JPH10104162A - Measurement of enzyme activity - Google Patents

Measurement of enzyme activity

Info

Publication number
JPH10104162A
JPH10104162A JP28019796A JP28019796A JPH10104162A JP H10104162 A JPH10104162 A JP H10104162A JP 28019796 A JP28019796 A JP 28019796A JP 28019796 A JP28019796 A JP 28019796A JP H10104162 A JPH10104162 A JP H10104162A
Authority
JP
Japan
Prior art keywords
absorbance
value
measurement
sample
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28019796A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
清和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28019796A priority Critical patent/JPH10104162A/en
Publication of JPH10104162A publication Critical patent/JPH10104162A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an accurate enzyme activity value without performing re-measurement even with respect to a sample of high activity. SOLUTION: With respect to reaction to be measured, the correlation regression formula 1/VR=β/(A-a)+c of the reciprocal of the difference between absorbancy A and absorbancy (a) at the time of completion of enzymatic reaction, and the reciprocal of an absorbancy change relative value VR per unit time is preliminarily calculated and a correction value 1/VR is calculated from the absorbancy measured value of an unknown sample reaction soln. The correction value 1/VR is multiplied by an absorbancy change value dA/dt being the measured value to be corrected before an enzyme activity value is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は試料の酵素活性を測
定する方法に関するものであり、特に恒温条件下での試
料反応液の単位時間あたりの吸光度変化値から試料の酵
素活性値を求めるレート法による酵素活性測定方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the enzyme activity of a sample, and more particularly to a rate method for determining the enzyme activity value of a sample from a change in absorbance per unit time of a sample reaction solution under constant temperature conditions. The present invention relates to a method for measuring an enzyme activity by the method described above.

【0002】[0002]

【従来の技術】酵素活性を測定するには、酵素を含んだ
試料と基質を含んだ試薬とを混合させて試料反応液と
し、その試料反応液の吸光度を測定してその単位時間当
たりの吸光度変化量を求め、その吸光度変化量から酵素
活性値を算出するレート測定が行なわれている。
2. Description of the Related Art In order to measure enzyme activity, a sample containing an enzyme and a reagent containing a substrate are mixed to prepare a sample reaction solution, and the absorbance of the sample reaction solution is measured to determine the absorbance per unit time. A rate measurement is performed in which the amount of change is determined and the enzyme activity value is calculated from the amount of change in absorbance.

【0003】臨床用の生化学自動分析装置は、病院、保
健所、検査センターなどで使用されているため、測定試
料には酵素成分が異常な値(一般に酵素成分では、高
値)を示す検体が存在する。生化学自動分析装置では多
くの試料を一定の精度で測定するための測定条件を定め
ており、極めて高濃度(高活性)の試料に遭遇した場合
には、レート測定時間以前あるいは初期の段階で試薬成
分である基質濃度が低下して酵素量に比例した反応速度
(吸光度変化)が得られなくなり、測定ができないとい
う事態が起こる。このような高濃度試料については、試
料量を減量するか、原試料を希釈するなどの処置を行な
い、再度試料反応液を調製して酵素活性測定を実施して
いた。
[0003] Since automatic biochemical analyzers for clinical use are used in hospitals, public health centers, test centers, and the like, there are samples in which enzyme components show abnormal values (generally high values for enzyme components) in measurement samples. I do. Automated biochemical analyzers define measurement conditions for measuring many samples with a certain level of accuracy. If a very high-concentration (high-activity) sample is encountered, it should be used before or early in the rate measurement time. As the concentration of the substrate as a reagent component decreases, a reaction rate (absorbance change) proportional to the amount of the enzyme cannot be obtained, and a situation occurs in which measurement cannot be performed. For such a high-concentration sample, treatment such as reducing the amount of the sample or diluting the original sample was performed, and a sample reaction solution was prepared again to measure the enzyme activity.

【0004】[0004]

