JPH10104378A - Nuclear fuel clad - Google Patents

Nuclear fuel clad

Info

Publication number
JPH10104378A
JPH10104378A JP8254550A JP25455096A JPH10104378A JP H10104378 A JPH10104378 A JP H10104378A JP 8254550 A JP8254550 A JP 8254550A JP 25455096 A JP25455096 A JP 25455096A JP H10104378 A JPH10104378 A JP H10104378A
Authority
JP
Japan
Prior art keywords
zirconium
cladding tube
nuclear fuel
clad
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8254550A
Other languages
Japanese (ja)
Inventor
Tadahiko Torimaru
忠彦 鳥丸
Masafumi Nakatsuka
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Nuclear Fuel Development Co Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP8254550A priority Critical patent/JPH10104378A/en
Publication of JPH10104378A publication Critical patent/JPH10104378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To improve reliability of nuclear fuel element by making the average grain diameter in the region forming innermost surface layer of clad be over a specific value. SOLUTION: The average grain diameter of zirconium liner layer 2 on a zirconium liner pipe lined inside with zirconium on the base 3 of zircalloy-2 is made over ca. 10μm. By controlling the iron concentration in the zirconium liner layer at high purity, for example, below ca. 100ppm, growth of grain in final heat treatment process (ca. 500 deg.C, 3h) in clad production is promoted. In this case, the clad is heated simultaneously cooing the outer surface with water, oil, inert gas, etc., so that the precipitation distribution of the base 3 and grain diameter do not change. Thus, hydrogen absorption of the clad is suppressed even under oxygen depleted atmosphere at the position apart from a primary break hole in the case where the fuel rod fails owing to fretting and the like and the occurrence probability of secondary hydrogenation and secondary failure can be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子炉で用いられる
核燃料被覆管に関するものであり、特に燃料の破損時に
おける信頼性を向上させる核燃料被覆管に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fuel cladding tube used in a nuclear reactor, and more particularly to a nuclear fuel cladding tube for improving reliability in the event of fuel damage.

【0002】[0002]

【従来の技術】核燃料被覆管の応力腐食割れを防止する
ことを目的としてジルカロイ−2被覆管基材の内周面に
例えば厚さ80〜100μmの純ジルコニウムをバリア
として張設した、いわゆるジルコニウムライナ管が知ら
れている(特開昭55−164396号公報参照)。こ
のジルコニウムライナ管によって被覆管と腐食性核分裂
生成物との接触を防止するとともに、被覆管に発生する
局所応力を緩和して、当該被覆管の応力腐食割れを防止
する効果が期待され、現在BWRで良好な運転実績を残
している。
2. Description of the Related Art A so-called zirconium liner in which pure zirconium having a thickness of, for example, 80 to 100 .mu.m is stretched as a barrier on the inner peripheral surface of a zircaloy-2 cladding substrate for the purpose of preventing stress corrosion cracking of a nuclear fuel cladding tube. Tubes are known (see JP-A-55-164396). The zirconium liner tube is expected to prevent the cladding tube from coming into contact with the corrosive fission products and to alleviate local stress generated in the cladding tube to prevent stress corrosion cracking of the cladding tube. With good operating results.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、万一フ
レッティング等の予期せぬ事象によって被覆管が破損し
た場合、破損部から侵入した水蒸気が直ちに破損部近傍
のペレットや被覆管内表面と反応して水素を発生し、破
損部から離れた位置で水蒸気圧比の低いいわゆる酸素欠
乏雰囲気を形成することによって被覆管が急激に水素を
吸収し、二次水素化を起こす可能性が懸念されている。
However, if the cladding tube breaks due to an unexpected event such as fretting, the water vapor that has entered from the damaged portion immediately reacts with the pellets and the inner surface of the cladding tube near the damaged portion. There is a concern that the cladding tube may rapidly absorb hydrogen by generating hydrogen and forming a so-called oxygen-deficient atmosphere having a low water vapor pressure ratio at a position distant from the damaged portion, thereby causing secondary hydrogenation.

