106472A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor reflected electron detection device less influenced by a temperature-dependent noise. SOLUTION: This device has a semiconductor reflected electron detector 4 to detect a reflected electron C2 from a sample 3, an electrothermal element 10 to cool the detector 4, a temperature sensor 11 to detect the temperature of the detector 4, and a temperature controller 12 to control the cooling output of the electrothermal element 10 so as to keep the temperature of the detector 4 constant. As a result, a temperature-dependent noise included in the output signal of the detector 4 becomes almost constant and the noise can be easily suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子線装置に
用いられる反射電子検出装置および荷電粒子線装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backscattered electron detector and a charged particle beam device used in a charged particle beam device.

【0002】[0002]

【従来の技術】図5は荷電粒子線装置に用いられている
従来の反射電子検出装置を説明する図であり、荷電粒子
線装置の一部を示している。1は荷電粒子線装置であ
り、2は荷電粒子線装置の光学系の一部を構成する電子
レンズ、3は電子レンズ2を通過した電子ビームC1が
照射される試料、4は試料3からの反射電子C2を検出
する半導体反射電子検出器である。半導体反射電子検出
器4はSi(シリコン)のpn接合やpin接合からな
る半導体センサを備えており、反射電子C2の入射位置
に半導体センサのpn接合部やpin接合部が位置する
ように配置される。この際、検出効率を上げるために検
出器4をなるべく試料3の近くに配置するのが望ましい
が、通常は電子レンズ2の近くに試料3の電子ビーム照
射位置を見込むように配置される。なお、電子レンズ
2,試料3,半導体反射電子検出器4は、真空容器5内
に納められ、荷電粒子線装置動作時には真空容器5内は
真空に保たれる。
2. Description of the Related Art FIG. 5 is a view for explaining a conventional backscattered electron detecting device used in a charged particle beam device, and shows a part of the charged particle beam device. 1 is a charged particle beam device, 2 is an electron lens constituting a part of an optical system of the charged particle beam device, 3 is a sample irradiated with the electron beam C1 passing through the electron lens 2, and 4 is a sample from the sample 3. This is a semiconductor backscattered electron detector that detects backscattered electrons C2. The semiconductor backscattered electron detector 4 includes a semiconductor sensor composed of a pn junction or a pin junction of Si (silicon), and is arranged such that the pn junction or the pin junction of the semiconductor sensor is located at the incident position of the backscattered electrons C2. You. At this time, it is desirable to arrange the detector 4 as close as possible to the sample 3 in order to increase the detection efficiency. However, usually, the detector 4 is arranged near the electron lens 2 so as to see the electron beam irradiation position of the sample 3. The electron lens 2, the sample 3, and the semiconductor backscattered electron detector 4 are housed in a vacuum vessel 5, and the inside of the vacuum vessel 5 is kept in a vacuum during operation of the charged particle beam apparatus.

【0003】[0003]

【発明が解決しようとする課題】この種の荷電粒子線装
置では、近年、ビーム電流や電子レンズの電流が大きく
なる傾向にあり、電子ビームC1の照射や電子レンズ2
の発熱等の影響により荷電粒子線装置1の動作中に半導
体反射電子検出器4の温度が上昇し、半導体反射電子検
出器4の出力信号の雑音が増加するという問題が生じて
いる。ところで、温度の上昇に伴って増加する雑音には
熱雑音,ショットノイズ,暗電流等があるが、なかでも
暗電流は温度に大きく依存する。図6は温度と暗電流の
関係の一例を示す図であり、横軸が温度で縦軸が暗電流
である。図6の例では、温度上昇10Kに対して暗電流
が5倍程度に増加しており、測定に深刻な影響をおよぼ
す。
In the charged particle beam apparatus of this type, the beam current and the current of the electron lens tend to increase in recent years, and the irradiation of the electron beam C1 and the electron lens
The temperature of the semiconductor backscattered electron detector 4 rises during the operation of the charged particle beam device 1 due to the influence of heat generation and the like, and the noise of the output signal of the semiconductor backscattered electron detector 4 increases. By the way, noise that increases with an increase in temperature includes thermal noise, shot noise, dark current, and the like. Among them, the dark current greatly depends on temperature. FIG. 6 is a diagram showing an example of the relationship between temperature and dark current, where the horizontal axis is temperature and the vertical axis is dark current. In the example of FIG. 6, the dark current is increased about 5 times for a temperature rise of 10 K, which has a serious influence on the measurement.