【発明が解決しようとする課題】しかし、再度試料反応
液を調製して酵素活性測定を行なう場合には、次のよう
な不都合が生じる。 試薬や試料の無駄が発生する。そして、試料が無くな
ったときには対応できない。また、試薬には高価なもの
もあり、コスト高になることもある。 処理能力の低下を招く。 試料量の減量には制約がある。 原試料を希釈する処置は操作が複雑である。希釈を手
作業で行なうときは誤差が入りやすく、希釈率の補正が
必要である。希釈を自動で行なおうとすれば複雑な制御
が必要になり、また測定結果の編集も必要になる。 結果を得るのに余分な時間がかかる。 そこで、本発明は、高活性の試料であっても再度試験反
応液を調製することなく、正確な酵素活性値を得ること
ができるようにすることを目的とするものである。
However, when the sample reaction solution is prepared again and the enzyme activity is measured, the following inconvenience occurs. Reagents and samples are wasted. And when the sample runs out, it cannot respond. Also, some reagents are expensive and may be costly. This leads to a decrease in processing capacity. There are restrictions on reducing the sample volume. The procedure for diluting the original sample is complicated. When the dilution is performed manually, an error is likely to occur, and the dilution ratio needs to be corrected. If the dilution is to be performed automatically, complicated control is required, and the measurement results must be edited. Takes extra time to get results. Therefore, an object of the present invention is to enable accurate enzyme activity values to be obtained without preparing a test reaction solution again even for a highly active sample.

【0005】[0005]

【課題を解決するための手段】本発明は、次のステップ
(A)から(D)を含んで試料の酵素濃度又は酵素活性
値を測定する方法である。 (A)測定しようとする反応について、その測定波長
で、吸光度Aとその酵素反応完了時の吸光度aの差の逆
数と、単位時間あたりの吸光度変化相対値VRの逆数と
の相関回帰式 1/VR=β/(A−a)+c (β,cはそれぞれ相関回帰式の勾配及び定数)を求め
ておくステップ、
According to the present invention, there is provided a method for measuring the enzyme concentration or enzyme activity of a sample, comprising the following steps (A) to (D). (A) For the reaction to be measured, the correlation regression equation of the reciprocal of the difference between the absorbance A and the absorbance a at the completion of the enzyme reaction at the measurement wavelength and the reciprocal of the relative change in absorbance per unit time VR 1 / VR = β / (A−a) + c (where β and c are slopes and constants of the correlation regression equation, respectively);

【0006】(B)未知試料反応液について、レート測
定可能吸光度を越えてレート測定が不可能になった領域
も含めてその反応液の吸光度A’を測定し、単位時間あ
たりの吸光度変化値を求めるステップ、
(B) With respect to the unknown sample reaction solution, the absorbance A ′ of the reaction solution is measured including the region where the rate measurement cannot be performed because the absorbance exceeds the measurable absorbance, and the change in absorbance per unit time is determined. Seeking step,

【0007】(C)測定に用いる吸光度変化値を求める
反応時間域でのその未知試料反応液の吸光度A’を上記
相関回帰式のAに代入して1/VRを求め、その反応時
間域での1/VRの平均値を求めるステップ、
(C) Substituting the absorbance A 'of the unknown sample reaction solution in the reaction time range for determining the absorbance change value used for the measurement into A of the above correlation regression equation to obtain 1 / VR, Obtaining an average value of 1 / VR of

【0008】(D)上記で求めた単位時間あたりの吸光
度変化値に上記で求めた1/VRの平均値を乗じて吸光
度変化値を補正し、その補正された吸光度変化値に基づ
いて未知試料の酵素活性値を求めるステップ。
(D) The absorbance change value per unit time obtained above is multiplied by the average value of 1 / VR obtained above to correct the absorbance change value, and an unknown sample is determined based on the corrected absorbance change value. Determining the enzyme activity value of

【0009】単位時間あたりの吸光度変化値を(ΔA/
Δt)、1/VRの平均値を (1/VR)Bとし、酵素
濃度又は酵素活性値をCとすると、 C=(ΔA/Δt)×(1/VR)B×K として求められる。ここで、Kは装置定数であり、次の
ように表わされる。 K=(1/εL)×(W/w) ε:反応指示物質のモル吸光係数。 LDH活性測定ではNADHが反応指示物質 w:試料量 W:反応液量(=試料量+試薬量)
The change in absorbance per unit time is (ΔA /
Δt), when the average value of 1 / VR is (1 / VR) B and the enzyme concentration or the enzyme activity value is C, C = (ΔA / Δt) × (1 / VR) B × K. Here, K is a device constant, and is expressed as follows. K = (1 / εL) × (W / w) ε: molar extinction coefficient of the reaction indicator. In the LDH activity measurement, NADH is a reaction indicator substance w: sample amount W: reaction solution amount (= sample amount + reagent amount)

【0010】[0010]

【実施例】酵素反応の一例として次に示すLDH(乳酸
脱水素酵素)の活性測定を行なう場合を例にして説明す
る。
EXAMPLE As an example of the enzymatic reaction, a case where the activity of LDH (lactate dehydrogenase) shown below is measured will be described as an example.