【0004】このような二次水素化を防ぐ目的で、酸化
しやすいジルコニウムの内側に耐食性のよいジルコニウ
ム合金、例えばジルカロイ−2やジルカロイ−4といっ
た合金を配置した被覆管や従来のジルコニウムライナに
鉄を添加することによって耐食性を向上させた被覆管が
提案されている。
[0004] In order to prevent such secondary hydrogenation, a zirconium alloy having good corrosion resistance, for example, an alloy such as zircaloy-2 or zircaloy-4 is disposed inside zirconium, which is easily oxidized, or a conventional zirconium liner. There has been proposed a cladding tube in which the corrosion resistance is improved by adding a gas.

【0005】しかしながら、これらの被覆管は耐食性は
向上するものの管内表面近傍の延性の低下によって耐P
CI特性が劣化することが予想される。また最近ペレッ
トの酸化速度が被覆管内表面のそれと比べて非常に速い
ことが報告され、しかも実際の二次破損燃料の照射後試
験結果を見ても二次破損孔は一次破損孔から離れた場
所、すなわち酸素欠乏雰囲気下で生じている。したがっ
て、二次水素化発生までの過程においては、水素の発生
源としての被覆管内表面酸化よりも酸素欠乏雰囲気下で
の耐水素吸収特性の方が重要である。つまり、水素を内
側から吸収しにくい被覆管が耐二次水素化特性に優れて
いるといえる。
[0005] However, although these cladding tubes have improved corrosion resistance, their ductility near the inner surface of the tube is reduced due to a decrease in P resistance.
It is expected that the CI characteristics will deteriorate. Recently, it was reported that the oxidation rate of the pellet was much faster than that of the inner surface of the cladding tube. That is, it occurs under an oxygen-deficient atmosphere. Therefore, in the process up to the occurrence of secondary hydrogenation, the hydrogen absorption resistance under an oxygen-deficient atmosphere is more important than the oxidation of the inner surface of the cladding tube as a hydrogen generation source. In other words, it can be said that a cladding tube that hardly absorbs hydrogen from the inside has excellent secondary hydrogenation resistance.

【0006】本発明は上記状況に鑑みてなされたもので
あり、燃料被覆管の破損時に一次破損孔から離れた酸素
欠乏領域で水素が被覆管に吸収されるのを抑制し、二次
水素化を発生する確率を低減することによって信頼性の
高い核燃料要素を提供することを目的とする。
The present invention has been made in view of the above circumstances, and suppresses the absorption of hydrogen into a cladding tube in an oxygen-deficient region away from a primary damage hole when a fuel cladding tube is damaged, thereby achieving secondary hydrogenation. It is an object of the present invention to provide a highly reliable nuclear fuel element by reducing the probability of occurrence of the nuclear fuel element.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は内側に複数個の核燃料ペレットを積層収容
するジルコニウム合金製核燃料被覆管において、被覆管
の最も内表面層を構成する領域の平均結晶粒径が10μ
mを超えて大きいことを特徴とする。
In order to achieve the above object, the present invention provides a zirconium alloy nuclear fuel cladding tube in which a plurality of nuclear fuel pellets are stacked and accommodated inside a cladding tube constituting an innermost surface layer of the cladding tube. Average grain size of 10μ
It is characterized by being larger than m.

【0008】本発明において、被覆管の最も内表面層を
構成する領域は特に限定されないが、ジルコニウム合金
基材の内側に配置したジルコニウムもしくはジルコニウ
ムを主成分とするバリア層がその一例として挙げられ、
あるいはジルコニウムバリア層のさらに内側に配置した
ジルコニウム合金層が挙げられる。
In the present invention, the region constituting the innermost surface layer of the cladding tube is not particularly limited, and examples thereof include zirconium or a barrier layer containing zirconium as a main component disposed inside a zirconium alloy base material.
Alternatively, a zirconium alloy layer disposed further inside the zirconium barrier layer may be used.

