JPH10103803A - Gas cycle equipment - Google Patents

Gas cycle equipment

Info

Publication number
JPH10103803A
JPH10103803A JP25840396A JP25840396A JPH10103803A JP H10103803 A JPH10103803 A JP H10103803A JP 25840396 A JP25840396 A JP 25840396A JP 25840396 A JP25840396 A JP 25840396A JP H10103803 A JPH10103803 A JP H10103803A
Authority
JP
Japan
Prior art keywords
annular body
teeth
elastic annular
rigid annular
gas cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25840396A
Other languages
Japanese (ja)
Other versions
JP3394665B2 (en
Inventor
Sumio Yagiyuu
寿美夫 柳生
Tomoyuki Morikawa
知之 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP25840396A priority Critical patent/JP3394665B2/en
Publication of JPH10103803A publication Critical patent/JPH10103803A/en
Application granted granted Critical
Publication of JP3394665B2 publication Critical patent/JP3394665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a gas communicating passage for a gas cycle for coupling cylinders to one another. SOLUTION: The gas cycle equipment comprises a phase control mechanism K for communicating cylinder chambers C2, C3 having pistons p2, p3 coupled to a first rotary shaft 8 with a cylinder chamber C1 having a piston p1 coupled to a second rotary shaft 9 via gas communicating passages 3a, 3b for a gas cycle so that a non-operating state for interlocking and synchronously rotating the shafts 8, 9 and an operating state for relatively rotating the shafts 8, 9 at a predetermined angle to alter a phase difference of both the shafts 8 and 9 in the case of interlocking and synchronously rotating are switchable. In this case, the shafts 8, 9 are disposed at the same side with respect to the mechanism K, and the pistons pi, p2, p3 coupled to the shafts 8, 9 are put together and disposed to one side of the mechanism K.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆スターリングサ
イクル・ヒートポンプやスターリングサイクル・エンジ
ンなどのガスサイクル機器に関し、詳しくは、第1回転
軸に連結したピストンを備えるシリンダ室と、第2回転
軸に連結したピストンを備えるシリンダ室とを、ガスサ
イクル用のガス連通路を介して連通させ、そして、第1
及び第2回転軸を連動同期回転させる非作用状態と、第
1及び第2回転軸を相対回転動作させて、連動同期回転
の際の両回転軸の位相差を変更する作用状態とに切り換
え自在な位相制御機構を設けるガスサイクル機器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas cycle device such as a reverse Stirling cycle heat pump or a Stirling cycle engine, and more particularly, to a cylinder chamber having a piston connected to a first rotation shaft and a second rotation shaft. A cylinder chamber having a connected piston is communicated with the cylinder chamber through a gas communication passage for a gas cycle.
And a non-operating state in which the first and second rotating shafts are rotated relative to each other to change the phase difference between the two rotating shafts during the synchronized rotating operation. The present invention relates to a gas cycle device provided with a simple phase control mechanism.

【0002】[0002]

【従来の技術】この種のガスサイクル機器は、上記の位
相制御機構を非作用状態にして、第1及び第2回転軸を
連動同期回転(すなわち、位相差を一定に保つように互
いに等しい速度で連動回転)させることにより、第1回
転軸の側のピストンと第2回転軸の側のピストンとを一
定位相差で動作させてガスサイクル運転を行い、また、
位相制御機構を作用状態にして、連動同期回転の際の両
回転軸の位相差を変更することにより、第1回転軸の側
のピストンと第2回転軸の側のピストンとの位相差を変
更して、ガスサイクル特性の変更を行うものである。
2. Description of the Related Art A gas cycle apparatus of this type has an inoperative state of the above-mentioned phase control mechanism and rotates the first and second rotating shafts synchronously with each other (that is, at the same speed so as to keep the phase difference constant). And the piston on the side of the first rotary shaft and the piston on the side of the second rotary shaft are operated with a constant phase difference to perform gas cycle operation.
The phase difference between the piston on the first rotating shaft and the piston on the second rotating shaft is changed by changing the phase difference between the two rotating shafts during the synchronized rotation by setting the phase control mechanism in the operating state. Then, the gas cycle characteristics are changed.

【0003】ところで、従来、この種のガスサイクル機
器では、いわゆる差動機構を用いて位相制御機構を構成
することに対し、この位相制御機構を単純に両回転軸の
突き合わせ端部間に介装する形式、すなわち、端部どう
しを突き合わせる状態に第1及び第2回転軸を一直線状
に配置し、これら回転軸どうしの連結部に位相制御機構
を介装する形式を採っていた(例えば、特願平8−73
834号参照)。
Conventionally, in this type of gas cycle equipment, a phase control mechanism is configured using a so-called differential mechanism, but this phase control mechanism is simply interposed between the butting ends of both rotating shafts. That is, the first and second rotating shafts are arranged in a straight line in a state where the ends are abutted with each other, and a phase control mechanism is interposed at a connecting portion between these rotating shafts (for example, Japanese Patent Application 8-73
No. 834).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の従来形
式では、位相制御機構の介装の為に、第1回転軸の側の
ピストンを有するシリンダ室と第2回転軸の側のピスト
ンを有するシリンダ室との離間距離が大きくなって、こ
れらシリンダ室どうしを結ぶガス連通路が長尺化し、こ
の為、ガス連通路での断熱変化などによるロスが大きく
なって機器効率が低下する、また、配管スペースが大き
くなって機器が大型化するなどの問題があった。
However, in the above-mentioned conventional type, a cylinder chamber having a piston on the first rotating shaft side and a piston on the second rotating shaft side are provided for interposing the phase control mechanism. The distance between the cylinder chamber and the cylinder chamber increases, and the gas communication path connecting these cylinder chambers becomes longer. For this reason, loss due to adiabatic change in the gas communication path increases, and the equipment efficiency decreases. There were problems such as an increase in piping space and equipment size.

