JP2732448B2 - Automatic rate analysis - Google Patents

Automatic rate analysis

Info

Publication number
JP2732448B2
JP2732448B2 JP62105681A JP10568187A JP2732448B2 JP 2732448 B2 JP2732448 B2 JP 2732448B2 JP 62105681 A JP62105681 A JP 62105681A JP 10568187 A JP10568187 A JP 10568187A JP 2732448 B2 JP2732448 B2 JP 2732448B2
Authority
JP
Japan
Prior art keywords
absorbance
measurement
rate
wavelength
wavelength measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62105681A
Other languages
Japanese (ja)
Other versions
JPS63271140A (en
Inventor
清和 中野
正佳 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP62105681A priority Critical patent/JP2732448B2/en
Publication of JPS63271140A publication Critical patent/JPS63271140A/en
Application granted granted Critical
Publication of JP2732448B2 publication Critical patent/JP2732448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は同一測定セルを複数回数測定する自動分析
装置による検体のレート分析法に関する。さらに詳しく
は臨床生化学検査における血清、血漿、尿のごとき生体
液検体に含まれる着色または濁り成分による分析過誤を
少なくでき、さらに吸光度変化率が大きい高値検体まで
も幅広く測定できるレート分析法に関する。 (ロ)従来の技術 レート分析法は、正確度においては原理的にエンドポ
イント法よりも優れているが、適用を誤れば大きな分析
誤差を招くことになる。つまりレート分析法は反応速度
が定常状態(基質が十分に存在する状態)にあることを
前提として行われる方法であり、この条件が満足されな
い場合は大きな分析誤差が生じることを避けることはで
きない。従来これを避けるために予めレート分析の測定
可能な吸光度範囲を設定し、吸光度変化率測定がその範
囲内にあることを確認して分析がなされている。 (ハ)発明が解決しようとする問題点 しかしながら、上記のごとく設定される吸光度範囲は
実験体中の着色成分、濁り成分などの影響(各実検体に
より異なる)が考慮されていないので、非定常状態(基
質不足の状態)を定常状態と見誤ったり、定常状態を非
定常状態と見誤る虞れがあった。もちろん上記設定吸光
度範囲を狭くすることによりこれを回避することができ
るが、この場合は着色成分や濁り成分を含まない検体に
ついても測定できる範囲を狭くしてしまうことになり実
用的でない。また、測定対象となる臨床検査項目には、
測定すべき範囲が非常に幅広いものがあり、例えば一般
的な項目であるGOT(AST)酵素活性測定では、健常者10
〜30U/に対して1000〜数1000U/もの値を有する患者
検体が分析対象になることがある。勿論10〜数1000U/
までを同一分析条件で高精度測定することは不可能であ
り、数1000U/もの超高単位検体については適当な検体
反応液の吸光度チェック値により「測定不可能」の判断
を下し、適当な方法(例えば希釈する等)で再分析して
いるが、検体によっては測定波長で吸収を示す成分や濁
り成分を含む成分を含有することがあり、上記のごとき
超高単位検体であることを正しく判定できないことが生
じている。 この発明はかかる状況に鑑みなされたものであり、上
記のごとき定常状態を保持するレート測定可能な区間を
最大限に判定しかつ濁り成分等の影響を考慮した自動レ
ート分析法を提供しようとするものである。 (ニ)問題点を解決するための手段 かくしてこの発明によれば、自動分析装置により所定
時間範囲内における検体反応液の所定時間毎の吸光度を
測定するレート分析法において、測定の始点および終点
を1波長測定で、その間を2波長測定で各々測定し、得
られる吸光度値のデータ列から検体反応液中の被検物濃
度を演算する方法からなり、 (a)上記始点でのデータを、1波長測定に基づいて予
め設定されたレート測定限界吸光度(J0)と比較し、 (b)上記比較によりレート測定限界内であると判定さ
れたものについて、さらに前記終点でのデータが、予め
設定されたレート測定限界吸光度(J1)もしくは試薬ブ
ランク液の吸光度に基づいて修正された実効限界吸光度
(J1′)で規制されるレート測定可能範囲内であるとき
は、2波長測定全域(tM〜tN)のデータ列すべてから吸
光度変化率を演算し、 (c)上記終点のデータがレート測定限界を越えるとき
は、2波長測定の開始点(tM)から少なくとも3点の吸
光度変化を、2波長測定に基づいて予め設定された実質
許容吸光度変化(J2)と比較し、 (d)上記比較により許容以内であると判定されたもの
については、下記条件; (△A/tn−tM)≧(J2/tM〜tN) ただし、△A:2波長測定開始点(tM)から上記J2を越
えない最大吸光度変化 tn:上記△Aを与える2波長測定点 を満足する場合は△A/tn−tMに基づいて被検物濃度を演
算し、満足しない場合はレート分析不可と判断すること
を特徴とする自動レート分析法が提供される。 この発明は、基質または生成物質の増減速度を、これ
らの単位時間当たりの吸光度変化として測定する酵素活
性および基質のレート分析法において、1波長測定に基
づいて基質不足に陥る境界レベルとして設定されたレー
ト測定限界吸光度(J0およびJ1)および該J1に対して試
薬ブランクの吸光度を考慮して修正した実効限界吸光度
(J1′)並びに2波長測定に基づいて予め設定された実
質許容吸光度変化(J2)により、検体反応液の着色・濁
り成分の影響を除いた実質的に定常状態を保持しうる最
大限のレート測定区間を判定し、検体反応液中の被検物
濃度を定量するレート分析法であることを特徴とする。 すなわち、レート測定の限界は1波長測定でもってレ
ベル設定され、レート測定については1波長測定よりも
精度の高い2波長測定のデータに基づいて行われる。こ
の2波長測定のデータは主波長測定値から副波長測定値
を差引いて求められる。これによって検体反応液の着色
・濁り成分等の影響、測定セルのギズが排除され、実質
的な吸光度変化が得られることになる。この方法におい
ては2波長測定に用いる主波長と副波長のうち主波長を
1波長測定時の波長として用いることができる。上記2
波長としては例えばGOT酵素活性測定の場合主波長340n
m,副波長375nmが挙げられる。 上記J1は、意図するレート測定区間、ここでは2波長
測定区間、において非定常状態になる程度の活性値を有
する高単位検体でできるだけ無色透明のものを選択し、
このものについて所定時間毎に1波長測定される吸光度
の経時的変化において定常から非定常に移行するときの
吸光度(Ac1)をもってレート測定限界吸光度として設
定される。 上記J0は、非常にまれであるが、試料が超高単位を示
す場合にはレート測定開始直後において反応液中の基質
が不足することがあるので、これを判定する吸光度であ
り、J1および試薬ブランク液の1波超測定吸光度より誘
導される値である。 前記J1′は、上記J1を設定したときの吸光度(Ac1
から該測定位置における試薬ブランク液の1波長測定の
吸光度(Ab1)を差引いた、実効的なレート測定限界に
対応する吸光度として設定されるものである。これによ
り検体反応液の着色・濁り成分による影響が相殺される
ことになる。 前記実質許容吸光度変化(J2)は、前記J1設定時の高
単位検体について、レート測定に用いる主波長と副波長
との2波長測定で得られる吸光度の経時的変化から、定
常から非定常に移行するときの限界吸光度(Ac2)を求
め、さらに該測定点での2波長測定の試薬ブランク液の
吸光度(Ab2)を差引いた実質吸光度変化(Ac2−Ab2
を、2波長測定開始点(tM)において許容される吸光度
変化分に換算したものである。該換算の方法については
後述する実施例の記載が参照される。 この発明の方法において、上記J0、J1、J1′およびJ2
により、所定時間毎の測定から得られる吸光度値のデー