【0011】[0011]

【化1】 Embedded image

【0012】この反応原理に基づいて調製された試薬
(国際試薬製、試薬成分:NADH0.24mM、ピルビン酸
1.5mM、トリス緩衝液 50mM、pH7.8)を使用して、
試薬成分のNADH濃度と血清試料中のLDH活性値の
関係を調べた。その結果を表1に示す。
Reagents prepared based on this reaction principle (manufactured by International Reagents, reagent components: NADH 0.24 mM, pyruvate)
1.5 mM, Tris buffer 50 mM, pH 7.8)
The relationship between the NADH concentration of the reagent component and the LDH activity value in the serum sample was examined. Table 1 shows the results.

【0013】[0013]

【表1】 [Table 1]

【0014】表1のデータは高LDH試料の反応につい
てのLDH反応の時間経過と吸光度変化の測定結果を示
したものである。その反応タイムコースを図1に概略的
に示す。表1中の[1/(A340-0.048)]は、測定波長340
nmでの吸光度A340からLDH反応が完結した(反応液
中のNADHが完全に無くなった)時点の吸光度0.048
(表中には示されていないが、実測値である)を差し引
いた値の逆数である。v(反応速度:1分間あたりの吸
光度変化)は、反応時間12秒の前後の吸光度An-1とAn
+1の差を1分間あたりに換算したもの、[1/v]はその逆
数である。VRはLDH反応の至適NADH濃度とされ
ている0.2mM(吸光度1.26)以上でのvを基準に
した相対値であり、[1/VR]はその逆数である。ここで
は、A340=1.286のときのvを基準とした。したがっ
て、[1/VR]は非至適NADH濃度の試料反応液の測定
結果(1分間あたりの吸光度変化値ΔA/Δt)を至適
NADH濃度の試料反応液での測定値に補正するための
相対補正値となるものである。
The data in Table 1 show the results of the measurement of the time course of the LDH reaction and the change in absorbance for the reaction of the high LDH sample. The reaction time course is shown schematically in FIG. [1 / (A340-0.048)] in Table 1 indicates a measurement wavelength of 340.
The absorbance 0.048 at the time when the LDH reaction was completed (the NADH in the reaction solution was completely eliminated) from the absorbance A340 at nm.
This is the reciprocal of the value obtained by subtracting (not shown in the table, but actually measured value). v (reaction rate: change in absorbance per minute) is the absorbance An-1 and An-1 before and after the reaction time of 12 seconds.
The difference of +1 converted per minute, [1 / v] is the reciprocal thereof. VR is a relative value based on v at 0.2 mM (absorbance 1.26) or higher, which is regarded as the optimum NADH concentration for LDH reaction, and [1 / VR] is its reciprocal. Here, v when A340 = 1.286 was used as a reference. Therefore, [1 / VR] is used to correct the measurement result (absorbance change value ΔA / Δt per minute) of the sample reaction solution having the non-optimal NADH concentration to the measurement value of the sample reaction solution having the optimum NADH concentration. This is a relative correction value.

【0015】図2は表1のデータを図示したものであ
る。横軸に[1/(A340-0.048)]をとり、縦軸に[1/v]と[1
/VR]をとって示している。[1/VR]と[1/(A340-0.04
8)]との間の相関回帰式は 1/VR=0.696/(A−0.048)+0.454 と求められる。LDH反応についてはこの相関回帰式を
用いて、吸光度測定値から1/VRを求め、測定に用い
る反応時間域での平均値を求めて未知試料反応液の測定
結果を補正する。
FIG. 2 illustrates the data of Table 1. The horizontal axis is [1 / (A340-0.048)], and the vertical axis is [1 / v] and [1
/ VR]. [1 / VR] and [1 / (A340-0.04
8)] is obtained as 1 / VR = 0.696 / (A-0.048) +0.454. For the LDH reaction, 1 / VR is calculated from the measured absorbance using this correlation regression equation, and the average value in the reaction time range used for the measurement is calculated to correct the measurement result of the unknown sample reaction solution.

【0016】次に、高LDH試料に適用して酵素活性値
を求めた結果を表2と表3に示す。表2は3種類の高L
DH試料付いて、測定波長340nmでの吸光度A340を
測定し、各吸光度に対応する相対補正値1/VRを図2
の相関回帰式から求めた結果である。
Next, Table 2 and Table 3 show the results obtained by determining the enzyme activity value by applying to a high LDH sample. Table 2 shows three types of high L
For the DH sample, the absorbance A340 at a measurement wavelength of 340 nm was measured, and the relative correction value 1 / VR corresponding to each absorbance was determined as shown in FIG.
Is a result obtained from the correlation regression equation.