【0004】本発明の目的は、温度に依存する雑音の影
響の少ない荷電粒子線装置用反射電子検出装置および荷
電粒子線装置を提供することにある。
An object of the present invention is to provide a backscattered electron detector and a charged particle beam device for a charged particle beam device which are less affected by temperature-dependent noise.

【0005】[0005]

【課題を解決するための手段】発明の実施の形態を示す
図1〜4に対応付けて説明する。 (1)図1に対応付けて説明すると、請求項1の発明
は、試料3からの反射電子C2を検出する検出器4を備
える荷電粒子線装置用反射電子検出装置に適用され、検
出器4の温度が一定となるように制御する制御手段1
0,11,12を設けたことにより上述の目的を達成す
る。 (2)請求項2の発明は、請求項1に記載の荷電粒子線
装置用反射電子検出装置において、制御手段が、検出器
4を冷却する冷却手段10と、検出器4の温度を検出す
る温度センサ11と、子検出器4の温度が一定となるよ
うに冷却手段10の冷却出力を制御する制御装置12と
を備える。 (3)図4に対応付けて説明すると、請求項3の発明
は、請求項1に記載の荷電粒子線装置用反射電子検出装
置において、制御手段が、検出器4および荷電粒子線装
置の電子レンズ2を冷却する冷却手段21と、検出器4
および電子レンズ2のいずれかの温度を検出する温度セ
ンサ11と、温度センサ11により検出された温度が一
定となるように冷却手段21の冷却出力を制御する制御
装置24とを備える。 (4)図3に対応付けて説明すると、請求項4の発明
は、試料3からの反射電子C2を検出する検出器4を備
える荷電粒子線装置用反射電子検出装置に適用され、検
出器4を冷却する冷却手段10と、検出器4の出力信号
に含まれる暗電流成分が一定となるように冷却手段10
の冷却出力を制御する制御装置12とを備えることによ
り上述の目的を達成する。 (5)図2に対応付けて説明すると、請求項5の発明
は、真空容器5内で試料3に向けて荷電粒子線を照射す
る荷電粒子線装置1において、良熱伝導性絶縁体からな
る保持部材13で真空容器5に保持され、試料3からの
反射電子C2を検出する検出器4と、保持部材13に取
付けられて検出器4を冷却する冷却手段10と、検出器
4の温度を検出する温度センサ11と、温度センサ11
で検出した検出器4の温度が一定となるように冷却手段
10を制御する制御手段12とを具備して上述の目的を
達成する。 (6)請求項6の発明は、真空容器5内で試料3に向け
て荷電粒子線を照射する荷電粒子線装置1において、良
熱伝導性絶縁体からなる保持部材13で真空容器5に保
持され、試料3からの反射電子C2を検出する検出器4
と、保持部材13に取付けられて検出器4を冷却する冷
却手段10と、検出器4の暗電流が一定となるように冷
却手段10を制御する制御手段12とを具備して上述の
目的を達成する。 (7)請求項7の発明は、請求項5または6に記載の荷
電粒子線装置において、保持部材13は真空容器5を貫
通して設けられ、冷却手段10は真空容器5の外側に設
けられる。
An embodiment of the present invention will be described with reference to FIGS. (1) Explained in association with FIG. 1, the invention of claim 1 is applied to a backscattered electron detection device for a charged particle beam device including a detector 4 for detecting backscattered electrons C2 from a sample 3, and Control means 1 for controlling the temperature of the air to be constant
The above objects are achieved by providing 0, 11, and 12. (2) According to a second aspect of the present invention, in the backscattered electron detector for a charged particle beam device according to the first aspect, the control means detects a cooling means 10 for cooling the detector 4 and a temperature of the detector 4. A temperature sensor 11 and a control device 12 for controlling the cooling output of the cooling means 10 so that the temperature of the child detector 4 becomes constant are provided. (3) Explained in connection with FIG. 4, the invention of claim 3 is the backscattered electron detection device for a charged particle beam device according to claim 1, wherein the control means comprises the detector 4 and the electron of the charged particle beam device. Cooling means 21 for cooling the lens 2;
A temperature sensor 11 for detecting one of the temperatures of the electronic lens 2; and a control device 24 for controlling the cooling output of the cooling means 21 so that the temperature detected by the temperature sensor 11 becomes constant. (4) Explaining in connection with FIG. 3, the invention of claim 4 is applied to a backscattered electron detector for a charged particle beam device, which includes a detector 4 for detecting backscattered electrons C2 from the sample 3, and Means 10 for cooling the cooling means, and cooling means 10 so that the dark current component contained in the output signal of detector 4 is constant.
The above-mentioned object is achieved by providing the control device 12 for controlling the cooling output of the apparatus. (5) Explained in connection with FIG. 2, the invention of claim 5 is a charged particle beam apparatus 1 for irradiating a charged particle beam toward a sample 3 in a vacuum vessel 5 and is made of a good heat conductive insulator. A detector 4 held by the holding member 13 in the vacuum vessel 5 and detecting the reflected electrons C2 from the sample 3; a cooling means 10 attached to the holding member 13 for cooling the detector 4; Temperature sensor 11 to detect, temperature sensor 11
The above-mentioned object is achieved by providing a control means 12 for controlling the cooling means 10 so that the temperature of the detector 4 detected in the step 4 becomes constant. (6) The charged particle beam apparatus 1 for irradiating a charged particle beam toward the sample 3 in the vacuum vessel 5 is held in the vacuum vessel 5 by the holding member 13 made of a good heat conductive insulator. And detector 4 for detecting backscattered electrons C2 from sample 3
A cooling means 10 attached to the holding member 13 for cooling the detector 4; and a control means 12 for controlling the cooling means 10 so that the dark current of the detector 4 is constant. To achieve. (7) According to a seventh aspect of the present invention, in the charged particle beam device according to the fifth or sixth aspect, the holding member 13 is provided to penetrate the vacuum vessel 5 and the cooling means 10 is provided outside the vacuum vessel 5. .

