JPH10105867A - Vehicle measuring device - Google Patents

Vehicle measuring device

Info

Publication number
JPH10105867A
JPH10105867A JP25821896A JP25821896A JPH10105867A JP H10105867 A JPH10105867 A JP H10105867A JP 25821896 A JP25821896 A JP 25821896A JP 25821896 A JP25821896 A JP 25821896A JP H10105867 A JPH10105867 A JP H10105867A
Authority
JP
Japan
Prior art keywords
vehicle
light
light receiving
angle
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25821896A
Other languages
Japanese (ja)
Inventor
Tatsuo Ogaki
龍男 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP25821896A priority Critical patent/JPH10105867A/en
Publication of JPH10105867A publication Critical patent/JPH10105867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle measuring device which can easily detect a high speed vehicle, whose measuring precision is not affected by peripheral environment and whose installation is easy. SOLUTION: Sensor parts 5A, 5B and 5C are arranged on a road R at an equal interval L in the crossing direction of the road R. They are provided with light projection means, light reception means and angle measuring means. Laser light beams are projected on the road R from the respective sensor parts so as to execute scanning. Reflected light beams from the vehicle 50 passing on the road R are received by the sensor parts and the vehicle width and the vehicle height of the vehicle 50 are calculated based on the crossing points of the light reception area in the respective sensor parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有料道路、有料駐
車場、立体駐車設備等に配備され、通過車両の車形を計
測する車両計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle measuring device which is installed in a toll road, a toll parking lot, a multi-story parking facility, and measures the shape of a passing vehicle.

【0002】[0002]

【従来の技術】従来、車両の車幅や車高等の車形を測定
する装置としては、テレビカメラを用いた方式のものや
光電スイッチを並設したアレイ方式のものがある。テレ
ビカメラを用いた方式の装置は、テレビカメラによる路
面の撮像情報に基づいて車両を検出するものであり、光
電スイッチを用いたアレイ方式の装置は、投光部と受光
部を備え、投光部からの投光が車両により遮られて受光
部により受光されることで得られる受光パターンに基づ
いて車両を検出するものである。
2. Description of the Related Art Conventionally, as a device for measuring a vehicle shape such as a vehicle width and a vehicle height, there are a device using a television camera and a device using an array in which photoelectric switches are juxtaposed. A device using a television camera detects a vehicle based on image information of a road surface captured by a television camera, and an array device using a photoelectric switch includes a light projecting unit and a light receiving unit. The vehicle is detected on the basis of a light receiving pattern obtained when light emitted from the unit is blocked by the vehicle and received by the light receiving unit.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、テレビ
カメラを用いた方式の装置では、 (1)撮像信号のビデオレートのタイミング以上でしか
撮像ができず、高速で連続走行している車両の検出が困
難である。 (2)測定精度が周囲の照度に大きく影響される。 という問題点がある。
However, in a system using a television camera, (1) imaging can be performed only at a timing higher than the video rate of an imaging signal, and detection of a vehicle running continuously at high speed cannot be detected. Have difficulty. (2) Measurement accuracy is greatly affected by ambient illuminance. There is a problem.

【0004】光電スイッチを用いたアレイ方式の装置で
は、 (3)車幅を測定するには、投光部又は受光部を道路に
埋め込む必要があるため、設置工事が面倒である上に、
泥等による汚れの影響を受け易い。 という問題点がある。従って、本発明は、このような問
題点(1)〜(3)に着目してなされたもので、高速車
両の検出が容易で、周囲の環境に測定精度が影響され
ず、設置工事も簡易な車両計測装置を提供することを目
的とする。
In an array type device using a photoelectric switch, (3) in order to measure the vehicle width, it is necessary to embed a light emitting portion or a light receiving portion in a road, so that installation work is troublesome and
It is easily affected by dirt such as mud. There is a problem. Therefore, the present invention has been made in view of such problems (1) to (3), and it is easy to detect a high-speed vehicle, the measurement accuracy is not affected by the surrounding environment, and the installation work is simple. It is an object to provide a simple vehicle measuring device.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1記載の車両計測装置は、車両通過
領域の上方に路面の横断方向に間隔を置いて配置され、
光ビームを路面の横断方向に投光走査する複数の投光手
段と、前記車両通過領域の上方に各投光手段に対応して
配置され、対応の投光手段からの光ビーム投光による車
両通過領域からの反射光を受光する複数の受光手段と、
各受光手段が受光する反射光の受光領域角度を測定する
角度測定手段と、各角度測定手段で検出される反射光の
受光領域の交点に基づいて、路面上を通過する車両の寸
法を求める車形算出手段とを備えることを特徴とする。
To achieve the above object, a vehicle measuring device according to claim 1 of the present invention is disposed above a vehicle passing area at a distance in a cross direction of a road surface,
A plurality of light projecting means for projecting and scanning a light beam in a transverse direction of a road surface, and a vehicle which is disposed above the vehicle passage area in correspondence with each light projecting means and which emits a light beam from the corresponding light projecting means. A plurality of light receiving means for receiving the reflected light from the passage area,
A vehicle for measuring the size of a vehicle passing on a road surface based on an intersection of an angle measuring means for measuring a light receiving area angle of reflected light received by each light receiving means and a light receiving area of reflected light detected by each angle measuring means. And a shape calculating means.