【0017】[0017]

【表2】 [Table 2]

【0018】表3には、その測定結果に基づいて、3つ
にわけた各反応時間域での吸光度変化値ΔA/Δtと、
1/VRの平均値(1/VR)Bを求め、ΔA/Δtに
(1/VR)Bを乗じてΔA/Δtを補正した上で活性値
Cを求めた結果を示している。活性値Cは次の式で表わ
される。 C=(ΔA/Δt)×(1/VR)B×K
Table 3 shows absorbance change values ΔA / Δt in each of three reaction time ranges based on the measurement results.
The figure shows the result of calculating the average value (1 / VR) B of 1 / VR, correcting ΔA / Δt by multiplying ΔA / Δt by (1 / VR) B, and calculating the activity value C. The activation value C is represented by the following equation. C = (ΔA / Δt) × (1 / VR) B × K

【0019】[0019]

【表3】 [Table 3]

【0020】ここで得られた結果を検証するために、各
LDH試料を1/10希釈して至適NADH濃度の試料
として測定を行なったところ、試料I,II,IIIの活性
値はそれぞれ1245U/L,1902U/L,628
0U/Lとなった。表3の結果は希釈して測定した結果
に近いものであり、本発明による補正は希釈再測定に代
る有効な手段であることを示している。
In order to verify the results obtained, each LDH sample was diluted 1/10 and measured as a sample having an optimum NADH concentration. The activity values of Samples I, II and III were 1245 U, respectively. / L, 1902U / L, 628
It became 0U / L. The results in Table 3 are close to the results of dilution measurements, indicating that the correction according to the present invention is an effective alternative to dilution re-measurement.

【0021】[0021]

【発明の効果】本発明では、相関回帰式から求めた補正
値1/VRを用いることにより、非至適条件の試料によ
る測定結果であっても、希釈再測定を行なわずに正しい
酵素活性値を導きだすことができる。その結果、次のよ
うな効果を達成することができる。 (1)測定結果をすぐに患者の診断に活用することがで
きる。超高濃度試料の場合、正確度が10〜30%ぐら
いずれることがあるが、臨床的見地からは高濃度域の酵
素量は厳密に測定する必要がないことが多い。むしろ、
概略値でもよいから測定結果を得ることの方が優先され
る。 (2)試料不足でも対応することができる。また、試薬
も節約できる。 (3)再測定の必要が生じたとき、最適な測定条件、す
なわち試料量を知ることができる。
According to the present invention, by using the correction value 1 / VR obtained from the correlation regression equation, the correct enzyme activity value can be obtained without performing dilution re-measurement, even if the measurement result is obtained using a sample under non-optimal conditions. Can be derived. As a result, the following effects can be achieved. (1) The measurement results can be immediately used for patient diagnosis. In the case of an ultra-high concentration sample, the accuracy may be as low as 10 to 30%, but from a clinical point of view, it is often not necessary to precisely measure the amount of enzyme in the high concentration region. Rather,
Since a rough value may be used, obtaining the measurement result is prioritized. (2) It is possible to cope with a shortage of the sample. Also, reagents can be saved. (3) When the need for re-measurement arises, the optimum measurement conditions, that is, the sample amount can be known.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の反応のタイムコースを示す図であ
る。
FIG. 1 is a diagram showing a time course of a reaction according to one embodiment.