【0005】以上の実情に対し、本発明の主たる課題
は、位相制御機構を合理的に配備することにより、上記
問題の解消を図る点にある。
[0005] In view of the above circumstances, a main object of the present invention is to solve the above problem by rationally disposing a phase control mechanism.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

〔1〕請求項1記載の発明では、第1及び第2回転軸を
位相制御機構に対し同じ側に配置して、これら第1及び
第2回転軸に連結のピストンを位相制御機構の一方側に
集約配置するから、先述の従来形式、すなわち、一直線
状に配置した第1及び第2回転軸の突き合わせ端部間に
位相制御機構を介装する構成上、回転軸芯方向におい
て、この位相制御機構の両側に、第1回転軸の側のピス
トンと第2回転軸の側のピストンとが振り分けられる形
式に比べ、第1回転軸の側のピストンを有するシリンダ
室と第2回転軸の側のピストンを有するシリンダ室との
離間距離を小さくすることができ、これにより、これら
シリンダ室どうしを結ぶガス連通路を短尺化することが
できる。そして、このことから、ガス連通路での断熱変
化などによるロスを抑制して機器効率を向上させること
ができ、また、配管スペースを小さくして機器をコンパ
クト化することができる。
[1] According to the first aspect of the invention, the first and second rotating shafts are arranged on the same side with respect to the phase control mechanism, and the pistons connected to the first and second rotating shafts are connected to one side of the phase control mechanism. Because the phase control mechanism is interposed between the butting ends of the first and second rotary shafts arranged in a straight line, the phase control is performed in the center direction of the rotary shaft. A cylinder chamber having a piston on the first rotating shaft side and a cylinder chamber having a piston on the second rotating shaft side are different from a type in which a piston on the first rotating shaft side and a piston on the second rotating shaft side are divided on both sides of the mechanism. The separation distance from the cylinder chamber having the piston can be reduced, whereby the gas communication passage connecting these cylinder chambers can be shortened. From this, it is possible to suppress a loss due to a change in heat insulation in the gas communication passage and to improve the efficiency of the device, and to reduce a piping space to make the device compact.

【0007】〔2〕請求項2記載の発明では、第1及び
第2回転軸を、その一方の内部に他方を同芯状に挿通配
置する二重軸構造にするから、例えば、第1及び第2回
転軸を互いに離間する平行姿勢に配置して、これら回転
軸の一端側に位相制御機構を配備するといった形態で、
前記の請求項1記載の発明を実施するに比べ、軸配置を
コンパクトにして機器のコンパクト化を促進できる。
[2] According to the second aspect of the present invention, the first and second rotating shafts have a double shaft structure in which one of the first and second rotating shafts is concentrically inserted into the other. In a form in which the second rotation shafts are arranged in parallel postures separated from each other, and a phase control mechanism is provided at one end of these rotation shafts,
Compared with the embodiment of the first aspect of the present invention, the arrangement of the shafts can be made more compact and the equipment can be made more compact.

【0008】〔3〕請求項3記載の発明では、前記の二
重軸構造における外側回転軸のピストン連結用偏芯軸部
を、その断面内に回転軸芯が位置する径に形成すること
により、その外側回転軸に対しピストンを直接的に連結
する形態を採りながら二重軸構造を実現でき、このこと
から、例えば、外側回転軸に対し適当な別の中間連動機
構を介してピストンを間接的に連結するといった形態で
二重軸構造を実現するに比べ、機器のコンパクト化を一
層効果的に促進することができる。
[3] According to the third aspect of the invention, the eccentric shaft portion for connecting the piston of the outer rotating shaft in the double shaft structure is formed to have a diameter such that the rotating shaft center is located in a cross section thereof. Therefore, it is possible to realize a double shaft structure while adopting a form in which the piston is directly connected to the outer rotating shaft. For this reason, for example, the piston is indirectly connected to the outer rotating shaft via another appropriate intermediate interlocking mechanism. This makes it possible to further effectively reduce the size of the device, as compared with a case where a dual-shaft structure is realized by a form in which the components are connected to each other.

【0009】〔4〕請求項4記載の発明では(図3参
照)、第1及び第2非円形部材16,17のうちの一方
の非円形部材17を固定とし、かつ、他方の非円形部材
16を相対回転操作用モータ19の出力軸19aに連結
する構成において、このモータ19による他方の非円形
部材16の回転操作を停止した状態では、第1弾性環状
体14を介しての第1剛性環状体11と第2剛性環状体
12との連動回転において生じる差動分と、第2弾性環
状体15を介しての第2剛性環状体12と第3剛性環状
体13との連動回転において生じる差動分とを相殺させ
て、第1剛性環状体11と第3剛性環状体13とを一体
的に連動回転させ、これにより、位相制御機構Kの非作
用状態として、第1回転軸8と第2回転軸9とを一定位
相差に保って連動同期回転させる状態を得る。
[4] According to the fourth aspect of the present invention (see FIG. 3), one of the first and second non-circular members 16, 17 is fixed and the other non-circular member is fixed. In the configuration in which the rotating operation of the other non-circular member 16 by the motor 19 is stopped, the first rigidity via the first elastic annular body 14 is stopped. A differential component generated in the interlocking rotation between the annular body 11 and the second rigid annular body 12 and in the interlocking rotation between the second rigid annular body 12 and the third rigid annular body 13 via the second elastic annular body 15. By offsetting the differential component, the first rigid annular body 11 and the third rigid annular body 13 are integrally rotated in conjunction with each other, whereby the phase control mechanism K is brought into an inoperative state and the first rotary shaft 8 Interlocked with the second rotating shaft 9 while maintaining a constant phase difference , A state of rotating.