【0006】(1)請求項1および2の発明では、検出
器4の温度はほぼ一定に保たれる。 (2)請求項3の発明では、冷却手段21は検出器4お
よび電子レンズ2の両者を冷却する。 (3)請求項4の発明では、検出器4の出力信号に含ま
れる暗電流成分がほぼ一定に保たれる。 (4)請求項5および6の発明では、検出器4は良熱伝
導性絶縁体からなる保持部材13を介して真空容器5に
保持されて冷却手段10により冷却される。 (5)請求項7の発明では、荷電粒子線装置1の真空容
器5の外側に冷却手段10が設けられるため、冷却能力
の大きな冷却手段を取り付けることができる。
(1) According to the first and second aspects of the present invention, the temperature of the detector 4 is kept substantially constant. (2) According to the third aspect of the invention, the cooling means 21 cools both the detector 4 and the electron lens 2. (3) According to the invention of claim 4, the dark current component contained in the output signal of the detector 4 is kept substantially constant. (4) According to the fifth and sixth aspects of the present invention, the detector 4 is held in the vacuum vessel 5 via the holding member 13 made of a good heat conductive insulator and cooled by the cooling means 10. (5) In the invention of claim 7, since the cooling means 10 is provided outside the vacuum vessel 5 of the charged particle beam device 1, a cooling means having a large cooling capacity can be attached.

【0007】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
[0007] In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to the embodiment.

【0008】[0008]

【発明の実施の形態】以下、図1〜図4を参照して本発
明の実施の形態を説明する。 −第1の実施の形態− 図1は本発明による反射電子検出装置の概略構成を説明
する図で、図5と同様に荷電粒子線装置の一部を示して
おり、同一部分には同一の符号を付した。10は半導体
反射電子検出器4を冷却するペルチェ素子等の電熱素
子,11は温度センサであり、それぞれ半導体反射検出
器4のパッケージに密着して取り付けられている。な
お、電熱素子10および温度センサ11を半導体反射検
出器4に取り付ける際には、例えばシート状の絶縁物
(不図示)を介して取り付けられる。温度コントローラ
12は、半導体反射電子検出器4の温度が一定に保たれ
るように温度センサ11からの信号に基づいて電熱素子
10の冷却出力を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. -First Embodiment- FIG. 1 is a view for explaining a schematic configuration of a backscattered electron detecting apparatus according to the present invention, and shows a part of a charged particle beam apparatus as in FIG. The sign was attached. Reference numeral 10 denotes an electric heating element such as a Peltier element for cooling the semiconductor reflection electron detector 4, and reference numeral 11 denotes a temperature sensor, which are attached to the package of the semiconductor reflection detector 4 in close contact with each other. When the electric heating element 10 and the temperature sensor 11 are attached to the semiconductor reflection detector 4, for example, they are attached via a sheet-like insulator (not shown). The temperature controller 12 controls the cooling output of the electric heating element 10 based on the signal from the temperature sensor 11 so that the temperature of the semiconductor backscattered electron detector 4 is kept constant.