【0006】この装置は、車両通過領域の上方に投光手
段及び受光手段を配置し、投光手段から投光走査された
光ビームによる反射光を受光手段で受光すると共に、反
射光の受光領域角度を角度測定手段で測定し、受光領域
の交点で車両の端部を検出し、それに基づいて車両の寸
法(車幅或いは車幅と車高)を測定するものである。従
って、高速車両の検出が可能となり、周囲の環境(照
度)の影響を受け難く、しかも車両通過領域の上方に設
置すればよく、設置工事が容易で、泥等による汚れの影
響を受け難い。
In this device, a light projecting means and a light receiving means are arranged above a vehicle passing area, and the light receiving means receives reflected light by a light beam projected and scanned from the light projecting means, and receives a reflected light in a light receiving area. The angle is measured by angle measuring means, the end of the vehicle is detected at the intersection of the light receiving areas, and the size (vehicle width or vehicle width and height) of the vehicle is measured based on the detected end. Therefore, it is possible to detect a high-speed vehicle, and it is hardly affected by the surrounding environment (illuminance). Moreover, it is sufficient to install the vehicle above the vehicle passage area, the installation work is easy, and it is hardly affected by dirt such as mud.

【0007】又、請求項10記載の車両計測装置は、車
両通過領域の上方の両端側にそれぞれ配置され、光ビー
ムを路面の横断方向に投光走査する一対の投光手段と、
前記車両通過領域の上方の両端側に各投光手段に対応し
てそれぞれ配置され、対応の投光手段からの光ビーム投
光による車両通過領域からの反射光を受光する一対の受
光手段と、各受光手段が受光する反射光の受光領域角度
を測定する角度測定手段と、各角度測定手段で得られる
受光領域角度に基づいて、路面上を通過する車両の寸法
を求める車形算出手段とを備えることを特徴とする。
A vehicle measuring device according to a tenth aspect of the present invention is provided with a pair of light projecting means arranged at both ends above a vehicle passing area for projecting and scanning a light beam in a direction transverse to a road surface.
A pair of light receiving means arranged on both ends above the vehicle passing area corresponding to the respective light projecting means and receiving reflected light from the vehicle passing area by light beam projection from the corresponding light projecting means, Angle measuring means for measuring the light receiving area angle of the reflected light received by each light receiving means, and vehicle shape calculating means for determining the size of the vehicle passing on the road surface based on the light receiving area angle obtained by each angle measuring means. It is characterized by having.

【0008】この装置は、前記請求項1の装置と同様の
構成であるが、一対の投光手段及び受光手段を備える点
で構成が簡素であり、簡単な構成で車両の寸法(車幅)
を測定することができる。
This device has the same structure as the device of the first aspect, but has a simple structure in that it has a pair of light projecting means and light receiving means, and has a simple structure and vehicle dimensions (vehicle width).
Can be measured.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施の形態に基づ
いて説明する。一実施形態に係る車両計測装置の概略構
成の信号処理ブロック図を図1に示す。この車両計測装
置は、光ビームを発する投光手段1と、光ビームによる
反射光を受光する受光手段2と、反射光の受光領域角度
を測定する角度測定手段(フォトダイオード)3と、車
両の車幅及び車高等を求める車形算出手段(信号処理
器)4とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 shows a signal processing block diagram of a schematic configuration of a vehicle measurement device according to one embodiment. This vehicle measuring device includes a light projecting means 1 for emitting a light beam, a light receiving means 2 for receiving light reflected by the light beam, an angle measuring means (photodiode) 3 for measuring a light receiving area angle of the reflected light, Vehicle shape calculating means (signal processor) 4 for obtaining vehicle width, vehicle height, and the like;

【0010】この実施形態では、投光手段1及び受光手
段2の光路は同軸に設定され、投光手段1からの光ビー
ムはポリゴンミラー12により投光走査され、反射光も
ポリゴンミラー12により受光走査され、光ビーム及び
反射光はハーフミラー13により分離されるように設定
されている。投光手段1は、レーザ光源としてのレーザ
ダイオード10と、レーザ光を平行光に変換する投光レ
ンズ11と、平行光を路面の横断方向に投光走査するポ
リゴンミラー12等を有する走査機構とを有する。受光
手段2は、反射光を走査するポリゴンミラー12等を有
する投光走査兼用の走査機構と、反射光を集光する受光
レンズ14と、集光を受光するフォトダイオード15と
を有する。
In this embodiment, the light paths of the light projecting means 1 and the light receiving means 2 are set coaxially, the light beam from the light projecting means 1 is projected and scanned by the polygon mirror 12, and the reflected light is also received by the polygon mirror 12. The scanning is performed, and the light beam and the reflected light are set to be separated by the half mirror 13. The light projecting means 1 includes a laser diode 10 as a laser light source, a light projecting lens 11 for converting laser light into parallel light, and a scanning mechanism having a polygon mirror 12 for projecting and scanning the parallel light in a direction transverse to the road surface. Having. The light receiving means 2 has a scanning mechanism for light projection and scanning having a polygon mirror 12 and the like for scanning the reflected light, a light receiving lens 14 for condensing the reflected light, and a photodiode 15 for receiving the condensed light.