【0010】また、相対回転操作用モータ19により上
記他方の非円形部材16を所要角度だけ回転操作するこ
とで、第1弾性環状体14を介しての第1剛性環状体1
1と第2剛性環状体12との連動回転において生じる差
動分と、第2弾性環状体15を介しての第2剛性環状体
12と第3剛性環状体13との連動回転において生じる
差動分とに差を生じさせて、第1剛性環状体11と第3
剛性環状体13とを相対回転動作させ、これにより、位
相制御機構Kの作用状態として、第1回転軸8と第2回
転軸9とを相対回転動作させて両回転軸8,9の位相差
を変更する状態を得る。
When the other non-circular member 16 is rotated by a required angle by a relative rotation operation motor 19, the first rigid annular member 1 via the first elastic annular member 14 is rotated.
A differential component generated in the interlocking rotation of the first and second rigid annular members 12 and a differential component generated in the interlocking rotation of the second rigid annular member 12 and the third rigid annular member 13 via the second elastic annular member 15. A difference between the first rigid annular body 11 and the third rigid annular body 11
The rigid annular body 13 is relatively rotated, whereby the phase control mechanism K is operated so that the first rotating shaft 8 and the second rotating shaft 9 are relatively rotated so that the phase difference between the two rotating shafts 8, 9 is obtained. Get the state to change.

【0011】すなわち、この構成であれば、内周歯列の
剛性環状体と外周歯列の弾性環状体と非円形部材との三
者を用いた差動構造を採用するものとしながらも、相対
回転操作用モータの機体そのものを回転軸とともに回転
させる(先述の特願平8−73834号参照)といった
ことは不要となって、相対回転操作用モータの機体を固
定にできることから、このモータに対する操作信号線の
接続構造を簡略化し得るとともに、モータ機体の回転に
動力を費やすことを無くして動力ロスを低減することが
できる。
That is, according to this configuration, the differential structure using the three members of the rigid annular member of the inner peripheral teeth, the elastic annular member of the outer peripheral teeth, and the non-circular member is adopted. It is not necessary to rotate the body of the rotary operation motor itself together with the rotating shaft (see the above-mentioned Japanese Patent Application No. 8-73834), and the body of the relative rotation operation motor can be fixed. The connection structure of the signal lines can be simplified, and the power loss can be reduced without spending power for rotating the motor body.

【0012】[0012]

【発明の実施の形態】図1は、スターリング機器を用い
たヒートポンプ装置を示し、1はガスサイクル運転用原
動機としての駆動モータ、2はガスサイクル機器部であ
り、このガスサイクル機器部2には、ピストンp1,p
2,p3の動作に伴い個別に作動ガスGの吐出と吸入を
繰り返す高温シリンダ室C1と中温シリンダ室C2と低
温シリンダ室C3を設け、そして、高温シリンダ室C1
と中温シリンダ室C2とをガス連通路3aを介して連通
させるとともに、中温シリンダ室C2と低温シリンダ室
C3とをガス連通路3bを介して連通させ、これらガス
連通路3a,3bの各々に、蓄熱材内装の再生熱交換器
4a,4bを介装してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a heat pump device using a Stirling device, 1 is a drive motor as a motor for driving a gas cycle, 2 is a gas cycle device portion, and 2 is a gas cycle device portion. , Piston p1, p
2, a high-temperature cylinder chamber C1, a medium-temperature cylinder chamber C2, and a low-temperature cylinder chamber C3 that repeatedly discharge and inhale the working gas G in accordance with the operations of p3,
And the medium-temperature cylinder chamber C2 are communicated via a gas communication passage 3a, and the medium-temperature cylinder chamber C2 and the low-temperature cylinder chamber C3 are communicated via a gas communication passage 3b. Each of these gas communication passages 3a and 3b The regenerative heat exchangers 4a and 4b inside the heat storage material are interposed.

【0013】また、5は高温シリンダ室C1に熱入力す
る加熱器、6は中温シリンダ室C2での発生温熱を取り
出す温熱取出用の熱交換器、7は低温シリンダ室C3の
発生冷熱を取り出す冷熱取出用の熱交換器である。
Reference numeral 5 denotes a heater for inputting heat into the high-temperature cylinder chamber C1, 6 denotes a heat exchanger for extracting hot heat generated in the medium-temperature cylinder chamber C2, and 7 denotes cold heat for extracting cold generated in the low-temperature cylinder chamber C3. It is a heat exchanger for removal.

【0014】つまり、このガスサイクル機器部2では、
各ピストンp1〜p3の動作とともに、各シリンダ室C
1〜C3を、ガス連通路3a,3bによる連通下で、ま
た、加熱器5や各熱交換器4a,4b,6,7の作用下
で作動ガス吐出吸入させることにより、高温シリンダ室
C1と中温シリンダ室C2との組については、加熱器5
による高温シリンダ室C1への熱入力の下でスターリン
グサイクルを実行させてスターリングエンジンとして機
能させ、この発生動力を駆動モータ1からの付与動力に
付加する形態で後述のスターリングヒートポンプの運転
に使用する。
That is, in the gas cycle equipment section 2,
With the operation of each piston p1 to p3, each cylinder chamber C
1 to C3 are communicated by the gas communication passages 3a and 3b, and the working gas is discharged and sucked under the action of the heater 5 and each of the heat exchangers 4a, 4b, 6, and 7, so that the high temperature cylinder chamber C1 and For the set with the medium temperature cylinder chamber C2, the heater 5
A stirling cycle is executed under the heat input to the high-temperature cylinder chamber C1 by the above-described method to function as a Stirling engine, and the generated power is added to the applied power from the drive motor 1 and used for the operation of a Stirling heat pump described later.