【0009】一般に、半導体センサは温度を下げること
によって雑音が低減されるので(図6参照)、電熱素子
10で半導体反射電子検出器4の温度を下げることによ
り雑音のレベルが小さくなる。さらに、上述したよう
に、温度が一定となるように制御することによって、電
子ビーム照射時,非照射時とにかかわらず半導体反射電
子検出器4の出力信号に含まれる雑音のレベルがほぼ一
定となる。その結果、電子ビームのショット間における
半導体反射電子検出器4の出力信号(すなわち、暗電流
も含む雑音信号)を測定し、測定時の出力信号からショ
ット間の出力信号を差し引くことにより雑音をキャンセ
ルすることができ、測定精度の向上を図ることができ
る。
In general, the noise of the semiconductor sensor is reduced by lowering the temperature (see FIG. 6). Therefore, the noise level is reduced by lowering the temperature of the semiconductor backscattered electron detector 4 with the electric heating element 10. Further, as described above, by controlling the temperature to be constant, the level of the noise included in the output signal of the semiconductor backscattered electron detector 4 is substantially constant regardless of whether the electron beam is irradiated or not. Become. As a result, an output signal of the semiconductor backscattered electron detector 4 between shots of the electron beam (ie, a noise signal including a dark current) is measured, and noise is canceled by subtracting the output signal between shots from the output signal at the time of measurement. And measurement accuracy can be improved.

【0010】図2は図1に示した半導体反射電子検出装
置の第1の変形例を示す図である。通常、半導体反射電
子検出器4は非常に限られたスペース内に配置され、図
1に示すように冷却手段である電熱素子10を荷電粒子
線装置内に納めるのが困難な場合が多い。図2におい
て、半導体反射電子検出器4が取り付けられるホルダ1
3は熱伝導性の良い絶縁体から成り、図に示すように真
空容器内側の端部13aに半導体反射電子検出器4が、
真空容器5を貫通して大気側に露出している端部13b
に電熱素子10がそれぞれ取り付けられる。
FIG. 2 is a diagram showing a first modification of the semiconductor backscattered electron detecting device shown in FIG. Normally, the semiconductor backscattered electron detector 4 is arranged in a very limited space, and it is often difficult to house the electric heating element 10 as a cooling means in a charged particle beam device as shown in FIG. In FIG. 2, a holder 1 to which a semiconductor backscattered electron detector 4 is attached.
Numeral 3 is made of an insulator having good thermal conductivity. As shown in the figure, a semiconductor backscattered electron detector 4 is provided at an end 13a inside the vacuum vessel.
End 13b penetrating through vacuum vessel 5 and exposed to the atmosphere
The electric heating element 10 is attached to each.

【0011】通常、半導体反射電子検出器14は絶縁物
を挟んで荷電粒子線装置1の真空容器5に設けられた取
付部に取り付けられるが、図2に示した例では、その絶
縁物を冷却ホルダとして利用しており、部品点数の省略
化が図れる。また、真空容器5の外側に熱電素子10を
取り付けているため熱電素子10を設けるスペースが十
分得られ、より冷却能力の大きい熱電素子10を用いる
ことができる。そのため、半導体反射電子検出器4の温
度をより低くすることができ、暗電流等の雑音信号その
ものを小さくすることができる。
Normally, the semiconductor backscattered electron detector 14 is mounted on a mounting portion provided on the vacuum vessel 5 of the charged particle beam device 1 with an insulator interposed therebetween. In the example shown in FIG. 2, the insulator is cooled. Since it is used as a holder, the number of parts can be reduced. Further, since the thermoelectric element 10 is attached to the outside of the vacuum vessel 5, a sufficient space for providing the thermoelectric element 10 is obtained, and the thermoelectric element 10 having a higher cooling capacity can be used. Therefore, the temperature of the semiconductor backscattered electron detector 4 can be further reduced, and the noise signal itself such as dark current can be reduced.