【0011】レーザダイオード10は、信号処理器4に
より制御されるパルス発生器17で設定された一定周期
に基づいてLDドライバ16により駆動され、それぞれ
異なるタイミングでパルス発光するように設定されてい
る。フォトダイオード15の受光信号は、I/V+アン
プ18で電流が電圧に変換されて増幅され、その増幅信
号に対してピークホールド処理19による処理がなさ
れ、更にその信号がA/D処理20によりデジタル信号
に変換されて信号処理器4に取り込まれる。フォトダイ
オード3の受光信号は、I/V+2値化処理21により
電流が電圧に変換されて所定の電圧レベルで2値化さ
れ、信号処理器4に取り込まれる。信号処理器4は、パ
ルス発生器17を制御する機能、入力された信号に基づ
いて車両の車幅及び車高等を算出する機能(車形算出手
段)、通信機能22を制御する機能、フォトダイオード
3からの2値化信号とポリゴンミラー12の回転により
取り得る走査角度(即ち受光領域角度)とフォトダイオ
ード3へ光ビームが入射するときのポリゴンミラー12
の角度とから受光領域角度を測定する機能等を有する。
The laser diode 10 is driven by an LD driver 16 based on a fixed period set by a pulse generator 17 controlled by the signal processor 4, and is set to emit pulses at different timings. The light receiving signal of the photodiode 15 is converted into a voltage by an I / V + amplifier 18 and amplified, and the amplified signal is processed by a peak hold process 19, and the signal is digitally converted by an A / D process 20. The signal is converted into a signal and taken into the signal processor 4. The light receiving signal of the photodiode 3 is converted into a voltage by an I / V + binarization process 21, binarized at a predetermined voltage level, and taken into the signal processor 4. The signal processor 4 has a function of controlling the pulse generator 17, a function of calculating the width and height of the vehicle based on the input signal (vehicle shape calculating means), a function of controlling the communication function 22, a function of the photodiode, 3, the scanning angle (that is, the light receiving area angle) that can be taken by the rotation of the polygon mirror 12, and the polygon mirror 12 when the light beam enters the photodiode 3.
And the like to measure the light receiving area angle from the angle of

【0012】通信機能22は、例えばRS485に準拠
するインターフェースによりデータ処理・センサコント
ローラ・車型判定23を外部とやり取りし、求めた車幅
や車高、車型のイメージ、車の判定等が出力される。次
に、上記のように構成された車両計測装置による車形測
定(車幅及び車高の算出)の原理を説明する。図2及び
図3において、ここでは、路面R上にその横断方向に等
間隔Lを置いて3つのセンサ部5A,5B,5Cが配置
されている。各センサ部5A,5B,5Cは、上記のよ
うな投光手段1、受光手段2及び角度測定手段3等を備
えるものである。各センサ部5A,5B,5Cからは、
それぞれ路面Rに向けてレーザ光が投光走査される。路
面R上に車両50が来ると、車両50にレーザ光が照射
されるが、車両50の端部(角部),を特定できれ
ば、車両50の車幅及び車高を測定できる。
The communication function 22 exchanges data processing, a sensor controller, and a vehicle type determination 23 with the outside through an interface conforming to, for example, RS485, and outputs the determined vehicle width and height, the vehicle type image, the vehicle determination, and the like. . Next, the principle of vehicle shape measurement (calculation of vehicle width and vehicle height) by the vehicle measuring device configured as described above will be described. 2 and 3, here, three sensor units 5A, 5B and 5C are arranged on a road surface R at equal intervals L in the transverse direction. Each of the sensor units 5A, 5B, and 5C includes the light projecting unit 1, the light receiving unit 2, the angle measuring unit 3, and the like as described above. From each sensor section 5A, 5B, 5C,
Each of the laser beams is projected and scanned toward the road surface R. When the vehicle 50 comes on the road surface R, the vehicle 50 is irradiated with laser light. If the end (corner) of the vehicle 50 can be specified, the width and height of the vehicle 50 can be measured.

【0013】車両50からの反射光は、各センサ部5
A,5B,5Cにそれぞれ実線で示すように入射する。
ここで、センサ部5Aの反射光の入射角度(受光領域角
度)はα2 、センサ部5Bの反射光の入射角度はβ2
センサ部5Cの反射光の入射角度はγ2 で、角度α1
β1 ,γ1 は、それぞれレーザ光の走査開始位置から反
射光が存在する領域までの角度で、角度α3 はセンサ部
5Aから路面Rへの垂線と車両50の端部に接する線
とがなす角度で、角度β3 はセンサ部5Bから路面Rへ
の垂線と端部に接する線とがなす角度である。又、距
離Dはセンサ部5A(5B,5C)から路面Rまでの距
離で、距離L1 はセンサ部5Aから車両50の上面まで
の距離である。更に、センサ部5Aから車両50の端部
側の側面までの距離がWa 、センサ部5Cから車両5
0の端部側の側面までの距離がW c である。
The reflected light from the vehicle 50 is transmitted to each sensor 5
A, 5B, and 5C are respectively incident as shown by solid lines.
Here, the incident angle of the reflected light of the sensor unit 5A (the light receiving area angle)
Degree) is αTwo, The incident angle of the reflected light of the sensor unit 5B is βTwo,
The incident angle of the reflected light from the sensor unit 5C is γTwoAnd the angle α1,
β1, Γ1Are opposite from the laser beam scanning start position.
The angle to the area where the light exits, the angle αThreeIs the sensor
Line perpendicular to the road surface R from 5A and the line that touches the end of the vehicle 50
And the angle βThreeIs from the sensor unit 5B to the road surface R
Is the angle between the perpendicular to the line and the line tangent to the end. Also, distance
The distance D is the distance from the sensor unit 5A (5B, 5C) to the road surface R.
Separation, distance L1Is from the sensor unit 5A to the upper surface of the vehicle 50
Is the distance. Furthermore, from the sensor unit 5A to the end of the vehicle 50
The distance to the side is WaFrom the sensor unit 5C to the vehicle 5
The distance to the side face on the end side of 0 is W cIt is.