【図2】図2は一実施例の反応の相関回帰式を示したも
のである。
FIG. 2 shows a correlation regression equation of a reaction according to one embodiment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 恒温条件下での試料反応液の単位時間あ
たりの吸光度変化値から試料の酵素濃度又は酵素活性値
を求めるレート法において、 次のステップ(A)から(D)を含むことを特徴とする
酵素活性測定方法。 (A)測定しようとする反応について、その測定波長
で、吸光度Aとその酵素反応完了時の吸光度aの差の逆
数と、単位時間あたりの吸光度変化相対値VRの逆数と
の相関回帰式 1/VR=β/(A−a)+c (β,cはそれぞれ相関回帰式の勾配及び定数)を求め
ておくステップ、 (B)未知試料反応液について、レート測定可能吸光度
を越えてレート測定が不可能になった領域も含めてその
反応液の吸光度A’を測定し、単位時間あたりの吸光度
変化値を求めるステップ、 (C)測定に用いる吸光度変化値を求める反応時間域で
のその未知試料反応液の吸光度A’を上記相関回帰式の
Aに代入して1/VRを求め、その反応時間域での1/
VRの平均値を求めるステップ、 (D)上記で求めた単位時間あたりの吸光度変化値に上
記で求めた1/VRの平均値を乗じて吸光度変化値を補
正し、その補正された吸光度変化値に基づいて未知試料
の酵素濃度又は酵素活性値を求めるステップ。
1. A rate method for obtaining an enzyme concentration or an enzyme activity value of a sample from a change in absorbance per unit time of a sample reaction solution under a constant temperature condition, wherein the rate method includes the following steps (A) to (D). Characteristic enzyme activity measurement method. (A) For the reaction to be measured, the correlation regression equation of the reciprocal of the difference between the absorbance A and the absorbance a at the completion of the enzyme reaction at the measurement wavelength and the reciprocal of the relative change in absorbance per unit time VR 1 / VR = β / (A−a) + c (where β and c are the gradients and constants of the correlation regression equation, respectively). (B) For the unknown sample reaction solution, the rate measurement exceeds the rate-measurable absorbance and the rate measurement is not possible. Measuring the absorbance A 'of the reaction solution including the region where it became possible to determine the change in absorbance per unit time; and (C) determining the change in absorbance used for the measurement. The absorbance A ′ of the solution was substituted into A of the above correlation regression equation to obtain 1 / VR, and 1 / VR in the reaction time range was obtained.
(D) correcting the absorbance change value by multiplying the absorbance change value per unit time determined above by the average value of 1 / VR determined above, and correcting the corrected absorbance change value Determining the enzyme concentration or enzyme activity value of the unknown sample based on
JP28019796A 1996-09-30 1996-09-30 Measurement of enzyme activity Pending JPH10104162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28019796A JPH10104162A (en) 1996-09-30 1996-09-30 Measurement of enzyme activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28019796A JPH10104162A (en) 1996-09-30 1996-09-30 Measurement of enzyme activity

Publications (1)

Publication Number Publication Date
JPH10104162A true JPH10104162A (en) 1998-04-24

Family

ID=17621666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28019796A Pending JPH10104162A (en) 1996-09-30 1996-09-30 Measurement of enzyme activity

Country Status (1)

Country Link
JP (1) JPH10104162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030801A (en) * 2018-06-02 2018-12-18 贾晓轻 A kind of clinical sample automatic biochemistry analyzer
CN114577745A (en) * 2022-02-28 2022-06-03 深圳市乐土生物医药有限公司 Method for detecting activity of methylenetetrahydrofolate dehydrogenase 2

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030801A (en) * 2018-06-02 2018-12-18 贾晓轻 A kind of clinical sample automatic biochemistry analyzer
CN114577745A (en) * 2022-02-28 2022-06-03 深圳市乐土生物医药有限公司 Method for detecting activity of methylenetetrahydrofolate dehydrogenase 2

Similar Documents

Publication Publication Date Title
EP0928967B1 (en) Method and apparatus for the determination of a substance coexisting with another substance
EP0660114B1 (en) Method for recalibrating an analyzer
JP4276894B2 (en) Anomaly detection system and anomaly detection method
US20050107956A1 (en) Concentration measuring method
EP0407992A1 (en) Method for determination of glucose concentration
Kristiansen Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry
US4539295A (en) Binary kinetic assay method and apparatus
Aloisio et al. Random uncertainty of photometric determination of hemolysis index on the Abbott Architect c16000 platform
US5348889A (en) Method for correcting a calibration curve
US6596153B1 (en) Method for analyzing a gas sample
US11385245B2 (en) Value assignment for customizable quality controls
US6787361B1 (en) Clinical assay calibration adjustment method
JPH10104162A (en) Measurement of enzyme activity
Rivero et al. Comparison of two different methods for measurement of phenylalanine in dried blood spots
Randell et al. An automated enzymatic method on the Roche COBAS MIRATM S for monitoring phenylalanine in dried blood spots of patients with phenylketonuria
JP2749135B2 (en) Ammonia determination method and kit used therefor
JP3279756B2 (en) Quantitative calculator
Ellis et al. Kinetic coupled optical assays for guanase activity at 340 nm utilizing guanine and 8-azaguanine as substrates
JP3357494B2 (en) Biochemical analyzer
Patke et al. A comparative analytical quality evaluation study between two methods for blood urea nitrogen estimation
JPH10213546A (en) Automatic analyzer for enzyme activation measuring
JPH06249856A (en) Measurement of automatic biochemical analyzing device
van Straalen et al. Evaluation of the Hitachi 911 for routine urine analysis and for measurement of various special serum analytes
JPH08220049A (en) Method and device for measuring electrolyte
JP2732448B2 (en) Automatic rate analysis