【0012】なお、温度センサ11を半導体反射電子検
出器14に取り付けるのではなく、ホルダ13に取り付
けるようにしてもよい。また、熱電素子10でホルダ1
3を冷却する代りに、ホルダ13の大気側端部13bに
放熱フィンを形成してファン等により冷却してもよい
し、ホルダ13内に通路を形成してその通路内に冷媒を
流すことによりホルダ13を冷却するようにしてもよ
い。
The temperature sensor 11 may be attached to the holder 13 instead of being attached to the semiconductor backscattered electron detector 14. In addition, the thermoelectric element 10 is used for the holder 1.
Instead of cooling 3, a radiation fin may be formed at the end 13 b on the atmosphere side of the holder 13 and cooled by a fan or the like, or a passage may be formed in the holder 13 and a coolant may flow through the passage. The holder 13 may be cooled.

【0013】上述した第1の実施の形態では、温度コン
トローラ12は半導体反射検出器4の温度が一定となる
ように電熱素子10を制御したが、図3に示す第2の変
形例のように半導体反射電子検出器4の暗電流成分が一
定となるように電熱素子10を制御するようにしてもよ
い。この場合、温度センサ11を設ける必要が無く、そ
のためのスペースを必要としないという利点がある。
In the above-described first embodiment, the temperature controller 12 controls the electric heating element 10 so that the temperature of the semiconductor reflection detector 4 becomes constant. However, as in the second modification shown in FIG. The electric heating element 10 may be controlled so that the dark current component of the semiconductor backscattered electron detector 4 becomes constant. In this case, there is an advantage that there is no need to provide the temperature sensor 11 and no space is required for it.

【0014】−第2の実施の形態− 上述したように電子レンズの電流が大きな場合には、電
子レンズの発熱による電子レンズの温度上昇を抑えるた
めに電子レンズ自体に冷却手段や、さらには温度を管理
するための制御手段が設けられることがある。図4は本
発明による半導体反射電子検出装置の第2の実施の形態
を説明する図であり、本実施の形態では、この電子レン
ズの冷却手段や温度制御手段を半導体反射電子検出装置
の冷却手段や温度制御手段として兼用して用いる。な
お、電子レンズ2の図示左側の断面では冷却ホルダ21
を省略して示した。また、図5と同一の部分には同一の
符号を付した。21は電子レンズ2の冷却ホルダであ
り、その内部には冷媒用の通路211が形成されてい
る。本実施の形態では、半導体反射電子検出器4も冷却
ホルダ21に取り付けられる。22は冷却ホルダ21を
流れる冷媒の流量を計測するための流量計,23は流量
調節弁であり、温度コントローラ24は温度センサ11
および流量計22の情報に基づいて電子レンズ2の温度
が一定の温度となるように流量調節弁23を制御する。
そのため、冷却ホルダ21に取り付けられた半導体反射
電子検出器4の温度もほぼ一定に保たれることになる。
Second Embodiment As described above, when the current of the electronic lens is large, a cooling means is further provided on the electronic lens itself to suppress a rise in the temperature of the electronic lens due to the heat generated by the electronic lens, and furthermore, the temperature is reduced. There is a case where a control means for managing the information is provided. FIG. 4 is a view for explaining a second embodiment of the semiconductor backscattered electron detection device according to the present invention. In this embodiment, the cooling means for the electron lens and the temperature control means are replaced by the cooling means for the semiconductor backscattered electron detection device. And also used as temperature control means. Note that the cooling holder 21 is located on the cross section on the left side of the electron lens 2 in the drawing.
Is omitted. The same parts as those in FIG. 5 are denoted by the same reference numerals. Reference numeral 21 denotes a cooling holder for the electron lens 2, in which a coolant passage 211 is formed. In the present embodiment, the semiconductor backscattered electron detector 4 is also attached to the cooling holder 21. 22 is a flow meter for measuring the flow rate of the refrigerant flowing through the cooling holder 21, 23 is a flow rate control valve, and the temperature controller 24 is a temperature sensor 11
The flow control valve 23 is controlled so that the temperature of the electronic lens 2 becomes constant based on the information of the flow meter 22.
Therefore, the temperature of the semiconductor backscattered electron detector 4 attached to the cooling holder 21 is also kept substantially constant.