【0014】間隔Lと距離Dは、センサ部5A,5B,
5Cを設置した状態で求まる既知の値である。車両50
の端部の交点に対応する角度α3 ,β3 は、前記した
ようにセンサ部5A,5Bの設置状態において、それぞ
れ端部に接する線と垂線とがなす角度であるから予め
測定できる。従って、センサ部5Aを原点として、距離
1 ,Wa ,Wc は、次のようにして求められる。
The distance L and the distance D are determined by the sensor units 5A, 5B,
This is a known value obtained when 5C is installed. Vehicle 50
Can be measured in advance because the angles α 3 and β 3 corresponding to the intersections of the end portions are the angles formed by the lines tangent to the end portions and the perpendicular lines in the installation state of the sensor units 5A and 5B as described above. Therefore, the distances L 1 , W a , and W c are obtained as follows with the sensor unit 5A as the origin.

【0015】 Wa =L1 tanα3 ・・・(1) Wa −L=L1 tanβ3 ・・・(2) であるから、式(1),(2)より L1 =L/(tanα3 −tanβ3 )・・・(3) となり、この式(3)よりL1 が求まる。よって、車高
は、「車高=D−L1 」により算出できる。
[0015] W a = L 1 tanα 3 ··· (1) W a -L = L 1 because tanβ is 3 (2), formula (1), L 1 = L / ( from (2) tanα 3 -tanβ 3) ··· (3 ) next, L 1 is obtained from the equation (3). Therefore, the vehicle height can be calculated from “vehicle height = D−L 1 ”.

【0016】一方、求めたL1 と式(1)よりWa が求
まる。又、車両50の端部に関してセンサ部5B,5
Cを対象とし、センサ部5Cを原点にして上記と同様に
計算処理を行うことにより、Wc が求まる。よって、車
幅は、「車幅=Wa +Wc −2L」により算出できる。
上記実施形態は、車両の車高と車幅を算出する例である
が、車幅は別の構成でも算出できる。その実施形態を示
すのが図4である。ここでは、路面Rの両端側に一対の
センサ部5A,5Cが設置され、両センサ部5A,5C
間の間隔が2Lである。又、センサ部5Aから路面Rへ
の垂線と車両50の右下端(タイヤ)に接する線とのな
す角度がα4 、センサ部5Cから路面Rへの垂線と左下
端(タイヤ)に接する線とのなす角度がγ4 、車両50
の幅がW、センサ部5Aから車両50までの距離が
a 、センサ部5Cから車両50までの距離がWc であ
る。すると、距離Wa ,Wc は、 Wa =Dtanα4c =Dtanγ4 となるから、車幅は、「W=2L−(Wa +Wc )」に
より算出できる。
[0016] On the other hand, the obtained L 1 and W a from the equation (1) is obtained. Further, the sensor units 5B, 5
Targeting C, and the sensor portion 5C and the origin by performing the calculation process in the same manner as above, W c is obtained. Therefore, the vehicle width can be calculated from “vehicle width = W a + W c −2L”.
The above embodiment is an example in which the height and width of the vehicle are calculated, but the vehicle width may be calculated in another configuration. FIG. 4 shows the embodiment. Here, a pair of sensor units 5A and 5C is installed on both ends of the road surface R, and both sensor units 5A and 5C
The interval between them is 2L. Also, the angle between the perpendicular from sensor section 5A to road surface R and the line contacting the lower right end (tire) of vehicle 50 is α 4 , and the perpendicular from sensor section 5C to road surface R and the line contacting the lower left end (tire) are Angle γ 4 , vehicle 50
Distance of width W, from the sensor unit 5A distance to the vehicle 50 is W a, from the sensor unit 5C until the vehicle 50 is W c. Then, the distance W a, W c, since the W a = Dtanα 4 W c = Dtanγ 4, the vehicle width can be calculated by "W = 2L- (W a + W c) ."

【0017】更に、上記構成の車両計測装置の各種態様
例について説明する。上記例では車両50の端部が直角
である場合であるが〔図5の(a)参照〕、端部が曲面
である場合は、反射光は図5の(b)のようになる。つ
まり、レーザ光の形は有限であるため、車両の端部が直
角の場合と曲面の場合では、反射光の角度依存性が異な
る。従って、この異なる特徴から曲面を推定することが
可能である。これを示すのが図5の(c)である。この
(c)によると、反射光の入射角度αと受光量との関係
において、車両の端部が直角の場合は、受光量が或る角
度で急激に減少し、曲面の場合は、或る角度で受光量の
減少度合が変化する。この受光量の減少度合の変化を捕
らえることで、曲面の端部をも明瞭に特定できる。例え
ば、予め車両50の端部が車両通過領域中に存在し得る
空間位置に複数の曲率の曲面をサンプル的に配置した場
合の受光量の減少度合をテーブルに記憶しておき、実際
に測定された受光量変化とマッチングすることで、車両
50の端部を特定する。
Further, various examples of the vehicle measuring device having the above configuration will be described. In the above example, the end of the vehicle 50 is at a right angle (see FIG. 5A), but if the end is a curved surface, the reflected light is as shown in FIG. 5B. That is, since the shape of the laser beam is finite, the angle dependence of the reflected light differs between the case where the end of the vehicle is a right angle and the case where the end is a curved surface. Therefore, it is possible to estimate a curved surface from these different features. This is shown in FIG. According to (c), in the relationship between the incident angle α of the reflected light and the amount of received light, when the end of the vehicle is at a right angle, the amount of received light decreases sharply at a certain angle, and when it is a curved surface, the amount of received light decreases. The degree of decrease in the amount of received light changes depending on the angle. By capturing the change in the degree of decrease in the amount of received light, the end of the curved surface can be clearly specified. For example, the degree of decrease in the amount of received light in the case where curved surfaces having a plurality of curvatures are arranged in a sample at spatial positions where the end of the vehicle 50 may exist in the vehicle passage area is stored in a table in advance, and the degree of decrease is measured. The end of the vehicle 50 is specified by matching with the received light amount change.