タ列についてその始点および終点の1波長測定値に対し
ては上記J0およびJ1(またはJ1′)による判定が、また
2波長測定値に対してはJ2による判定が行われる。すな
わち、始点のデータ値がJ0を満足しかつ終点のデータ値
がJ1またはJ1′を満足する場合は、2波長測定開始点
(tM)から2波長測定終点(tN)までの吸光度変化がJ2
で設定される吸光度変化内におさまり、従って2波長測
定全域(tM〜tN)に渡って定常状態が保持されているこ
とになり、この領域のデータすべてを用いてレート分析
されることとなる。 上記において1波長測定される終点のデータ値がJ1
たはJ1′を満足しない場合は、2波長測定開始点(tM
からの吸光度変化の絶対値がJ2を越えない範囲で最大に
なる測定点(tn)を選択し、さらにこの2波長測定区間
(tM〜tn)の吸光度変化(△A)から求まる吸光度変化
率の絶対値,|△A|/tn−tMが2波長測定全域(tM〜tN
に対するJ2で定まる吸光度変化率,J2/tN−tM以上になる
ときには、tM〜tnが定常状態を保持したレート反応区間
と判定され、このようにレート測定区間を短縮してレー
ト分析されることとなる。 従ってこの発明の方法において、測定不可能である超
高単位検体については、1波長測定による始点での吸光
度がJ0を越える場合、2波長測定開始点から少なくとも
3点の吸光度変化がJ2を越える場合および上記のごとき
吸光度変化率,|△A|/tn−tMがJ2/tN−tMよりも小さい場
合の各場合にその旨判定されることとなる。 (ホ)作用 この発明によれば、所定時間範囲内で測定の始点およ
び終点を1波長測定で、その間を2波長測定で各々測定
して得られる吸光度値のデータ列は、まず予め1波長測
定により設定されるレート測定限界吸光度(J0)でもっ
てすでに始点において基質不足による非定常状態である
かどうかが判定される。J0でもって定常状態と判定され
たデータ列はその終点が実効限界吸光度でもって定常状
態かどうかが判定される。該終点が定常状態と判定され
たものについては、2波長測定全域のデータ列がレート
分析に用いられる。しかし上記終点が非定常状態と判定
されたときは、2波長測定開始点から少なくとも3点ま
での吸光度変化が、予め2波長測定により設定された実
質許容吸光度変化以内のものを選択することにより、ま
ずこの間で非定常状態に陥っているものが排除される。
上記選択されたものについて、2波長測定開始点からの
吸光度変化が上記実質許容吸光度変化以内でかつそのと
きの吸光度変化率が、2波長測定全域に対する実質許容
吸光度変化で定まる吸光度変化率以上を与えるデータ列
までが、定常状態下でのデータ列と判定され、このデー
タ列によりレート分析される。 以下実施例によりこの発明を詳細に説明するが、これ
によりこの発明は限定されるものではない。 (ヘ)実施例 自動分析装置により所定時間範囲(ti〜tN+1、ただし
等間隔時間に設定)内における2試薬法による酵素活性
測定で、比較的長い時間一定の吸光度変化を示す例につ
いて説明する。 (i) 分析条件 〔測定波長〕 第2試薬(R2)分注(t0)直後の測定開始点(ti) …λ 2波長測定区間(tM〜tN) …λ1 測定終了点(tN+1) …λ 〔測定データ〕 検体反応液の吸光度 ti ……Ai tM〜tN……AM〜AN tN+1 ……AN+1 試薬ブランク液の吸光度……Ab1 ただし、λは主波長、λは副波長である。 (ii)レート測定限界吸光度(J0およびJ1)、実効限界
吸光度(J1′)および実質許容吸光度変化(J2)につい
て J1の決定 第1図に示すごとく2波長測定期間(tM〜tN)内にお
いて非定常状態になる程度の高単位検体でかつできるだ
け無色透明のものを選択し、このような検体についての
1波長(λ)測定を上記所定時間範囲(試薬添加時:t
0から測定終了時:tN)内について行い、この範囲の時間
列上に表れる吸光度変化(mABS/min)(イ)に基づい
て、定常から非定常に移行するときの境界吸光度(mAB
S)をJ1として決定する。 J2の決定 第2図に示すごとく、上記高単位検体および試薬ブラ
ンク液(例えば試料として生理的食塩水を使用する)に
ついて2波長(λ1)測定を上記J1の決定時と同様
に測定して吸光度の経時変化(ロ)を求め、高単位検体
の反応過程が定常状態から非定常状態へ移行する吸光度
(AC2)と、この測定位置における試薬ブランク液の吸
光度(Ab2)を求め、試薬添加特(t0)、2波長測定開
始時(tM)および3点目の2波長測定点(tM+2)につい
て近似的に比例計算して、tM点での前記J1までの許容吸
光度変化として、次式により算出される。 J2=(AC2−Ab2)・〔(tM+2−tM)/(tM+2−t0)〕 J0の決定 先に求めたJ1、試薬ブランク液1波長測定吸光度(Ab
1)とから、「J2の決定」と同様に考え、次式により算
出される。 J0=(AC1−Ab1−AC1)・〔(tM+2−ti)/ (tM+2−t0)〕 J′の決定 J1′=J1±(Ai−Ab1) (ただし、+:基質濃度に注目して吸光度変化を見てい
るとき、−:生成物濃度に注目して見ているとき) 次にこれらのJ0,J1,J1′,J2判定を第3図に示した各
種検体反応液(a〜e)の反応タイムコースで説明す
る。これらの反応タイムコースは上記分析条件により得
られたデータ列に基づいて作成されたものであり、・は
1波長測定吸光度、 は2波長測定吸光度、×はJ0,J1,J1′,J2判定で超高値
域の吸光度と判定された値をそれぞれ示す。 まず、各データ列の始点(ti)における検体反応液の
吸光度AiをJ0と比較する。その結果J0≧Aiを示すデータ
列は既に非定常状態を示しているので、「測定不可能」
の表示(換言すれば超高値の表示)がなされる((a)
の場合に相当)。 一方j0<Aiであるデータ列については、2波長測定開
始点から3点までのデータからの吸光度変化|AM+2−AM|
を実質許容吸光度変化(J2)と比較する。この結果、J2
<|AM+2−AM|を示すデータ列についてはこの区間(tM
tM+2)内で非定常状態になっていることが示されている
ので、上記と同じく「測定不可能」の表示がなされる
((b)の場合)。 なお、上記過程の手前で実効限界吸光度(J1′)を次
のようにして算出しておく。 J1′=J1+(Ai−Ab2) (ただし、Ai<Ab1のときJ1′=J1) J2≧|AM+2−AM|を示すデータ列については、該データ
列の終点(tN+1)におけるデータ値(AN+1)を、既に算
出されているJ1′と比較し、J1′<AN+1であるデータ列
については、2波長測定全域(tM〜tN)について定常状
態が保持されており、従って次式による吸光度変化率,
△A/△t=(AN−AM)/(tN−tM)に基づいて被検物濃
度が算出される。 しかしながら、J1′≧AN+1であるデータ列について
は、2波長測定全域についての定常状態が保証されてい
ないため、J2≧|An−AM|(M+2≦n≦N)を満足する
測定データAnを与える2波長測定点(tn)を選択し、さ
らにtMからtnまでの吸光度変化率,|An−AM|/(tn−tM
がJ2/(tN−tM)で定まる吸光度変化率以上の場合に
は、tM〜tnの2波長測定区間が定常状態保持区間と判定
され、この区間での上記吸光度変化率に基づいて被検物
濃度が演算される。また、|An−AM|/(tn−tM)<J2/
(tN−tM)の場合には、このデータ列については「測定
不可能」の表示がなされる((e)の場合)。 なお、上記判定の過程をフローチャートで表せば第4
図のごとくである。ただし、該図において(a)〜
(e)の各信号は上記説明の各記号に対応する。 以上の方法により、定常状態を保持している2波長測
定区間が正確に選択されかつその区間について吸光度変
化率に基づいて被検物濃度が演算されることとなる。 (ト)発明の効果 この発明によれば、定常状態を保持する区間を判断
し、この区間についての吸光度変化率から被検物濃度が
演算されるので、高精度でレート分析が行える。またこ
のことから超高単位検体を低単位検体と見誤る虞れがな
くなり、レート分析法の信頼性を向上させることができ
る。