【0009】発明者らは、酸素欠乏雰囲気下におけるジ
ルコニウムの水素吸収挙動に及ぼす結晶粒径の影響を調
べるために、冷間加工した高純度ジルコニウム(鉄濃
度:80ppm)を熱処理し、5μmから40μmの平
均結晶粒径を持つジルコニウム試料を作製して400℃
における水素吸収速度を比較した。その結果を図2に示
す。
In order to investigate the effect of the crystal grain size on the hydrogen absorption behavior of zirconium in an oxygen-deficient atmosphere, the inventors heat-treated high-purity zirconium (iron concentration: 80 ppm) that had been cold-worked, and subjected to heat treatment from 5 μm to 40 μm. A zirconium sample having an average crystal grain size of 400 ° C.
Were compared with each other. The result is shown in FIG.

【0010】図2から明らかなように、結晶粒径が5か
ら10μmまでの範囲で水素吸収速度は急激に減少し、
その後は結晶粒径の増加とともに緩やかに低下する。特
に結晶粒径が10μmを超えて大きい場合には水素吸収
速度は遅く、耐水素吸収特性に優れていることから、原
子炉用燃料被覆管の内表面においても結晶粒径を粗大化
させることで、酸素欠乏雰囲気下における管内表面から
の水素吸収を抑制することが可能となる。
As apparent from FIG. 2, the hydrogen absorption rate sharply decreases when the crystal grain size is in the range of 5 to 10 μm.
Thereafter, it gradually decreases as the crystal grain size increases. In particular, when the crystal grain size is larger than 10 μm, the hydrogen absorption rate is low, and the hydrogen absorption resistance is excellent. Therefore, by increasing the crystal grain size even on the inner surface of the fuel cladding for a nuclear reactor, In addition, it is possible to suppress hydrogen absorption from the inner surface of the tube under an oxygen-deficient atmosphere.

【0011】一方、燃料被覆管の内表面の結晶粒径を粗
大化させると、腐食性核分裂生成物に起因する亀裂進展
現象を考慮したときに一般的に好ましくないことが知ら
れている。本発明者らは、亀裂が進展する場合の亀裂先
端の応力拡大係数と実際の燃料被覆管に観察される極微
少な未貫通亀裂とを勘案した結果、結晶粒径がバリア厚
さの19%以下の場合には亀裂が進展しないことを見出
した。したがって、結晶粒径は10μmを超え、かつバ
リア厚さの19%以下であることが望ましい。
On the other hand, it is known that if the crystal grain size on the inner surface of the fuel cladding tube is increased, it is generally not preferable in view of the crack propagation phenomenon caused by corrosive fission products. The present inventors considered the stress intensity factor at the tip of the crack when the crack propagates and the very small unpenetrated crack observed in the actual fuel cladding tube, and found that the crystal grain size was 19% or less of the barrier thickness. In the case of, it was found that the crack did not grow. Therefore, it is desirable that the crystal grain size exceeds 10 μm and is 19% or less of the barrier thickness.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施の形態につい
て説明する。図1は本発明の一実施例の被覆管の横断面
図であり、1は管内表面、2はジルコニウムライナ部、
3はジルカロイ−2部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments. FIG. 1 is a cross-sectional view of a cladding tube according to one embodiment of the present invention, wherein 1 is an inner surface of the tube, 2 is a zirconium liner portion,
3 is Zircaloy-2 part.

【0013】現在BWRで使用されているジルカロイ−
2を基材として内側にジルコニウムを内張りしたジルコ
ニウムライナ管において、ジルコニウムライナ層の結晶
粒径の平均値が10μmを超えて大きくなるようにし
た。
Zircaloy currently used in BWRs
In a zirconium liner tube having zirconium lined inside using 2 as a base material, the average value of the crystal grain size of the zirconium liner layer was set to be larger than 10 μm.

【0014】結晶粒径の値を上記のように大きくするに
は次のような方法がある。例えばジルコニウムライナ層
中の鉄の濃度を100ppm以下の高純度に制御し、被
覆管製造過程の最終熱処理(577℃×3h)で結晶粒
が成長しやすくする方法がある。
There are the following methods for increasing the value of the crystal grain size as described above. For example, there is a method in which the concentration of iron in the zirconium liner layer is controlled to a high purity of 100 ppm or less, and crystal grains are easily grown by the final heat treatment (577 ° C. × 3 hours) in the cladding tube manufacturing process.