【0018】ところで、車両50の車体の色が白色系で
光反射率が高いときは問題ないが、黒色系で光反射率が
低いときは、車両と路面との区別が難しくなる。そこ
で、車両が存在しないときの路面からの反射光の受光量
を予め入射角度に対応して記憶しておき、この受光量信
号(路面のみのデータ)を、車両が通過するときに得ら
れた反射光の受光量信号から差引又は差引・微分処理
し、得られた入射角度に対する信号から車両の端部を特
定できる。例えば、図6の(a)において、路面のみの
受光量はセンサ部5Aの入射角度αにかかわらず一定で
あり、車両が来ると図示のようなパターンで受光量が変
化する。この受光信号から路面のみの受光量データを差
し引いて、車両の端部を特定する。更に図6の(a)の
信号を微分処理すると、図6の(b)のようになり、車
両の端部が強調されて表れる。これにより、端部が特定
し易くなる。
There is no problem when the color of the vehicle 50 is white and the light reflectance is high, but when the color of the vehicle 50 is black and the light reflectance is low, it is difficult to distinguish between the vehicle and the road surface. Therefore, the received light amount of the reflected light from the road surface when the vehicle does not exist is stored in advance corresponding to the incident angle, and the received light amount signal (data of only the road surface) is obtained when the vehicle passes. Subtraction or subtraction / differential processing is performed from the received light amount signal of the reflected light, and the end of the vehicle can be specified from the obtained signal corresponding to the incident angle. For example, in FIG. 6A, the amount of received light only on the road surface is constant irrespective of the incident angle α of the sensor unit 5A, and the amount of received light changes in a pattern as shown when a vehicle comes. The light reception amount data of only the road surface is subtracted from the light reception signal to specify the end of the vehicle. Further, when the signal of FIG. 6A is differentiated, the signal becomes as shown in FIG. 6B, and the end of the vehicle is emphasized. This makes it easier to identify the end.

【0019】各センサ部5A,5B,5Cからの光ビー
ムは、それぞれ異なるタイミングで出力されるパルス光
である。図7では、各センサ部5A,5B,5Cは、そ
れぞれ同一周期で且つ一定時間ずつずれてパルス発光す
る。又、各センサ部5A,5B,5Cにおいて、図8に
も示すように、投光手段1と受光手段2の光路は同軸で
あり、投光と受光は同じ光路を通じて行われ、ハーフミ
ラー13により投光と受光が分けられる。
The light beams from the sensor units 5A, 5B, 5C are pulsed lights output at different timings. In FIG. 7, each of the sensor units 5A, 5B, and 5C emits a pulse light at the same cycle and shifted by a predetermined time. In each of the sensor units 5A, 5B, and 5C, as shown in FIG. 8, the optical paths of the light projecting means 1 and the light receiving means 2 are coaxial, and light projection and light reception are performed through the same optical path. Light emission and light reception are separated.

【0020】車両の幅が狭い場合、例えば車両が自動二
輪車の場合は、センサ部5A,5B,5Cの入射角度の
うち、最低値(最も狭い入射角度)を選び、その最低値
が所定値以下であるときは、車両を二輪車と判定するこ
とで、四輪車と二輪車を識別できる。センサ部5A,5
B,5Cの光学窓(光ビーム出射・反射光入射部分)が
経時により汚れてくると、路面まで投光されずに汚れに
よって直接反射される光が増えるので、予め光学窓が汚
れていないときに路面に車両が存在しない状態(無車両
状態)での路面からの受光量を検出し、この受光量を初
期値として記憶しておき、経時に伴い無車両状態での路
面からの受光量が初期値以上に増加したときに、光学窓
が汚れたと判断することができる。この場合、汚れを放
置しておくと、測定精度が劣化するので、その旨を通報
する報知手段(ランプ、ブザー等)を設けたり、光学窓
を洗浄する洗浄手段(各種既知のもの)を設けたり、或
いは報知手段と洗浄手段を併用したりすればよい。
When the width of the vehicle is narrow, for example, when the vehicle is a motorcycle, the lowest value (narrowest angle of incidence) is selected from the incident angles of the sensor units 5A, 5B, 5C, and the lowest value is equal to or less than a predetermined value. In the case of, the vehicle is determined to be a two-wheeled vehicle, whereby the four-wheeled vehicle and the two-wheeled vehicle can be identified. Sensor unit 5A, 5
If the optical windows B and 5C (light beam emission / reflected light incident portions) become dirty with the passage of time, the amount of light directly reflected by the dirt increases without being projected to the road surface. In the state where there is no vehicle on the road surface (no vehicle state), the amount of light received from the road surface is detected, and this received light amount is stored as an initial value. When the optical window is increased beyond the initial value, it can be determined that the optical window is dirty. In this case, if the dirt is left unchecked, the measurement accuracy will deteriorate. Therefore, a notifying means (a lamp, a buzzer, etc.) for notifying that effect or a cleaning means (various known ones) for cleaning the optical window is provided. Alternatively, the notification means and the cleaning means may be used in combination.