The present invention relates to a method for analyzing a sample rate by an automatic analyzer for measuring the same measuring cell a plurality of times. More specifically, the present invention relates to a rate analysis method that can reduce analysis errors due to coloring or turbid components contained in biological fluid samples such as serum, plasma, and urine in clinical biochemical tests, and can measure a wide range of high value samples having a large absorbance change rate. (B) Conventional technology The rate analysis method is superior in principle to the end point method in accuracy, but if applied incorrectly, a large analysis error will be caused. That is, the rate analysis method is a method performed on the assumption that the reaction rate is in a steady state (a state in which the substrate is sufficiently present). If this condition is not satisfied, it is unavoidable that a large analysis error occurs. Conventionally, in order to avoid this, an absorbance range in which rate analysis can be measured is set in advance, and analysis is performed after confirming that the absorbance change rate measurement is within the range. (C) Problems to be Solved by the Invention However, the absorbance range set as described above does not take into account the influence of coloring components and turbidity components in the experimental body (different for each actual sample), so that the There is a risk that the state (substrate shortage state) may be mistaken for a steady state, or the steady state may be mistaken for a non-steady state. Of course, this can be avoided by narrowing the set absorbance range, but in this case, the range that can be measured even for a sample that does not contain a coloring component or a turbid component is narrowed, which is not practical. In addition, the clinical test items to be measured include:
There is a very wide range to be measured. For example, in the measurement of GOT (AST) enzyme activity,
A patient sample having a value of 1000 to several 1000 U / for 3030 U / may be analyzed. Of course 10 to several thousand U /
It is impossible to perform high-precision measurement under the same analysis conditions up to the same.For ultra-high unit samples of several thousand U /, the determination of `` measurement impossible '' is made based on the absorbance check value of an appropriate sample reaction solution, and an appropriate Although the sample is reanalyzed by a method (for example, dilution), some samples may contain components that show absorption at the measurement wavelength or components containing turbid components. Something cannot be determined. The present invention has been made in view of such circumstances, and aims to provide an automatic rate analysis method that maximizes the rate-measurable section that maintains the steady state as described above and that takes into account the influence of turbidity components and the like. Things. (D) Means for Solving the Problems According to the present invention, in a rate analysis method in which an automatic analyzer measures the absorbance of a sample reaction solution at predetermined time intervals within a predetermined time range, a start point and an end point of measurement are determined. It consists of a method of measuring each wavelength by one wavelength measurement and two wavelengths between them, and calculating the concentration of the analyte in the sample reaction solution from a data string of the obtained absorbance values. Comparing with the rate measurement limit absorbance (J 0 ) set in advance based on the wavelength measurement; and (b) for those determined to be within the rate measurement limit by the above comparison, the data at the end point is further set in advance. when within rate measurement range which is restricted by the rate-measurement limit absorbance (J 1) or reagent blank solution absorbance effective limit absorbance is corrected on the basis of (J 1 '), 2-wave Data string all calculates the rate of absorbance change from measurements throughout (t M ~t N), ( c) when the data of the end point exceeds the rate measurement limit is at