【0015】また、本発明者らの実験によれば、鉄濃度
80ppmのジルコニウムの結晶粒径は、650℃×2
hの熱処理で25μmまで成長することから、最終熱処
理温度を600〜650℃の範囲まで上昇させ、ジルコ
ニウムライナ層の結晶粒を粗大化させる方法もある。あ
るいは被覆管製造の最終過程で、発熱体を被覆管内側に
挿入し、管内表面を600〜800℃まで加熱すること
によって結晶粒を成長させる方法がある。この場合、基
材のジルカロイ−2管の析出物分布や結晶粒径が変化し
ないように外表面側を冷却材、例えば水,油,不活性ガ
ス等で冷却しながら加熱する必要がある。
According to experiments by the present inventors, the crystal grain size of zirconium having an iron concentration of 80 ppm is 650 ° C. × 2.
h, the final heat treatment temperature is raised to a range of 600 to 650 ° C., and the crystal grains of the zirconium liner layer are coarsened. Alternatively, there is a method in which a heating element is inserted inside the cladding tube in the final step of manufacturing the cladding tube, and the inner surface of the tube is heated to 600 to 800 ° C. to grow crystal grains. In this case, it is necessary to heat the outer surface side while cooling it with a coolant, for example, water, oil, an inert gas or the like, so that the distribution of precipitates and the crystal grain size of the Zircaloy-2 tube of the base material do not change.

【0016】なお、上記実施例は一例であり、ジルコニ
ウムライナ管に限定するものではない。例えば基材がジ
ルカロイ−2であり、その内側に厚さ40〜150μm
のジルコニウムバリア層を配置し、さらにその内側に5
0μm以下のジルコニウム合金層を配置した三重管にお
いても内表面側のみを加熱することによって内表面の結
晶粒径を粗大化させ、本発明の核燃料被覆管を得ること
ができる。
The above embodiment is an example, and is not limited to a zirconium liner tube. For example, the base material is Zircaloy-2, and the thickness is 40 to 150 μm inside thereof.
A zirconium barrier layer of
Even in a triple tube in which a zirconium alloy layer of 0 μm or less is arranged, only the inner surface side is heated to increase the crystal grain size on the inner surface, and the nuclear fuel cladding tube of the present invention can be obtained.

【0017】その他、ジルコニウム基合金性であればい
かなる被覆管においても、内表面側加熱によって結晶粒
径を粗大化させれば本発明の核燃料被覆管を得ることが
できる。なお、ジルコニウムライナ材の場合には高純度
に限定するものではなく、鉄添加したジルコニウムライ
ナおよび合金元素を添加したライナも本発明が適用可能
である。
In addition, the nuclear fuel cladding tube of the present invention can be obtained in any cladding tube having a zirconium-based alloy property by increasing the crystal grain size by heating the inner surface side. In the case of a zirconium liner material, the present invention is not limited to high purity, and the present invention is applicable to a zirconium liner to which iron is added and a liner to which an alloy element is added.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
フレッティング等の何らかの理由で燃料棒が破損した場
合に、一次破損孔から離れた位置における酸素欠乏雰囲
気下においても被覆管の水素吸収を抑制でき、二次水素
化および二次破損の発生確率を低減することができる。
As described above, according to the present invention,
If the fuel rod breaks for any reason, such as fretting, the hydrogen absorption of the cladding can be suppressed even in an oxygen-deficient atmosphere at a position away from the primary damage hole, reducing the probability of secondary hydrogenation and secondary damage. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である被覆管の横断面図。FIG. 1 is a cross-sectional view of a cladding tube according to an embodiment of the present invention.

【図2】本発明の根拠となる水素吸収速度と結晶粒径の
関係を示す図。
FIG. 2 is a graph showing the relationship between the hydrogen absorption rate and the crystal grain size, which is the basis of the present invention.