【0021】例えば図9では、センサ部を支持するセン
サ部支持体40に受光素子(受光量検出手段)30が併
設され、受光素子30で初期値に係わる受光量が検出さ
れると共に、路面Rからの受光量が常時検出される。受
光素子30からの信号はアンプ31で増幅され、判定処
理(判定手段)32で受光量が初期値以上か否かを判定
する。受光量が初期値以上であれば、即ち光学窓が汚れ
ていると判定されれば、洗浄処理(洗浄手段)33で各
センサ部の光学窓が自動的に洗浄される。
For example, in FIG. 9, a light receiving element (light receiving amount detecting means) 30 is provided in parallel with a sensor section supporting body 40 for supporting the sensor section. Is always detected. The signal from the light receiving element 30 is amplified by the amplifier 31, and a determination process (determining means) 32 determines whether or not the amount of received light is equal to or more than an initial value. If the received light amount is equal to or more than the initial value, that is, if it is determined that the optical window is dirty, the optical window of each sensor unit is automatically cleaned by the cleaning process (cleaning means) 33.

【0022】図10に示す例では、それぞれ上記のセン
サ部5A,5B,5Cを支持する2つのセンサ部支持体
41,42が路面Rの縦断方向に距離を置いて設置さ
れ、各センサ部支持体41,42のセンサ部からのレー
ザ光が投光走査される路面R部分に、それぞれ黒線帯4
3と白線帯44が敷かれている。黒線帯43は車体の色
が白色系の車両測定用で、白線帯44は黒色系の車両測
定用である。つまり、車体の光反射率が高い白色系の車
両の場合は、黒線帯43により路面Rからの反射光が少
なくなるので、車両からの反射光がより明瞭になり、測
定精度が向上する。一方、車体の光反射率が低い黒色系
の車両の場合は、白線帯44からの反射光が多くなるの
で、車両により遮られる遮光領域角度を車両からの反射
光の入射角度として捕らえることで、車形を高精度に認
識できる。
In the example shown in FIG. 10, two sensor support members 41 and 42 for supporting the above-mentioned sensor units 5A, 5B and 5C are installed at a distance in the longitudinal direction of the road surface R. A black line band 4 is provided on a road surface R portion where the laser beams from the sensor units of the bodies 41 and 42 are projected and scanned.
3 and white line belt 44 are laid. The black line band 43 is for measuring a vehicle with a white body and the white line band 44 is for measuring a black vehicle. That is, in the case of a white vehicle having a high light reflectance of the vehicle body, the black line band 43 reduces the reflected light from the road surface R, so that the reflected light from the vehicle becomes clearer and the measurement accuracy is improved. On the other hand, in the case of a black vehicle having a low light reflectance of the vehicle body, the amount of light reflected from the white line band 44 increases, so that the angle of the light-shielded area blocked by the vehicle is captured as the angle of incidence of the reflected light from the vehicle. The vehicle shape can be recognized with high accuracy.

【0023】[0023]

【発明の効果】本発明の車両計測装置は、以上説明した
ように構成されるので、下記の効果を有する。 (1)高速車両の検出が可能である。 (2)周囲の環境(照度)の影響を受け難い。 (3)車両通過領域の上方に設置すればよく、設置工事
が容易で、泥等による汚れの影響を受け難い。
The vehicle measuring device of the present invention has the following effects because it is configured as described above. (1) High-speed vehicles can be detected. (2) Hardly affected by surrounding environment (illuminance). (3) It may be installed above the vehicle passage area, the installation work is easy, and it is hardly affected by dirt such as mud.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る車両計測装置の概略構成の信号
処理ブロック図である。
FIG. 1 is a signal processing block diagram of a schematic configuration of a vehicle measurement device according to an embodiment.

【図2】同装置の車形測定原理を説明する図である。FIG. 2 is a diagram illustrating the principle of measuring the vehicle shape of the apparatus.

【図3】同装置の車形測定原理を説明する別の図であ
る。
FIG. 3 is another diagram illustrating the principle of measuring the vehicle shape of the apparatus.

【図4】別実施形態に係る車両計測装置の車形測定原理
を説明する図である。
FIG. 4 is a diagram illustrating a vehicle shape measurement principle of a vehicle measurement device according to another embodiment.

【図5】車両端部の形状により車形の測定が異なること
を説明するための図であり、車両端部が直角の場合の説
明図(a)、車両端部が曲面の場合の説明図(b)、及
び入射角度に対する受光量を示す図(c)である。
FIGS. 5A and 5B are diagrams for explaining that measurement of a vehicle shape is different depending on the shape of a vehicle end; FIG. 5A is an explanatory diagram when the vehicle end is at a right angle; FIG. (B) and FIG. (C) showing the amount of received light with respect to the incident angle.