【0015】また、中温シリンダ室C2と低温シリンダ
室C3との組については、駆動モータ1からの付与動力
及び上述のスターリングエンジンによる付与動力で逆ス
ターリングサイクルを実行させてスターリングヒートポ
ンプとして機能させ、これにより、その熱出力として、
低温シリンダ室C3での発生冷熱を冷熱取出用の熱交換
器7から取り出すとともに、中温シリンダ室C2での発
生温熱を温熱取出用の熱交換器6から取り出す。
Further, for the set of the medium-temperature cylinder chamber C2 and the low-temperature cylinder chamber C3, a reverse Stirling cycle is executed by using the applied power from the drive motor 1 and the above-mentioned applied power from the Stirling engine to function as a Stirling heat pump. Due to its heat output,
The cold generated in the low-temperature cylinder chamber C3 is taken out of the heat exchanger 7 for taking out cold heat, and the heat generated in the medium-temperature cylinder chamber C2 is taken out of the heat exchanger 6 for taking out hot heat.

【0016】なお、ガスサイクル機器部2における作動
ガスGには、ヘリウムガスや水素ガス、あるいは空気な
ど、種々の気体を採用でき、また、加熱器5により高温
シリンダ室C1へ入力する熱としては、バーナによる発
生熱や他の装置・設備で生じる排熱、あるいは、原動機
としてエンジンを用いる場合にはそのエンジン排熱な
ど、種々の熱を採用できる。
Various gases such as helium gas, hydrogen gas, and air can be used as the working gas G in the gas cycle equipment section 2. The heat input to the high temperature cylinder chamber C1 by the heater 5 is as follows. Various types of heat can be employed, such as heat generated by a burner, exhaust heat generated by other devices or equipment, or when an engine is used as a prime mover, the engine exhaust heat.

【0017】ガスサイクル機器部2における伝動構造に
ついては、図1〜図3に示すように、駆動モータ1の出
力軸1aに第1回転軸8の基端を直結し、この第1回転
軸8のクランク部8aに、中温シリンダ室C2のピスト
ンp2と低温シリンダ室C3のピストンp3とを連結
し、また、これら中温及び低温シリンダ室C2,C3の
ピストンp2,p3よりも第1回転軸8の先端側(すな
わち、本実施形態では駆動モータ1に対する連結側とは
反対側)において、第1回転軸8に対し第2回転軸9を
二重軸構造で相対回転自在に外嵌させ、この第2回転軸
9のクランク部9aに高温シリンダ室C1のピストンp
1を連結してある。
As shown in FIGS. 1 to 3, the transmission structure of the gas cycle equipment section 2 is such that the output shaft 1a of the drive motor 1 is directly connected to the base end of the first rotation shaft 8, and the first rotation shaft 8 is connected to the output shaft 1a. The piston p2 of the medium-temperature cylinder chamber C2 and the piston p3 of the low-temperature cylinder chamber C3 are connected to the crank portion 8a of the medium-temperature cylinder chamber C2. On the distal end side (that is, on the opposite side to the connection side to the drive motor 1 in the present embodiment), the second rotating shaft 9 is externally fitted to the first rotating shaft 8 in a double-shaft structure so as to be relatively rotatable. The piston p of the high-temperature cylinder chamber C1 is
1 is connected.

【0018】そして、この二重軸構造における軸先端部
には、第1回転軸8と第2回転軸9とを連動同期回転
(すなわち、位相差を一定に保つように互いに等しい速
度で連動回転)させる非作用状態と、これら第1及び第
2回転軸8,9を所要角度だけ相対回転動作させて、連
動同期回転の際の両回転軸8,9の位相差を変更する作
用状態とに切り換え自在な位相制御機構Kを連設してあ
る。
At the tip of the shaft in this double shaft structure, the first rotating shaft 8 and the second rotating shaft 9 are interlocked synchronously (that is, interlockingly rotated at the same speed so as to keep the phase difference constant). And the operation state in which the first and second rotating shafts 8 and 9 are relatively rotated by a required angle to change the phase difference between the two rotating shafts 8 and 9 during the synchronized rotation. A switchable phase control mechanism K is provided in series.

【0019】つまり、加熱器5からの熱入力によりガス
サイクル機器部2をエンジン機能させて得る動力と駆動
モータ1からの付与動力とで、ガスサイクル機器部2を
ヒートポンプ機能させて冷熱及び温熱の熱出力を得る
が、この運転にあたり、上記の位相制御機構Kにより、
第1回転軸8と第2回転軸9との連動同期回転の際の位
相差を変更して、高温シリンダ室C1のピストンp1
と、他の二つのシリンダ室C2,C3のピストンp2,
p3とのピストン動作の位相差関係を調整することで、
ガスサイクル特性を変更して駆動モータ1からの動力入
力と加熱器5からの熱入力との入力比を適宜に変更調整
できるようにしてある。
That is, the power obtained by causing the gas cycle device section 2 to function as an engine by the heat input from the heater 5 and the applied power from the drive motor 1 cause the gas cycle device section 2 to function as a heat pump to generate cold and hot heat. A heat output is obtained. In this operation, the phase control mechanism K
The phase difference at the time of the synchronous rotation of the first rotary shaft 8 and the second rotary shaft 9 is changed, and the piston p1 of the high-temperature cylinder chamber C1 is changed.
And pistons p2 of the other two cylinder chambers C2 and C3.
By adjusting the phase difference relationship of piston operation with p3,
By changing the gas cycle characteristics, the input ratio between the power input from the drive motor 1 and the heat input from the heater 5 can be appropriately changed and adjusted.