【0015】図4に示した装置では、温度センサ11を
電子レンズ2に取り付けたが、冷却ホルダ21や半導体
反射電子検出器4に取り付けるようにしてもよい。特
に、半導体反射電子検出器4に取り付けた場合には、半
導体反射電子検出器4の温度をより正確に一定に保つこ
とができる。このように、半導体反射電子検出器4の温
度を一定に保つことによって半導体反射電子検出器4の
信号に含まれる暗電流成分が一定となるため、暗電流の
影響を容易に取り除くことができる。
In the apparatus shown in FIG. 4, the temperature sensor 11 is attached to the electronic lens 2, but may be attached to the cooling holder 21 or the semiconductor backscattered electron detector 4. In particular, when it is attached to the semiconductor backscattered electron detector 4, the temperature of the semiconductor backscattered electron detector 4 can be maintained more accurately and constant. Thus, by keeping the temperature of the semiconductor backscattered electron detector 4 constant, the dark current component included in the signal of the semiconductor backscattered electron detector 4 becomes constant, so that the influence of the dark current can be easily removed.

【0016】なお、上述した実施の形態において、検出
器4は半導体方式の検出器に限定されず、種々の形式の
ものを使用できる。
In the above-described embodiment, the detector 4 is not limited to a semiconductor type detector, and various types can be used.

【0017】上述した実施の形態と特許請求の範囲の要
素との対応において、熱電素子10およびホルダ21は
冷却手段を、温度コントローラ12,24は制御装置
を、ホルダ13は良熱伝導性絶縁体から成る保持部材を
それぞれ構成する。
In the correspondence between the above-described embodiment and the elements described in the claims, the thermoelectric element 10 and the holder 21 are cooling means, the temperature controllers 12 and 24 are control devices, and the holder 13 is a good heat conductive insulator. , Respectively.

【0018】[0018]

【発明の効果】以上説明したように、請求項1〜3の発
明によれば、検出器の温度がほぼ一定に保たれるので検
出器の出力信号の温度に依存する雑音をほぼ一定に保つ
ことができ、荷電粒子線非照射時の出力信号を利用して
容易に雑音を取り除くことができる。その結果、荷電粒
子線装置による測定が精度良く行える。特に、請求項3
の発明では、同一の冷却手段によって検出器および電子
レンズの両者を冷却するため、冷却手段のためのスペー
スの低減および省コスト化を図ることができる。請求項
4の発明によれば、検出器の出力信号に含まれる暗電流
成分がほぼ一定に保たれるため、荷電粒子線非照射時の
出力信号を利用して容易に雑音を取り除くことができ、
荷電粒子線装置による測定が精度良く行える。請求項5
および6の発明によれば、検出器取り付け用に用いられ
ている絶縁体部材を冷却して検出器を冷却しているの
で、省スペース、省コストを図ることができる。請求項
7の発明によれば、荷電粒子装置装置の真空容器の外部
に冷却手段を設けるようにしたので、荷電粒子装置装置
内における検出器周辺のスペースによらず冷却能力の大
きな冷却手段を用いることができる。その結果、検出器
をより低温に冷却することができ、雑音自体の大きさを
小さくすることができる。
As described above, according to the first to third aspects of the present invention, since the temperature of the detector is kept almost constant, the noise depending on the temperature of the output signal of the detector is kept almost constant. Noise can be easily removed by using the output signal when the charged particle beam is not irradiated. As a result, measurement by the charged particle beam device can be performed with high accuracy. In particular, claim 3
According to the invention, since both the detector and the electronic lens are cooled by the same cooling means, the space for the cooling means can be reduced and the cost can be reduced. According to the fourth aspect of the present invention, since the dark current component included in the output signal of the detector is kept substantially constant, noise can be easily removed using the output signal when the charged particle beam is not irradiated. ,
Measurement with a charged particle beam device can be performed with high accuracy. Claim 5
According to the inventions of (6) and (6), since the detector is cooled by cooling the insulator member used for mounting the detector, it is possible to save space and cost. According to the invention of claim 7, since the cooling means is provided outside the vacuum vessel of the charged particle device device, a cooling device having a large cooling capacity is used regardless of the space around the detector in the charged particle device device. be able to. As a result, the detector can be cooled to a lower temperature, and the magnitude of the noise itself can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による反射電子検出装置の第1の実施の
形態を説明する図。
FIG. 1 is a diagram illustrating a first embodiment of a backscattered electron detection device according to the present invention.

【図2】図1の反射電子検出装置の第1の変形例を示す
図。
FIG. 2 is a diagram showing a first modified example of the backscattered electron detection device of FIG. 1;

【図3】反射電子検出装置の第2の変形例を示す図。FIG. 3 is a diagram showing a second modification of the backscattered electron detection device.