【符号の説明】[Explanation of symbols]

1…被覆管内表面、2…ジルコニウムライナ部、3…ジ
ルカロイ−2部。
1 ... inner surface of cladding tube 2 ... zirconium liner part 3 ... zircaloy-2 part

フロントページの続き (72)発明者 中司 雅文 茨城県東茨城郡大洗町成田町2163番地 日 本核燃料開発株式会社内Continued on the front page (72) Inventor Masafumi Nakaji 2163 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. Japan Nuclear Fuel Development Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内側に複数個の核燃料ペレットを積層収
容するジルコニウム合金製核燃料被覆管において、被覆
管の最も内表面層を構成する領域の平均結晶粒径が10
μmを超えて大きいことを特徴とする核燃料被覆管。
In a zirconium alloy nuclear fuel cladding tube in which a plurality of nuclear fuel pellets are stacked and housed inside, an average crystal grain size of a region constituting an innermost surface layer of the cladding tube is 10%.
A nuclear fuel cladding characterized by being larger than μm.
【請求項2】 被覆管の最も内表面層を構成する領域が
ジルコニウムもしくはジルコニウムを主成分とするバリ
ア層である請求項1記載の核燃料被覆管。
2. The nuclear fuel cladding tube according to claim 1, wherein the region constituting the innermost surface layer of the cladding tube is zirconium or a barrier layer containing zirconium as a main component.
【請求項3】 被覆管の最も内表面層を構成する領域が
ジルコニウムバリア層のさらに内側に配置したジルコニ
ウム合金層である請求項1記載の核燃料被覆管。
3. The nuclear fuel cladding tube according to claim 1, wherein the region constituting the innermost surface layer of the cladding tube is a zirconium alloy layer disposed further inside the zirconium barrier layer.
【請求項4】 被覆管の最も内表面層を構成する領域の
平均結晶粒径が10μmを超えかつバリア層厚さの19
%以下である請求項1記載の核燃料被覆管。
4. An average crystal grain size of a region constituting the innermost surface layer of the cladding tube exceeds 10 μm and a barrier layer thickness of 19
%.
JP8254550A 1996-09-26 1996-09-26 Nuclear fuel clad Pending JPH10104378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8254550A JPH10104378A (en) 1996-09-26 1996-09-26 Nuclear fuel clad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8254550A JPH10104378A (en) 1996-09-26 1996-09-26 Nuclear fuel clad

Publications (1)

Publication Number Publication Date
JPH10104378A true JPH10104378A (en) 1998-04-24

Family

ID=17266604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8254550A Pending JPH10104378A (en) 1996-09-26 1996-09-26 Nuclear fuel clad

Country Status (1)

Country Link
JP (1) JPH10104378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348415A2 (en) 2002-03-29 2003-10-01 Daihen Corporation Transfer device, transfer device assembly, and accommodating device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348415A2 (en) 2002-03-29 2003-10-01 Daihen Corporation Transfer device, transfer device assembly, and accommodating device thereof

Similar Documents

Publication Publication Date Title
US5519748A (en) Zircaloy tubing having high resistance to crack propagation
US5681404A (en) Method of fabricating Zircaloy tubing having high resistance to crack propagation
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2846266B2 (en) Cladding tube
US20090060115A1 (en) Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor
KR100284643B1 (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JPH08260081A (en) Long-life corrosion-resistant zirconium alloy for coating fuel
JPH0843568A (en) Coating withstanding nodular corrosion and manufacture of coating
KR100284208B1 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5912935A (en) Fuel rod for light water reactor and method for manufacturing the same
JPH10104378A (en) Nuclear fuel clad
JP4999270B2 (en) Methods, applications, and apparatus for boiling water nuclear fuel and fuel assembly cladding.
US6690759B1 (en) Zirconium-base alloy and nuclear reactor component comprising the same
JPH04128687A (en) Covering tube for nuclear fuel and its manufacture
JPH0324994B2 (en)
JPS6031089A (en) Nuclear fuel composite coated pipe and manufacture thereof
JP2000230993A (en) Fuel clad tube and its production method
JP2004238737A (en) Zirconium-based alloy and nuclear reactor structural part made of the same
JPS61196190A (en) Manufacture of nuclear fuel element coated tube
JPH0640136B2 (en) Nuclear fuel cladding
JPH06230161A (en) Zirconium based alloy
JPS58185740A (en) Nuclear fuel element
JPS58216986A (en) Fuel rod plug
JPH04124498U (en) nuclear fuel elements