【0020】また、位相制御機構Kの装備にあたり、上
記の如く二重軸構造を採用して、三つの全てのピストン
p1〜p3を位相制御機構Kに対し回転軸芯方向の一方
側で集約配置する構造を採ることにより、シリンダ室C
1〜C3どうしを連通させるガス連通路3a,3b(特
に高温シリンダ室C1用のガス連通路3a)を短尺化で
きるようにし、これにより、ガス連通路3a,3bでの
断熱変化などによるロスの抑制、及び、機器全体のコン
パクト化を図ってある。
Further, when the phase control mechanism K is equipped, a double-shaft structure is employed as described above, and all three pistons p1 to p3 are collectively arranged on the phase control mechanism K on one side in the rotation axis center direction. The cylinder chamber C
The gas communication passages 3a and 3b (particularly, the gas communication passage 3a for the high-temperature cylinder chamber C1) for communicating between 1 to C3 can be shortened, thereby reducing loss due to adiabatic change in the gas communication passages 3a and 3b. Suppression and downsizing of the entire device are achieved.

【0021】なお、二重軸構造の採用にあたっては、外
側に位置する第2回転軸9のクランク部9aを形成する
のに、それにおけるピストン連結用偏芯軸部を、その断
面内に回転軸芯Qが位置する径dに形成し、これによ
り、外側の第2回転軸9に対しピストンp1を直接的に
連結する構造を採りながら二重軸構造を実現できるよう
にしてある。
In the adoption of the double shaft structure, the eccentric shaft portion for connecting the piston in the crank portion 9a of the second rotary shaft 9 located on the outside is formed in the cross section of the rotary shaft. It is formed to have a diameter d where the core Q is located, thereby realizing a double-shaft structure while adopting a structure in which the piston p1 is directly connected to the outer second rotation shaft 9.

【0022】上記の位相制御機構Kは、差動部10と、
これに対する操作手段としての相対回転操作用サーボモ
ータ19を有し、具体的構造としては図3に示すよう
に、差動部10において、内周にスプライン状の多数の
歯(例えば、百枚から数百枚の歯)を形成した第1〜第
3の三つの剛性環状体11〜13を同芯状に並置すると
ともに、外周にスプライン状の多数の歯を形成した第1
弾性環状体14を、第1及び第2剛性環状体11,12
の内側に配置し、かつ、外周にスプライン状の多数の歯
を形成した第2弾性環状体15を、第2及び第3剛性環
状体12,13の内側に配置してある。
The above-described phase control mechanism K includes a differential section 10,
A servo motor 19 for relative rotation operation as an operation means for this is provided. As a specific structure, as shown in FIG. 3, in the differential portion 10, a large number of spline-shaped teeth (for example, The first to third rigid annular bodies 11 to 13 forming several hundred teeth) are juxtaposed concentrically, and a plurality of spline-shaped teeth are formed on the outer periphery.
The elastic annular body 14 is divided into first and second rigid annular bodies 11 and 12.
And a second elastic annular body 15 having a large number of spline-shaped teeth formed on the outer periphery thereof is arranged inside the second and third rigid annular bodies 12 and 13.

【0023】また、第1弾性環状体14に対し相対回転
自在に内嵌させて、この内嵌により、第1弾性環状体1
4の外周歯列を周方向の二個所で第1及び第2剛性環状
体11,12夫々の内周歯列に咬合させるように、第1
弾性環状体14を楕円形に弾性変形させる第1楕円部材
16と、第2弾性環状体15に対し相対回転自在に内嵌
させて、この内嵌により、第2弾性環状体15の外周歯
列を周方向の二個所で第2及び第3剛性環状体12,1
3夫々の内周歯列に咬合させるように、第2弾性環状体
15を楕円形に弾性変形させる第2楕円部材17とを設
けてある。
The first elastic annular body 14 is fitted inside the first elastic annular body 14 so as to be relatively rotatable.
4 so as to engage the inner peripheral teeth of the first and second rigid annular bodies 11 and 12 at two locations in the circumferential direction.
A first elliptical member 16 for elastically deforming the elastic annular body 14 into an elliptical shape, and a second elastic annular body 15 are internally fitted so as to be rotatable relative to each other. At two places in the circumferential direction, the second and third rigid annular bodies 12, 1
A second elliptical member 17 for elastically deforming the second elastic annular body 15 into an elliptical shape is provided so as to engage with each of the three inner peripheral teeth.

【0024】そして、第1剛性環状体11は、二重軸構
造の先端部における第1回転軸8の先端に連結し、第3
剛性環状体13は、ケース兼用の連結部材18を介して
二重軸構造の先端部における第2回転軸9の先端に連結
し、また、第1楕円部材16は、上記サーボモータ19
の回転軸19aに連結してある。なお、第2楕円部材1
7は固定支持し、サーボモータ19の機体はガスサイク
ル機器部2のケースに固定支持してある。
The first rigid annular body 11 is connected to the distal end of the first rotary shaft 8 at the distal end of the double shaft structure,
The rigid annular body 13 is connected to the distal end of the second rotating shaft 9 at the distal end of the dual-shaft structure via a connecting member 18 also serving as a case, and the first elliptical member 16 is connected to the servomotor 19.
Is connected to the rotating shaft 19a. The second elliptical member 1
7 is fixedly supported, and the body of the servo motor 19 is fixedly supported on the case of the gas cycle equipment unit 2.