【図4】本発明による反射電子検出装置の第2の実施の
形態を説明する図。
FIG. 4 is a diagram illustrating a backscattered electron detection device according to a second embodiment of the present invention.

【図5】従来の反射電子検出装置を説明する図。FIG. 5 is a diagram illustrating a conventional backscattered electron detection device.

【図6】温度と暗電流の関係の一例を示す図。FIG. 6 is a diagram showing an example of the relationship between temperature and dark current.

【符号の説明】[Explanation of symbols]

1 荷電粒子線装置 2 電子レンズ 3 試料 4 半導体反射電子検出器 5 真空容器 10 電熱素子 11 温度センサ 12,24 温度コントローラ 13,21 冷却ホルダ 22 流量計 23 流量調節弁 211 通路 C1 電子ビーム C2 反射電子 DESCRIPTION OF SYMBOLS 1 Charged particle beam apparatus 2 Electron lens 3 Sample 4 Semiconductor backscattered electron detector 5 Vacuum container 10 Electric heating element 11 Temperature sensor 12, 24 Temperature controller 13, 21 Cooling holder 22 Flow meter 23 Flow control valve 211 Passage C1 Electron beam C2 Reflected electron

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 試料からの反射電子を検出する検出器を
備える荷電粒子線装置用反射電子検出装置において、 前記検出器の温度が一定となるように制御する制御手段
を設けたことを特徴とする荷電粒子線装置用反射電子検
出装置。
1. A backscattered electron detection device for a charged particle beam device comprising a detector for detecting backscattered electrons from a sample, wherein a control means for controlling the temperature of the detector to be constant is provided. Electron detector for charged particle beam equipment.
【請求項2】 請求項1に記載の荷電粒子線装置用反射
電子検出装置において、 前記制御手段が、前記検出器を冷却する冷却手段と、前
記検出器の温度を検出する温度センサと、前記検出器の
温度が一定となるように前記冷却手段の冷却出力を制御
する制御装置とを備えることを特徴とする荷電粒子線装
置用反射電子検出装置。
2. The backscattered electron detection device for a charged particle beam device according to claim 1, wherein said control means is configured to cool said detector, a temperature sensor for detecting a temperature of said detector, A control device for controlling a cooling output of the cooling means so that a temperature of the detector becomes constant. A backscattered electron detecting device for a charged particle beam device.
【請求項3】 請求項1に記載の荷電粒子線装置用反射
電子検出装置において、 前記制御手段が、前記検出器および荷電粒子線装置の電
子レンズを冷却する冷却手段と、前記検出器および電子
レンズのいずれかの温度を検出する温度センサと、前記
温度センサにより検出された温度が一定となるように前
記冷却手段の冷却出力を制御する制御装置とを備えるこ
とを特徴とする荷電粒子線装置用反射電子検出装置。
3. The backscattered electron detection device for a charged particle beam device according to claim 1, wherein the control unit cools the detector and an electron lens of the charged particle beam device, and the detector and the electronic device. A charged particle beam device comprising: a temperature sensor for detecting any temperature of a lens; and a control device for controlling a cooling output of the cooling unit so that the temperature detected by the temperature sensor is constant. Backscattered electron detector.
【請求項4】 試料からの反射電子を検出する検出器を
備える荷電粒子線装置用反射電子検出装置において、 前記検出器を冷却する冷却手段と、 前記検出器の出力信号に含まれる暗電流成分が一定とな
るように前記冷却手段の冷却出力を制御する制御装置と
を備えることを特徴とする荷電粒子線装置用反射電子検
出装置。
4. A backscattered electron detector for a charged particle beam device comprising a detector for detecting backscattered electrons from a sample, a cooling means for cooling the detector, and a dark current component included in an output signal of the detector. And a control device for controlling a cooling output of the cooling means so that a constant value is obtained. The backscattered electron detecting device for a charged particle beam device.
【請求項5】 真空容器内で試料に向けて荷電粒子線を
照射する荷電粒子線装置において、 良熱伝導性絶縁体からなる保持部材で前記真空容器に保
持され、前記試料からの反射電子を検出する検出器と、 前記保持部材に取付けられて前記検出器を冷却する冷却
手段と、 前記検出器の温度を検出する温度センサと、 前記温度センサで検出した前記検出器の温度が一定とな
るように前記冷却手段を制御する制御手段とを具備する
ことを特徴とする荷電粒子線装置。
5. A charged particle beam apparatus for irradiating a charged particle beam toward a sample in a vacuum vessel, wherein the reflected electron from the sample is held in the vacuum vessel by a holding member made of a good heat conductive insulator. A detector for detecting, a cooling unit attached to the holding member to cool the detector, a temperature sensor for detecting a temperature of the detector, and a temperature of the detector detected by the temperature sensor being constant. And a control means for controlling the cooling means as described above.
【請求項6】 真空容器内で試料に向けて荷電粒子線を
照射する荷電粒子線装置において、 良熱伝導性絶縁体からなる保持部材で前記真空容器に保
持され、前記試料からの反射電子を検出する検出器と、 前記保持部材に取付けられて前記検出器を冷却する冷却
手段と、 前記検出器の暗電流が一定となるように前記冷却手段を
制御する制御手段とを具備することを特徴とする荷電粒
子線装置。
6. A charged particle beam apparatus for irradiating a charged particle beam toward a sample in a vacuum container, wherein the reflected electron from the sample is held by the holding member made of a good heat conductive insulator in the vacuum container. A detector for detecting, cooling means attached to the holding member for cooling the detector, and control means for controlling the cooling means so that dark current of the detector is constant. Charged particle beam device.
【請求項7】 請求項5または6に記載の荷電粒子線装
置において、 前記保持部材は前記真空容器を貫通して設けられ、前記
冷却手段は前記真空容器の外側に設けられることを特徴
とする荷電粒子線装置。
7. The charged particle beam device according to claim 5, wherein the holding member is provided so as to penetrate the vacuum vessel, and the cooling means is provided outside the vacuum vessel. Charged particle beam device.
JP8258582A 1996-09-30 1996-09-30 Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device Pending JPH10106472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258582A JPH10106472A (en) 1996-09-30 1996-09-30 Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258582A JPH10106472A (en) 1996-09-30 1996-09-30 Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device