【図6】受光信号から車形を測定する仕方を説明するた
めの図であり、入射角度に対する受光量を示す図
(a)、及び受光信号から路面のみの受光量データを差
引・微分処理して得られた信号を示す図(b)である。
FIG. 6 is a diagram for explaining a method of measuring a vehicle shape from a light receiving signal, and is a diagram (a) showing a light receiving amount with respect to an incident angle, and subtracting and differentiating a light receiving amount data of only a road surface from the light receiving signal; FIG. 6B is a diagram showing a signal obtained by the above.

【図7】各投光手段からのレーザ光のパルス発光周期を
示す図である。
FIG. 7 is a diagram showing a pulse emission cycle of laser light from each light projecting unit.

【図8】投光と受光の光路が同軸である場合を示す図で
ある。
FIG. 8 is a diagram showing a case where the light paths of light emission and light reception are coaxial.

【図9】投光手段及び受光手段の光学窓が汚れた場合に
対処する構成を示す図である。
FIG. 9 is a diagram showing a configuration for coping with a case where the optical windows of the light projecting unit and the light receiving unit are soiled.

【図10】車体の色が白色系の車両と黒色系の車両を分
けて測定する場合の構成を示す図である。
FIG. 10 is a diagram illustrating a configuration in which measurement is performed separately on a vehicle having a white body and a vehicle having a black vehicle.

【符号の説明】[Explanation of symbols]

1 投光手段 2 受光手段 3 角度測定手段 4 信号処理器(車形算出手段) 50 車両 R 路面 REFERENCE SIGNS LIST 1 light emitting means 2 light receiving means 3 angle measuring means 4 signal processor (vehicle shape calculating means) 50 vehicle R road surface

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】車両通過領域の上方に路面の横断方向に間
隔を置いて配置され、光ビームを路面の横断方向に投光
走査する複数の投光手段と、前記車両通過領域の上方に
各投光手段に対応して配置され、対応の投光手段からの
光ビーム投光による車両通過領域からの反射光を受光す
る複数の受光手段と、各受光手段が受光する反射光の受
光領域角度を測定する角度測定手段と、各角度測定手段
で検出される反射光の受光領域の交点に基づいて、路面
上を通過する車両の寸法を求める車形算出手段とを備え
ることを特徴とする車両計測装置。
1. A plurality of light projecting means arranged above a vehicle passage area at intervals in a direction transverse to a road surface for projecting and scanning a light beam in a direction transverse to the road surface; A plurality of light receiving means arranged to correspond to the light emitting means and receiving reflected light from a vehicle passing area by light beam emission from the corresponding light emitting means; and a light receiving area angle of the reflected light received by each light receiving means And a vehicle shape calculating means for calculating a size of a vehicle passing on a road surface based on an intersection of light receiving areas of reflected light detected by the angle measuring means. Measuring device.
【請求項2】前記車形算出手段は、受光領域角度に対す
る反射光の受光量の変化パターンに基づいて車形を推定
することを特徴とする請求項1記載の車両計測装置。
2. The vehicle measuring device according to claim 1, wherein said vehicle shape calculating means estimates a vehicle shape based on a change pattern of a received light amount of reflected light with respect to a light receiving area angle.
【請求項3】前記車形算出手段は、車両が存在しない状
態での路面からの反射光の受光領域角度に対する受光量
信号を、車両が存在する状態での路面からの反射光の受
光領域角度に対する受光量信号から差引又は差引・微分
処理し、得られた受光領域角度に対する信号に基づいて
車形を推定することを特徴とする請求項1記載の車両計
測装置。
3. The vehicle shape calculating means according to claim 1, wherein said light quantity signal with respect to a light receiving area angle of the reflected light from the road surface in a state where no vehicle is present, and a light receiving area angle of the reflected light from the road surface in a state where the vehicle is present. 2. The vehicle measuring device according to claim 1, wherein the vehicle measuring device performs subtraction or subtraction / differentiation processing on the received light amount signal for estimating the vehicle shape based on the obtained signal for the light receiving region angle.
【請求項4】前記差引又は差引・微分処理により得られ
た受光領域角度に対する信号における増加・減少変化点
を抽出することで車形を推定することを特徴とする請求
項3記載の車両計測装置。
4. A vehicle measuring apparatus according to claim 3, wherein a vehicle shape is estimated by extracting an increase / decrease change point in a signal with respect to a light receiving area angle obtained by said subtraction or subtraction / differential processing. .
【請求項5】前記各投光手段からの光ビームは、それぞ
れ異なるタイミングで出力されるパルス光であり、この
各投光手段と対応の受光手段の光路は、それぞれ同軸で
あることを特徴とする請求項1記載の車両計測装置。
5. A light beam from each of the light projecting means is a pulsed light output at a different timing, and the light paths of the light projecting means and the corresponding light receiving means are coaxial. The vehicle measuring device according to claim 1.
【請求項6】前記角度測定手段で検出される反射光の受
光領域角度のうち、その最低値が所定値以下であるとき
に、路面上を通過する車両を二輪車と判定することを特
徴とする請求項1記載の車両計測装置。
6. A vehicle passing on a road surface is determined to be a two-wheeled vehicle when a minimum value of a light receiving area angle of reflected light detected by the angle measuring means is equal to or less than a predetermined value. The vehicle measuring device according to claim 1.
【請求項7】前記複数の投光手段、受光手段及び角度測
定手段をそれぞれ備える2つのセンサ群を、路面の縦断
方向に距離を置いて配置し、一方のセンサ群の投光手段
からの光ビームが照射される路面の光反射率を低くする
と共に、他方のセンサ群の投光手段からの光ビームが照
射される路面の光反射率を高くすることを特徴とする請
求項1記載の車両計測装置。
7. A sensor group comprising a plurality of light emitting means, a light receiving means, and an angle measuring means, each of which is disposed at a distance in a longitudinal direction of a road surface, and a light emitted from the light emitting means of one of the sensor groups. 2. The vehicle according to claim 1, wherein the light reflectance of the road surface irradiated with the beam is reduced, and the light reflectance of the road surface irradiated with the light beam from the light projecting means of the other sensor group is increased. Measuring device.
【請求項8】前記車形算出手段は、受光手段で得られる
受光量の変化の度合に基づいて車両の端部の形状を推定
することを特徴とする請求項1記載の車両計測装置。
8. A vehicle measuring apparatus according to claim 1, wherein said vehicle shape calculating means estimates the shape of the end of the vehicle based on the degree of change in the amount of light received by the light receiving means.
【請求項9】前記車形算出手段が求める車両の寸法は、
車幅或いは車幅と車高であることを特徴とする請求項1
記載の車両計測装置。
9. The vehicle size calculated by the vehicle shape calculating means is:
2. A vehicle width or a vehicle width and a vehicle height.
The vehicle measuring device according to the above.
【請求項10】車両通過領域の上方の両端側にそれぞれ
配置され、光ビームを路面の横断方向に投光走査する一
対の投光手段と、前記車両通過領域の上方の両端側に各
投光手段に対応してそれぞれ配置され、対応の投光手段
からの光ビーム投光による車両通過領域からの反射光を
受光する一対の受光手段と、各受光手段が受光する反射
光の受光領域角度を測定する角度測定手段と、各角度測
定手段で得られる受光領域角度に基づいて、路面上を通
過する車両の寸法を求める車形算出手段とを備えること
を特徴とする車両計測装置。
10. A pair of light projecting means which are respectively disposed at both ends above a vehicle passage area and project and scan a light beam in a transverse direction of a road surface, and each light projecting means at both ends above the vehicle passage area. And a pair of light receiving means for receiving the reflected light from the vehicle passage area by the light beam emission from the corresponding light emitting means, and a light receiving area angle of the reflected light received by each light receiving means. A vehicle measuring device comprising: an angle measuring means for measuring; and a vehicle shape calculating means for calculating a size of a vehicle passing on a road surface based on a light receiving area angle obtained by each angle measuring means.
JP25821896A 1996-09-30 1996-09-30 Vehicle measuring device Pending JPH10105867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25821896A JPH10105867A (en) 1996-09-30 1996-09-30 Vehicle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25821896A JPH10105867A (en) 1996-09-30 1996-09-30 Vehicle measuring device

Publications (1)

Publication Number Publication Date
JPH10105867A true JPH10105867A (en) 1998-04-24

Family

ID=17317163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25821896A Pending JPH10105867A (en) 1996-09-30 1996-09-30 Vehicle measuring device

Country Status (1)

Country Link
JP (1) JPH10105867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036088A1 (en) * 2005-09-30 2007-04-05 Dova Laser Technologies Co., Ltd. A laser vehicle detector
WO2013024889A1 (en) * 2011-08-18 2013-02-21 三菱重工業株式会社 Measuring device, measurement method and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036088A1 (en) * 2005-09-30 2007-04-05 Dova Laser Technologies Co., Ltd. A laser vehicle detector
WO2013024889A1 (en) * 2011-08-18 2013-02-21 三菱重工業株式会社 Measuring device, measurement method and program
JP2013040872A (en) * 2011-08-18 2013-02-28 Mitsubishi Heavy Ind Ltd Measuring instrument, measuring method, and program
TWI475525B (en) * 2011-08-18 2015-03-01 Mitsubishi Heavy Ind Ltd Measurement apparatus, measurement method and program

Similar Documents

Publication Publication Date Title
JP4992059B2 (en) Optical device for measuring the moving speed of an object relative to a surface.
JPH08263800A (en) Apparatus for finding of interval between vehicle and roadway mark on side
JP3240839B2 (en) Vehicle width measuring device
JP4076196B2 (en) Vehicle width measuring method and apparatus
WO2019239536A1 (en) Device for measuring speed of moving body, and elevator
JPH08293090A (en) Axle detector, body kind discriminating device, vehicle gate system, and vehicle detector
JP4301703B2 (en) Laser reflective vehicle detector
JP3294916B2 (en) Guide line imaging method for unmanned guided vehicles
JP4033005B2 (en) Obstacle detection device for vehicle
JP3606032B2 (en) Axle detection device and passage fee calculation device
JPH10105869A (en) Vehicle type discrimination device
JPH10105868A (en) Vehicle measuring device/method
JP3211732B2 (en) Distance measuring device
JP3804418B2 (en) Axle detection device
JPH10105867A (en) Vehicle measuring device
JPH10197212A (en) Optical displacement sensor, optical thickness sensor, displacement detecting method, and thickness detecting method
JP3498532B2 (en) Vehicle shape discriminator
JPH0935176A (en) Vehicle kind discriminating device
JPH06109842A (en) Distance detection apparatus
JP3280742B2 (en) Defect inspection equipment for glass substrates
JP3568274B2 (en) Mobile device distance measuring device
JPH0378608A (en) Processing device of signal of optical road-surface state sensor
JPH05256947A (en) Distance measuring apparatus
JPH1096791A (en) Raindrop detecting device
JPH05302887A (en) Method and equipment for detecting stain and speed detector