【0025】さらにまた、第2剛性環状体12の内周歯
列の歯数、第1弾性環状体14の外周歯列の歯数、第2
弾性環状体15の外周歯列の歯数は、互いに等しい歯数
とし、これに対し、第1回転軸8に連結した第1剛性環
状体11の内周歯列の歯数と、第2回転軸9に連結した
第3剛性環状体13の内周歯列の歯数は、上記の第2剛
性環状体12、第1、第2弾性環状体14,15の歯数
とは共に極僅か(例えば2,3枚程度)だけ歯数を異な
らせた互いに等しい歯数としてある。
Further, the number of teeth of the inner peripheral teeth of the second rigid annular body 12, the number of teeth of the outer peripheral teeth of the first elastic annular body 14,
The number of teeth of the outer peripheral teeth of the elastic annular body 15 is equal to the number of teeth. On the other hand, the number of teeth of the inner peripheral teeth of the first rigid annular body 11 connected to the first rotating shaft 8 and the number of teeth of the second rotational The number of teeth of the inner peripheral tooth row of the third rigid annular body 13 connected to the shaft 9 is extremely small (both the number of teeth of the second rigid annular body 12, the first and second elastic annular bodies 14 and 15). (For example, about two or three teeth), the number of teeth being different from each other.

【0026】つまり、この位相制御機構Kにおいては、
サーボモータ19による第1楕円部材16の回転操作を
停止した状態では、第1弾性環状体14を介しての第1
剛体環状体11と第2剛体環状体12との連動回転にお
いて生じる差動分(すなわち、第1弾性環状体14と第
1剛体環状体11との歯数の相違による差動分)と、第
2弾性環状体15を介しての第2剛体環状体12と第3
剛体環状体13との連動回転において生じる差動分(す
なわち、第2弾性環状体15と第3剛体環状体13との
歯数の相違による差動分)とを相殺させて、第1剛性環
状体11と第3剛性環状体13とを一体的に連動回転さ
せ、これにより、位相制御機構Kの非作用状態として、
第1回転軸8と第2回転軸9とを一定位相差に保って連
動同期回転させる状態を得る。
That is, in the phase control mechanism K,
In a state where the rotation operation of the first elliptical member 16 by the servo motor 19 is stopped, the first
A differential component (i.e., a differential component due to a difference in the number of teeth between the first elastic annular member 14 and the first rigid annular member 11) generated in the interlocking rotation between the rigid annular member 11 and the second rigid annular member 12; The second rigid annular body 12 and the third
The differential component (ie, the differential component due to the difference in the number of teeth between the second elastic annular member 15 and the third rigid annular member 13) generated in the interlocking rotation with the rigid annular member 13 is canceled, and the first rigid annular member is canceled. The body 11 and the third rigid annular body 13 are integrally rotated in association with each other, thereby setting the phase control mechanism K in an inoperative state.
A state is obtained in which the first rotation shaft 8 and the second rotation shaft 9 are synchronously rotated while maintaining a constant phase difference.

【0027】また、サーボモータ19により第1楕円部
材16を所要角度だけ回転操作することで、第1弾性環
状体14を介しての第1剛体環状体11と第2剛体環状
体12との連動回転において生じる差動分と、第2弾性
環状体15を介しての第2剛体環状体12と第3剛体環
状体13との連動回転において生じる差動分とに差を生
じさせて、第1剛性環状体11と第3剛性環状体13と
を相対回転動作させ、これにより、位相制御機構Kの作
用状態として、第1回転軸8と第2回転軸9とを相対回
転動作させて両回転軸8,9の位相差を変更する状態を
得るようにしてある。
By rotating the first elliptical member 16 by a required angle by the servo motor 19, the first rigid annular body 11 and the second rigid annular body 12 are interlocked via the first elastic annular body 14. A difference is generated between a differential component generated in the rotation and a differential component generated in the interlocking rotation of the second rigid annular member 12 and the third rigid annular member 13 via the second elastic annular member 15, and the first The rigid annular body 11 and the third rigid annular body 13 are relatively rotated, and as a result, the first rotation shaft 8 and the second rotation shaft 9 are relatively rotated by operating the phase control mechanism K. A state in which the phase difference between the axes 8 and 9 is changed is obtained.

【0028】なお、上記構造の位相制御機構Kでは、サ
ーボモータ19の機体そのものを回転軸8,9とともに
回転させることは不要となって、サーボモータ19の機
体を固定にできることから、サーボモータ19に対する
操作信号線の接続構造を簡略化し得るとともに、モータ
機体の回転に動力を費やすことを無くして動力ロスを低
減できる。
In the phase control mechanism K having the above structure, it is not necessary to rotate the body of the servomotor 19 together with the rotating shafts 8 and 9, and the body of the servomotor 19 can be fixed. Can be simplified, and the power loss can be reduced without spending power for rotating the motor body.

【0029】〔別の実施形態〕次に別の実施形態を列記
する。前述の実施形態では、位相制御機構Kにおける差
動部10を、内周歯列の剛性環状体と外周歯列の弾性環
状体と楕円形など(三角形や四角形などの多角形であて
っもよい)の非円形部材とで形成する形態を示したが、
場合によっては、請求項1〜3記載の発明の実施にあた
り、位相制御機構Kにおける差動部10を、遊星歯車式
やベベルギヤ式などの差動機構をもって形成するように
してもよい。
[Another Embodiment] Next, another embodiment will be described. In the above-described embodiment, the differential portion 10 of the phase control mechanism K may be a rigid annular body of the inner peripheral teeth, an elastic annular body of the outer peripheral teeth, and an elliptical shape (a polygonal shape such as a triangle or a quadrangle). )), The non-circular member is shown.
In some cases, the differential section 10 of the phase control mechanism K may be formed by a differential mechanism of a planetary gear type, a bevel gear type, or the like in the embodiments of the present invention.