least 3 from the start of the two-wavelength measurement (t M) The change in the absorbance at the point is compared with a substantially allowable change in absorbance (J 2 ) set in advance based on the two-wavelength measurement. (D) For those determined to be within the allowable range by the above comparison, the following conditions; △ a / tn-t M) ≧ (J 2 / t M ~t N) However, △ a: 2-wavelength measurement starting point (t M) maximum absorbance change does not exceed the J 2 from tn: give the △ a automatic rate analysis method is provided to calculate the test concentration, if not satisfied, characterized in that it is determined that the rate analysis not based on the case △ a / tn-t M which satisfies the two wavelengths measurement points . According to the present invention, in an enzyme activity and substrate rate analysis method in which the rate of increase or decrease of a substrate or a product is measured as a change in absorbance per unit time, a boundary level at which a substrate shortage occurs based on one wavelength measurement. rate measurement limit absorbance (J 0 and J 1) and said J effective limit absorbance was corrected in consideration of the absorbance of the reagent blank against 1 (J 1 ') as well as substantially acceptable absorbance previously set based on the two-wavelength measurement From the change (J 2 ), the maximum rate measurement section that can maintain a substantially steady state excluding the influence of the coloring and turbid components of the sample reaction solution is determined, and the analyte concentration in the sample reaction solution is determined. It is characterized by a rate analysis method. That is, the limit of the rate measurement is set by the one-wavelength measurement, and the rate measurement is performed based on the data of the two-wavelength measurement that is more accurate than the one-wavelength measurement. The data of the two-wavelength measurement is obtained by subtracting the sub-wavelength measurement value from the main wavelength measurement value. As a result, the influence of the coloring / turbidity components of the sample reaction solution and the blemishes of the measurement cell are eliminated, and a substantial change in absorbance can be obtained. In this method, the main wavelength of the main wavelength and the sub-wavelength used for the two-wavelength measurement can be used as the wavelength for one-wavelength measurement. 2 above
As the wavelength, for example, in the case of GOT enzyme activity measurement, the main wavelength is 340n
m, subwavelength 375 nm. J 1 above, the intended rate measurement section, in this case two-wavelength measurement section, in the high unit sample having an activity value of about the unsteady state in the non-stationary state, select as clear and colorless as possible,
In this case, the absorbance (Ac 1 ) at the time of transition from the steady state to the non-steady state in the temporal change of the absorbance measured at one wavelength every predetermined time is set as the rate measurement limit absorbance. The J 0 is a very rare, because if the sample exhibits a super high unit may be insufficient substrate in the reaction solution immediately after the rate measurement start is determined absorbance this, J 1 And the value derived from the absorbance of the reagent blank solution after one-wave measurement. J 1 ′ is the absorbance (Ac 1 ) when J 1 is set.
Is subtracted from the absorbance (Ab 1 ) of the one-wavelength measurement of the reagent blank solution at the measurement position, and is set as the absorbance corresponding to the effective rate measurement limit. As a result, the influence of the coloring / turbid component of the sample reaction solution is offset. The effective permissible absorbance change (J 2), for high unit specimens at the J 1 setting, the time course of absorbance obtained by the two-wavelength measurement of the main wavelength and sub-wavelength used for rate measurement, unsteady from stationary The absolute absorbance (Ac 2 ) is determined when the limit absorbance (Ac 2 ) is determined, and the absorbance change (Ac 2 −Ab 2 ) is obtained by subtracting the absorbance (Ab 2 ) of the reagent blank solution for the two wavelength measurement at the measurement point.
Is converted into a change in absorbance allowed at the two-wavelength measurement start point (t M ). For the conversion method, reference is made to the description of the embodiment described later. In the method of the present invention, J 0 , J 1 , J 1 ′ and J 2
In the data sequence of the absorbance values obtained from the measurements at predetermined time intervals, the one-wavelength measured value at the start point and the end point is determined by J 0 and J 1 (or J 1 ′), and the two-wavelength measured value determination by J 2 is performed with respect to. That is, when the data value at the start point satisfies J 0 and the data value at the end point satisfies J 1 or J 1 ′, the distance from the two-wavelength measurement start point (t M ) to the two-wavelength measurement end point (t N ) Absorbance change is J 2
Therefore, the steady state is maintained over the entire two-wavelength measurement region (t M to t N ), and the rate analysis is performed using all the data in this region. Become. In the above case, when the data value at the end point measured by one wavelength does not satisfy J 1 or J 1 ′, the start point of two-wavelength measurement (t M )
Absolute value is selected maximum becomes measurement points (tn) without exceeding the J 2, further change in absorbance obtained from the change in absorbance (△ A) of the two-wavelength measurement interval (t M tn) of absorbance change from Absolute value of rate, | △ A | / tn−t M is the whole range of two wavelength measurement (t M to t N )
Rate of absorbance change determined by J 2 for, when greater than or equal to J 2 / t N -t M is, t M tn is determined that the rate reaction section was maintained steady state, thus to reduce the rate measurement section rate Will be analyzed. Thus, in the method of the present invention, it is not determined for the ultra-high unit analyte, if absorbance at the start point by 1 wavelength measurement exceeds J 0, the absorbance change of at least three points from the two-wavelength measurement starting point is the J 2 If and the such absorbance change rate exceeds, | △ a | / tn- t M becomes to be that effect determined in each case when less than J 2 / t N -t M. (E) Function According to the present invention, the data sequence of the absorbance values obtained by measuring the start point and the end point of the measurement within a predetermined time range with one wavelength measurement and measuring the two wavelengths between the start and end points is determined in advance by one wavelength measurement. It is determined from the rate measurement limit absorbance (J 0 ) set by ( 1 ) whether or not the starting point is already in an unsteady state due to substrate shortage. Determined data sequence and a steady state with a J 0 whether a steady state is determined the endpoint with the effective limit absorbance. If the end point is determined to be in the steady state, the data sequence of the entire two-wavelength measurement is used for rate analysis. However, when the end point is determined to be in an unsteady state, the change in absorbance from the start point of the two-wavelength measurement to at least three points is selected by a change within the substantially allowable absorbance change set in advance by the two-wavelength measurement, First, those that have fallen into the unsteady state during this period are excluded.
With respect to the selected one, the change in absorbance from the two-wavelength measurement start point is within the above-described substantially allowable change in absorbance, and the rate of change in absorbance at that time gives an absorbance change rate equal to or greater than the rate of change of absorbance determined by the change in substantially allowable absorbance over the entire two-wavelength measurement range. The data sequence up to the data sequence is determined to be a data sequence under a steady state, and rate analysis is performed using this data sequence. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. (F) Example An example in which an automatic analyzer shows a constant absorbance change for a relatively long time in an enzyme activity measurement by a two-reagent method within a predetermined time range (ti to t N + 1 , but set at equal intervals). explain. (I) Analysis conditions [measurement wavelength] Measurement start point (ti) immediately after dispensing (t 0 ) of the second reagent (R2): λ 1 2 wavelength measurement section (t M to t N ): λ 1 / λ 2 measurement End point (t N + 1 )… λ 1 [Measurement data] Absorbance of sample reaction solution ti …… Ait M to t N … A M to A N t N + 1 …… A N + 1 absorbance ...... Ab 1 However, λ 1 is the main wavelength, is λ 2 which is a by-wavelength. (Ii) rate measurement limit absorbance (J 0 and J 1), the effective limit absorbance (J 1 ') and substantially acceptable absorbance change (J 2) for the two-wavelength measurement period as shown in FIG. 1 determining the J 1 (t M ~ T N ), select a high-unit sample that is in an unsteady state and a colorless and transparent sample as possible, and perform one-wavelength (λ 1 ) measurement on such a sample in the above-mentioned predetermined time range (when a reagent is added: t
The measurement is performed from 0 to the end of measurement: t N ). Based on the absorbance change (mABS / min) (a) appearing on the time series in this range, the boundary absorbance (mAB
Determining S) as J 1. Determination of J 2 As shown in FIG. 2, the two-wavelength (λ 1 / λ 2 ) measurement of the high unit sample and the reagent blank (for example, using physiological saline as a sample) was performed at the time of the determination of J 1 above. The change in absorbance over time (b) is determined by measuring in the same manner, and the absorbance (AC 2 ) at which the reaction process of the high unit sample shifts from the steady state to the unsteady state, and the absorbance (Ab 2 ) is obtained, reagent addition JP (t 0), the two-wavelength measurement start time (t M) and the third point of the two-wavelength measurement point (t M + 2) approximately in proportion calculated for at t M point acceptable absorbance change to the J 1, is calculated by the following equation. J 2 = (AC 2 −Ab 2 ) · [(t M + 2 −t M ) / (t M + 2 −t 0 )] Determination of J 0 J 1 previously determined, absorbance of one-wavelength measurement of reagent blank solution (Ab
Since 1) and, considered in the same manner as "determination of J 2", is calculated by the following equation. J 0 = (AC 1 -Ab 1 -AC 1) · [(t M + 2 -ti) / (t M + 2 -t 0) ] 'determination of J 1' J = J 1 ± (Ai-Ab 1 (However, +: when observing a change in absorbance focusing on the substrate concentration, −: when observing focusing on the product concentration) Next, J 0 , J 1 , J 1 ′, J 2 The determination will be described with reference to reaction time courses of various sample reaction solutions (a to e) shown in FIG. These reaction time courses were created based on the data sequence obtained under the above analysis conditions. Respectively two wavelength measurement absorbance, × is J 0, J 1, J 1 ', J 2 determined by the absorbance of ultra-high range determined value the. First, the absorbance Ai of the specimen reaction at the starting point (ti) of each data sequence is compared with J 0. As a result, the data string indicating J 0 ≧ Ai already indicates the unsteady state,
(In other words, the display of the super high price) is made ((a)
). On the other hand, for a data string in which j 0 <Ai, the change in absorbance from the data from the two-wavelength measurement start point to three points | A M + 2 −A M |
Is compared with the change in real absorbance (J 2 ). As a result, J 2
<| A M + 2 -A M | For data string indicating the interval (t M ~
Since an unsteady state is indicated within t M + 2 ), “measurement impossible” is displayed in the same manner as described above (case (b)). Before the above process, the effective limit absorbance (J 1 ′) is calculated as follows. J 1 ′ = J 1 + (Ai−Ab 2 ) (However, when Ai <Ab 1 , J 1 ′ = J 1 ) J 2 ≧ | A M + 2 −A M | The data value (A N + 1 ) at the end point (t N + 1 ) of the sequence is compared with the already calculated J 1 ′, and for the data sequence where J 1 ′ <A N + 1 , two-wavelength measurement is performed. throughout (t M ~t N) steady state is held for, hence the absorbance change ratio by the following equation,