Publications (1)

Publication Number Publication Date
JPH10106472A true JPH10106472A (en) 1998-04-24

Family

ID=17322267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258582A Pending JPH10106472A (en) 1996-09-30 1996-09-30 Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device

Country Status (1)

Country Link
JP (1) JPH10106472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124933B2 (en) * 2003-01-27 2012-02-28 Ebara Corporation Mapping-projection-type electron beam apparatus for inspecting sample by using electrons emitted from the sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124933B2 (en) * 2003-01-27 2012-02-28 Ebara Corporation Mapping-projection-type electron beam apparatus for inspecting sample by using electrons emitted from the sample

Similar Documents

Publication Publication Date Title
JP4825812B2 (en) Semiconductor wafer inspection method and apparatus using chuck device capable of adjusting temperature
US8985846B2 (en) Multifunction laser power meter
US4955204A (en) Cryostat including heater to heat a target
US5466943A (en) Evacuated testing device having calibrated infrared source
JP3481186B2 (en) X-ray generator, X-ray inspection apparatus, and X-ray generation method
US20030206573A1 (en) In situ optical surface temperature measuring techniques and devices
JPS61189657A (en) Semiconductor element temperature controller
JP6582112B2 (en) Low drift infrared detector
EP1605252A2 (en) Method and apparatus for eliminating and compensating thermal transients in gas analyzer
US5707146A (en) High-temperature thermoelement calibration
TWI780334B (en) In-situ temperature sensing substrate, system, and method
US4555626A (en) Radiation shield in light detector and/or assembly
JPH10106472A (en) Reflected electron detection device for charged corpuscular beam device and charged corpuscular beam device
Peterson et al. Infrared imaging video bolometer for the large helical device
JPH11238483A (en) Charged particle beam device
JPS6055007B2 (en) infrared detection device
JP2007093587A (en) Superconductive radiation detector and superconductive radiation analyzer using it
JP4490580B2 (en) Infrared sensor
JP4302722B2 (en) Sample cooling apparatus and electron beam irradiation type analysis / observation apparatus provided with the same
JPH11145235A (en) Temperature adjustment plate for semiconductor wafer
JP4607300B2 (en) Cooling device and light detection device
JP3094943B2 (en) Infrared detector
EP0949491A1 (en) A detector device including Peltier effect thermoelectric module
JPH0266415A (en) Infrared ray detecting device
JPH0528946A (en) Temperature regulating device for beam tester