【0030】前述の実施形態では、第1及び第2回転軸
8,9を二重軸構造にして、位相制御機構Kの一方側に
各ピストンp1〜p3を集約配置する形態を示したが、
場合によっては、請求項1記載の発明の実施にあたり、
第1及び第2回転軸8,9を互いに離間する平行姿勢や
交差角度を有する姿勢で位相制御機構Kに対し同じ側に
配置して、これら第1及び第2回転軸8,9に連結のピ
ストンp1〜p3を位相制御機構Kの一方側に集約配置
する形態を採ってもよい。
In the above embodiment, the first and second rotating shafts 8 and 9 have a double shaft structure, and the pistons p1 to p3 are arranged on one side of the phase control mechanism K.
In some cases, in carrying out the invention of claim 1,
The first and second rotating shafts 8 and 9 are arranged on the same side with respect to the phase control mechanism K in a parallel posture or a posture having an intersection angle apart from each other, and are connected to the first and second rotating shafts 8 and 9. A configuration in which the pistons p1 to p3 are collectively arranged on one side of the phase control mechanism K may be adopted.

【0031】本発明は、スターリングサイクルや逆スタ
ーリングサイクルを実施するスターリング機器に限ら
ず、種々のガスサイクル機器に適用でき、また、シリン
ダ数も3筒に限定されるものではなく、第1回転軸8の
側、及び、第2回転軸9の側の夫々に装備するシリンダ
数は単数ないし複数のいずれであってもよい。
The present invention can be applied not only to a Stirling machine for performing a Stirling cycle or a reverse Stirling cycle but also to various gas cycle machines. Also, the number of cylinders is not limited to three. The number of cylinders provided on each of the side 8 and the side of the second rotating shaft 9 may be any one or more.

【0032】尚、〔特許請求の範囲〕の項に、及び、
〔課題を解決するための手段〕の項に図面との対照を便
利にするため符号を記すが、該記入により本発明は添付
図面の構成に限定されるものではない。
It should be noted that, in the claims,
In the section of [Means for Solving the Problems], reference numerals are written for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】機器の全体構成を示す斜視図FIG. 1 is a perspective view showing the overall configuration of a device.

【図2】伝動構造の拡大図FIG. 2 is an enlarged view of a transmission structure.

【図3】位相制御機構の拡大図FIG. 3 is an enlarged view of a phase control mechanism.

【符号の説明】[Explanation of symbols]

8 第1回転軸 9 第2回転軸 p1〜p3 ピストン C1〜C3 シリンダ室 3a,3b ガス連通路 K 位相制御機構 Q 回転軸芯 d ピストン連結用偏芯軸部の径 11〜13 第1〜第3剛性環状体 14,15 第1及び第2弾性環状体 16,17 第1及び第2非円形部材 19 相対回転操作用モータ 19a 出力軸 8 First rotating shaft 9 Second rotating shaft p1 to p3 Piston C1 to C3 Cylinder chamber 3a, 3b Gas communication passage K Phase control mechanism Q Rotating shaft core d Diameter of eccentric shaft portion for piston connection 11 to 13 First to first 3 Rigid annular body 14, 15 First and second elastic annular body 16, 17 First and second non-circular member 19 Motor for relative rotation operation 19a Output shaft