△ A / △ t = (A N -A M) / specimen concentration based on (t N -t M) is calculated. However, since the steady state is not guaranteed for the entire two-wavelength measurement range for the data string satisfying J 1 ′ ≧ A N + 1 , J 2 ≧ | An−A M | (M + 2 ≦ n ≦ N) is satisfied. 2 wavelength measurement points to give measurement data an for (tn) is selected, further absorbance change rate from t M to tn, | an-a M | / (tn-t M)
There the case of more than the absorbance change ratio determined by J 2 / (t N -t M ) is 2 wavelength measurement interval t M tn is determined that a steady state holding sections, based on the rate of absorbance change at this interval Thus, the analyte concentration is calculated. Also, | An−A M | / (tn−t M ) <J 2 /
In the case of (t N -t M) (if the (e)) for this data string is to be made marked "not measurable". In addition, if the above determination process is represented by a flowchart, the fourth determination is performed.
As shown in the figure. However, in FIG.
Each signal in (e) corresponds to each symbol in the above description. According to the above method, the two-wavelength measurement section holding the steady state is accurately selected, and the analyte concentration is calculated for that section based on the rate of change in absorbance. (G) Effects of the Invention According to the present invention, the section in which the steady state is maintained is determined, and the analyte concentration is calculated from the absorbance change rate in this section, so that the rate analysis can be performed with high accuracy. This also eliminates the possibility that the ultra-high unit sample is mistaken for the low unit sample, thereby improving the reliability of the rate analysis method.

【図面の簡単な説明】 第1図はJ0、J1決定の方法を説明するグラフ図、第2図
はJ2決定の方法を説明するグラフ図、第3図はこの発明
の方法を説明する各種の反応タイムコースを示すグラフ
図、第4図は第3図の説明に対応するフローチャート図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph illustrating a method of determining J 0 and J 1 , FIG. 2 is a graph illustrating a method of determining J 2, and FIG. 3 illustrates a method of the present invention. FIG. 4 is a graph diagram showing various reaction time courses, and FIG. 4 is a flowchart diagram corresponding to the description of FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−155835(JP,A) 特開 昭57−72048(JP,A) 特開 昭59−56554(JP,A) 特開 昭56−108941(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-56-155835 (JP, A)                 JP-A-57-72048 (JP, A)                 JP-A-59-56554 (JP, A)                 JP-A-56-108941 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.自動分析装置により所定時間範囲内における検体反
応液の所定時間毎の吸光度を測定するレート分析法にお
いて、測定の始点および終点を1波長測定で、その間を
2波長測定で各々測定し、得られる吸光度値のデータ列
から検体反応液中の被検物濃度を演算する方法からな
り、 (a)上記始点でのデータを、1波長測定に基づいて予
め設定されたレート測定限界吸光度(J0)と比較し、 (b)上記比較によりレート測定限界内であると判定さ
れたものについて、さらに前記終点でのデータが、予め
設定されたレート測定限界吸光度(J1)もしくは試薬ブ
ランク液の吸光度に基づいて修正された実効限界吸光度
(J1′)で規制されるレート測定可能範囲内であるとき
は、2波長測定全域(tM〜tN)のデータ列すべてから吸
光度変化率を演算し、 (c)上記終点のデータがレート測定限界を越えるとき
は、2波長測定の開始点(tM)から少なくとも3点の吸
光度変化を、2波長測定に基づいて予め設定された実質
許容吸光度変化(J2)と比較し、 (d)上記比較により許容以内であると判定されたもの
については、下記条件; (△A/tn−tM)≧(J2/tM〜tN) ただし、△A:2波長測定開始点(tM)から上記J2を越え
ない最大吸光度変化 tn:上記△Aを与える2波長測定点 を満足する場合は△A/tn−tMに基づいて被検物濃度を演
算し、満足しない場合はレート分析不可と判断すること
を特徴とする自動レート分析法。
(57) [Claims] In a rate analysis method in which an automatic analyzer measures the absorbance of a sample reaction solution at predetermined time intervals within a predetermined time range, the start point and the end point of measurement are measured by one wavelength measurement, and the two points are measured by two wavelength measurement in between. The method comprises calculating the analyte concentration in a sample reaction solution from a data sequence of values. (A) The data at the starting point is calculated as a rate measurement limit absorbance (J 0 ) preset based on one-wavelength measurement. (B) For those determined to be within the rate measurement limit by the above comparison, the data at the end point is further determined based on the preset rate measurement limit absorbance (J 1 ) or the absorbance of the reagent blank solution. the effective limitation absorbance corrected Te when (J 1 ') is in the rate measurement range is restricted, the operation rate of absorbance change from all the data strings of the two-wavelength measurement throughout (t M ~t N) (C) when the data at the end point exceeds the rate measurement limit, at least three changes in absorbance from the start point (t M ) of the two-wavelength measurement are determined by the substantially allowable absorbance preset based on the two-wavelength measurement. change (J 2) as compared to, (d) for those determined to be within acceptable by the comparison, the following conditions; (△ a / tn-t M) ≧ (J 2 / t M ~t N) However, ΔA: the maximum absorbance change not exceeding J 2 from the two-wavelength measurement start point (t M ) tn: if the two-wavelength measurement point giving the above ΔA is satisfied, based on ΔA / tn−t M An automatic rate analysis method that calculates the analyte concentration and determines that rate analysis is not possible if the concentration is not satisfied.
JP62105681A 1987-04-28 1987-04-28 Automatic rate analysis Expired - Lifetime JP2732448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105681A JP2732448B2 (en) 1987-04-28 1987-04-28 Automatic rate analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105681A JP2732448B2 (en) 1987-04-28 1987-04-28 Automatic rate analysis

Publications (2)

Publication Number Publication Date
JPS63271140A JPS63271140A (en) 1988-11-09
JP2732448B2 true JP2732448B2 (en) 1998-03-30

Family

ID=14414163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105681A Expired - Lifetime JP2732448B2 (en) 1987-04-28 1987-04-28 Automatic rate analysis

Country Status (1)

Country Link
JP (1) JP2732448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814581B2 (en) * 1988-11-30 1996-02-14 日立化成工業株式会社 Antigen or antibody quantification method
CN110160980B (en) * 2019-06-25 2021-12-28 迈克医疗电子有限公司 Method and device for analyzing sample absorbance change rate and optical detection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108941A (en) * 1980-02-01 1981-08-28 Hitachi Ltd Automatic rate analyzing method
JPS56155835A (en) * 1980-05-02 1981-12-02 Olympus Optical Co Ltd Component analyzing method
JPS5772048A (en) * 1980-10-24 1982-05-06 Olympus Optical Co Ltd Component analyzing method
JPS5946554A (en) * 1982-09-09 1984-03-15 Jeol Ltd Evaluation of serum information

Also Published As

Publication number Publication date
JPS63271140A (en) 1988-11-09

Similar Documents

Publication Publication Date Title
US7118916B2 (en) Method of reducing analysis time of endpoint-type reaction profiles
Pezzaniti et al. Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine
Coe et al. Variations in vitreous humor chemical values as a result of instrumentation
JP2004132969A (en) Method and system for determining acceptability of signal data collected from prothrombin time test strip
Kaplan et al. Hemoglobin A1 in hemolysates from healthy and insulin-dependent diabetic children, as determined with a temperature-controlled minicolumn assay.
Barreau et al. The effect of the haematocrit value on the determination of glucose levels by reagent‐strip methods
Hagvik Glucose measurement: time for a gold standard
Müller-Bardorff et al. Evaluation of a point-of-care system for quantitative determination of troponin T and myoglobin
EP0268025B1 (en) Method for analyzing a haemolysed blood sample
JP2732448B2 (en) Automatic rate analysis
Wandrup et al. " Stat" measurements of L-lactate in whole blood and cerebrospinal fluid assessed.
Kallner et al. Does the uncertainty of commonly performed glucose measurements allow identification of individuals at high risk for diabetes?
Peake et al. Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?
US20100292932A1 (en) Method and apparatus for estimating features of target materials by using kinetic change information
Baig et al. Comparision between bed side testing of blood glucose by glucometer vs centralized testing in a tertiary care hospital
Brunton et al. An assessment of a reflectance meter system for measurement of plasma or blood glucose in the clinic or side ward
McDowell Benzethonium chloride method for proteins adapted to centrifugal analysis.
Ross et al. Glycated haemoglobin and glycated plasma protein, a comparative study
Ruhenstroth‐Bauer et al. The erythrocyte aggregation value as a measure of the risk of myocardial infarction and arteriosclerosis of peripheral arteries
JPS6060558A (en) Analyzing method for plural measurements
SU1720004A1 (en) Method for determining albumin-globulin blood coefficient
Spencer et al. The Measurement of Amniotic Fluid α2 Macroglobulin by Fixed Time Kinetic Immunoturbidimetry
Ercan et al. Biological variation components of glycated hemoglobin HbA1c on tosoh G7 HPLC
JPH01101447A (en) Method for measuring turbidity in absorptiometric analysis
Church et al. Whole blood glucose determination in dogs using dextrostix and the eyetone reflectance colorimeter