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1回転軸(8)に連結したピストン
(p2,p3)を備えるシリンダ室(C2,C3)と、
第2回転軸(9)に連結したピストン(p1)を備える
シリンダ室(C1)とを、ガスサイクル用のガス連通路
(3a,3b)を介して連通させ、 前記第1及び第2回転軸(8,9)を連動同期回転させ
る非作用状態と、前記第1及び第2回転軸(8,9)を
所要角度だけ相対回転動作させて、前記連動同期回転の
際の両回転軸(8,9)の位相差を変更する作用状態と
に切り換え自在な位相制御機構(K)を設けるガスサイ
クル機器であって、 前記第1及び第2回転軸(8,9)を前記位相制御機構
(K)に対し同じ側に配置して、これら第1及び第2回
転軸(8,9)に連結の前記ピストン(p1,p2,p
3)を前記位相制御機構(K)の一方側に集約配置して
あるガスサイクル機器。
Cylinder chambers (C2, C3) each having a piston (p2, p3) connected to a first rotating shaft (8);
The first and second rotating shafts are communicated with a cylinder chamber (C1) having a piston (p1) connected to the second rotating shaft (9) through gas communication passages (3a, 3b) for a gas cycle. (8, 9) in a non-operating state in which the first and second rotating shafts (8, 9) are rotated relative to each other by a required angle, and the two rotating shafts (8, 9) in the interlocking synchronous rotation are rotated. , 9) provided with a phase control mechanism (K) that can be switched to an operation state of changing the phase difference, wherein the first and second rotating shafts (8, 9) are connected to the phase control mechanism (K). K), and the pistons (p1, p2, p) connected to the first and second rotating shafts (8, 9).
(3) A gas cycle device wherein the phase control mechanism (K) is collectively arranged on one side.
【請求項2】 前記第1及び第2回転軸(8,9)を、
その一方の内部に他方を同芯状に挿通配置する二重軸構
造にしてある請求項1記載のガスサイクル機器。
2. The first and second rotating shafts (8, 9) are:
2. The gas cycle device according to claim 1, wherein the gas cycle device has a double-shaft structure in which one of the components is concentrically inserted into the other.
【請求項3】 前記二重軸構造における外側回転軸
(9)のピストン連結用偏芯軸部を、その断面内に回転
軸芯(Q)が位置する径(d)に形成してある請求項2
記載のガスサイクル機器。
3. The eccentric shaft portion for connecting a piston of the outer rotating shaft (9) in the double shaft structure is formed to have a diameter (d) where the rotating shaft core (Q) is located in a cross section thereof. Item 2
Gas cycle equipment as described.
【請求項4】 前記位相制御機構(K)は、 内周に多数の歯を形成した第1〜第3の剛性環状体(1
1,12,13)と、 外周に多数の歯を形成して前記第1及び第2剛性環状体
(11,12)の内側に配置する第1弾性環状体(1
4)と、 外周に多数の歯を形成して前記第2及び第3剛性環状体
(12,13)の内側に配置する第2弾性環状体(1
5)と、 前記第1弾性環状体(14)に対し相対回転自在に内嵌
させて、この内嵌により、前記第1弾性環状体(14)
の外周歯列を周方向の一部分で前記第1及び第2剛性環
状体(11,12)の内周歯列に咬合させるように、前
記第1弾性環状体(14)を弾性変形させる第1非円形
部材(16)と、 前記第2弾性環状体(15)に対し相対回転自在に内嵌
させて、この内嵌により、前記第2弾性環状体(15)
の外周歯列を周方向の一部分で前記第2及び第3剛性環
状体(12,13)の内周歯列に咬合させるように、前
記第2弾性環状体(15)を弾性変形させる第2非円形
部材(17)とを備え、 前記第2剛性環状体(12)と前記第1弾性環状体(1
4)と前記第2弾性環状体(15)とを等歯数にすると
ともに、この歯数とは異なる歯数で、前記第1剛性環状
体(11)と前記第3剛性環状体(13)とを等歯数に
し、 前記第1剛性環状体(11)を前記第1回転軸(8)
に、かつ、前記第3剛性環状体(13)を前記第2回転
軸(9)に連結するとともに、 前記第1及び第2非円形部材(16,17)の一方を固
定として、他方を相対回転操作用モータ(19)の出力
軸(19a)に連結してある請求項1〜3のいずれか1
項に記載のガスサイクル機器。
4. The first to third rigid annular bodies (1) each having a plurality of teeth formed on an inner periphery thereof.
1, 12 and 13), and a first elastic annular body (1) having a number of teeth formed on the outer periphery and arranged inside the first and second rigid annular bodies (11, 12).
4) and a second elastic annular body (1) having a number of teeth formed on the outer periphery and arranged inside the second and third rigid annular bodies (12, 13).
5) and the first elastic annular body (14) is fitted inside the first elastic annular body (14) so as to be rotatable relative to the first elastic annular body (14).
The first elastic annular body (14) is elastically deformed so that the outer peripheral teeth of the first elastic annular body (14) are engaged with the inner peripheral teeth of the first and second rigid annular bodies (11, 12) at a part in the circumferential direction. A non-circular member (16) and the second elastic annular body (15) are fitted inside the second elastic annular body (15) so as to be relatively rotatable.
The second elastic annular body (15) is elastically deformed so that the outer peripheral teeth of the second elastic annular body (15) are engaged with the inner peripheral teeth of the second and third rigid annular bodies (12, 13) at a part in the circumferential direction. A non-circular member (17), wherein the second rigid annular body (12) and the first elastic annular body (1) are provided.
4) and the second elastic annular body (15) have the same number of teeth, and the first rigid annular body (11) and the third rigid annular body (13) with the number of teeth different from the number of teeth. And the number of teeth is equal, and the first rigid annular body (11) is connected to the first rotating shaft (8).
And the third rigid annular body (13) is connected to the second rotating shaft (9), and one of the first and second non-circular members (16, 17) is fixed and the other is relatively fixed. 4. The motor according to claim 1, wherein the output shaft is connected to an output shaft of the rotation operation motor.
Gas cycle equipment according to the item.
JP25840396A 1996-09-30 1996-09-30 Gas cycle equipment Expired - Fee Related JP3394665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25840396A JP3394665B2 (en) 1996-09-30 1996-09-30 Gas cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25840396A JP3394665B2 (en) 1996-09-30 1996-09-30 Gas cycle equipment

Publications (2)

Publication Number Publication Date
JPH10103803A true JPH10103803A (en) 1998-04-24
JP3394665B2 JP3394665B2 (en) 2003-04-07

Family

ID=17319755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25840396A Expired - Fee Related JP3394665B2 (en) 1996-09-30 1996-09-30 Gas cycle equipment

Country Status (1)

Country Link
JP (1) JP3394665B2 (en)

Also Published As

Publication number Publication date
JP3394665B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
US20050204850A1 (en) Industrial robot
KR100624550B1 (en) Improvements relating to rotary piston machines
CN106523034B (en) Rotation expansible chamber device with adjustable working fluid port and the system in conjunction with it
JP3584185B2 (en) Refrigerator and rotary valve used therefor
CN100501134C (en) Energy transformation method for volumetric type rotating screw machine
JPH10103803A (en) Gas cycle equipment
US20060242960A1 (en) Hybrid engine
JP2018132036A (en) Twin rotating scroll type compressor and method for assembling the same
JP2008163931A (en) Scroll type external combustion engine
TWI725643B (en) Mechanical device and its operation method
JPH09264190A (en) Stirring equipment
JPH10103804A (en) Gas cycle equipment
CN105697144A (en) Internal-bi-phase cam driven roller needle roller block type internal combustion engine
JP2548523B2 (en) Variable phase angle Stirling cycle equipment
US5520147A (en) Rotary motor or engine having a rotational gate valve
WO2022091274A1 (en) Compressed air supply system
CN215057967U (en) Gas compression system
JP4129684B2 (en) Piston type gas compression device and piston type atmospheric pressure drive rotation device
JPS63502127A (en) Thermal energy utilization device
JP2983274B2 (en) Transmission operating device
WO2005005781A1 (en) Volume screw machine of rotary type
JPH0668422B2 (en) refrigerator
RU2320941C1 (en) Cold production device
JPH0239182Y2 (en)
JPH1190691A (en) Hybrid press

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees