JPH10102621A - Resonance sound absorbing mechanism - Google Patents

Resonance sound absorbing mechanism

Info

Publication number
JPH10102621A
JPH10102621A JP8274188A JP27418896A JPH10102621A JP H10102621 A JPH10102621 A JP H10102621A JP 8274188 A JP8274188 A JP 8274188A JP 27418896 A JP27418896 A JP 27418896A JP H10102621 A JPH10102621 A JP H10102621A
Authority
JP
Japan
Prior art keywords
sound absorbing
resonator
standing wave
frequency
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8274188A
Other languages
Japanese (ja)
Inventor
Kazutomo Murakami
和朋 村上
Susumu Tsukada
将 塚田
Kenji Inaba
健司 稲葉
Michitaka Takeshita
道孝 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP8274188A priority Critical patent/JPH10102621A/en
Publication of JPH10102621A publication Critical patent/JPH10102621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To change and adjust the target frequency to reduce sound in response to the frequency of indoor standing wave by making changeable at least one of the volume of cavity portion of resonance sound absorbing mechanism, length of air passage of neck portion and the cross sectional area of an opening at the neck portion. SOLUTION: A resonator 1 as a resonance sound absorbing mechanism is constituted with a hollow cylindrical body 2, a neck portion 3 having an opening portion 5 directed outwardly and communicating with an opening hole atone of side ends, and a changing mechanism 4. Resonance of a resonator 1 is a resonance phenomenon by the mass of air existing at the neck portion 3 and air spring component at the cavity portion of a cylindrical body 2. And the standing wave can be effectively reduced by tuning the standing wave generating the resonance sound absorbing frequency of the resonator 1. At the changing mechanism 4, the partition board 41 is moved, the volume at the side of neck portion 3 is made variable, and thge length and inner diameter of the neck portion 3 are made variable thereby tuning to the resonance sound absorbing frequency of the standing wave. In this way, the sound absorbing frequency band can be changed and adjusted in alignment to the individual indoor situation and furniture layout.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、RC構造のマン
ション等の集合住宅、体育館、事務所ビル、学校の教室
等において、床衝撃音等の低減・吸収することができる
共鳴吸音機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resonance sound absorbing mechanism capable of reducing and absorbing floor impact noise in apartment buildings such as RC-structure apartments, gymnasiums, office buildings, school classrooms, and the like. is there.

【0002】[0002]

【従来の技術】従来の吸音機構としては、床や天井等に
吸音材などを配設し、騒音の発生それ自体を抑制しよう
としていた。
2. Description of the Related Art As a conventional sound absorbing mechanism, a sound absorbing material or the like is provided on a floor, a ceiling, or the like to suppress the generation of noise itself.

【0003】また、これとは別に、ある特定周波数音の
低減(吸音)のために、レゾネータが開発され使用され
ている。このレゾネータを形成する場合には、あらかじ
め低減(吸音)対象周波数を特定し、この低減(吸音)
対象周波数に合わせて各種寸法などを予め理論的に計算
で求めたのち、具体的に形成される。
[0003] Separately, a resonator has been developed and used for reducing (absorbing) sound of a specific frequency. When forming this resonator, the frequency to be reduced (sound absorption) is specified in advance, and this reduction (sound absorption) is specified.
After various dimensions and the like are theoretically calculated in advance in accordance with the target frequency, they are specifically formed.

【0004】また、他からの音や振動で誘起されて発生
する固有の低周波数帯域の騒音、即ち定在波を低減(吸
音)する場合には、設置する部屋の広さ等に応じて生じ
る定在波の固有波長(λ)を計算することができるか
ら、その波長(λ)に合わせた最適なレゾネータが形成
できる。
[0004] Further, in the case of reducing (absorbing) the noise in a specific low frequency band, that is, a standing wave, which is generated by being induced by sound or vibration from other sources, the noise is generated according to the size of the room in which the apparatus is installed. Since the characteristic wavelength (λ) of the standing wave can be calculated, an optimum resonator suitable for the wavelength (λ) can be formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、次のよ
うな問題を有している。 室内定在波の低減を図ろうとした場合、既に設置する
部屋が存在し、低減対象の定在波周波数が精度よく把握
されていればよいが、設置対象の部屋が未だ設計段階
で、図面上から定在波周波数を予測し、レゾネータを設
計した場合には、設置現場の状況(柱、梁、ドア等の入
り方)により、予測した周波数がずれてしまい、レゾネ
ータの効果がでない場合がある。
However, there are the following problems. When trying to reduce indoor standing waves, it is only necessary that the room to be installed already exists and the standing wave frequency to be reduced be accurately grasped. When the standing wave frequency is predicted from the above and the resonator is designed, the predicted frequency is shifted depending on the situation of the installation site (how to enter columns, beams, doors, etc.), and the effect of the resonator may not be effective. .

【0006】通常、部屋は、初期には空の状態だが、
人が住むようになると、家具などがおかれて、室内空間
の状態が変化し、定在波の周波数がずれた場合、レゾネ
ータの効果が失われてしまう場合がある。
Normally, the room is initially empty,
When a person starts to live, furniture or the like is placed, the state of the indoor space changes, and when the frequency of the standing wave is shifted, the effect of the resonator may be lost.

【0007】騒音源の変化(例えば、騒音源となって
いる機械、設備等が交換された場合など),設置環境の
変化(例えば、室内の棚、家具等の設置環境の変化な
ど)等による低減対象騒音の周波数がずれた場合、レゾ
ネータの効果失われてしまう場合がある。即ちこれは、
従来のレゾネータでは、一度設計(設定)された共振周
波数は固定されているため、変更することが困難であ
る。
Changes in the noise source (for example, when a machine or equipment serving as the noise source is replaced), changes in the installation environment (for example, changes in the installation environment of indoor shelves, furniture, etc.), etc. If the frequency of the noise to be reduced is shifted, the effect of the resonator may be lost. That is,
In a conventional resonator, since the resonance frequency once designed (set) is fixed, it is difficult to change the resonance frequency.

【0008】レゾネータは、首部の空気質量と空洞内
空気の共振現象を利用しているため、吸音効果の生じる
周波数帯域が非常に狭く、そのため例えば騒音源となっ
ている回転機械等の回転変動により生じる騒音周波数の
変動が大きいと、レゾネータの効果は大きく減少する。
[0008] Since the resonator uses the resonance phenomenon of the mass of air in the neck and the air in the cavity, the frequency band in which the sound absorbing effect occurs is very narrow. If the fluctuation of the noise frequency that occurs is large, the effect of the resonator is greatly reduced.

【0009】レゾネータの共鳴周波数は、理論式によ
り求められるが、この式は、理想的条件(形状、寸法、
材質など)の場合の式であり、実際に制作すると、寸法
誤差などのため、または、単純な形状でない場合に、共
鳴周波数が理論値からずれる場合がある。
[0009] The resonance frequency of the resonator is obtained by a theoretical equation, which is based on ideal conditions (shape, dimensions,
Material)), and when actually produced, the resonance frequency may deviate from the theoretical value due to dimensional errors and the like or when the shape is not a simple shape.

【0010】そこで、この発明は、上記した事情に鑑
み、個々の室内の状態に合わせて微妙に変化する定在波
の周波数に応じてきめ細かく低減(吸音)対象周波数を
変更・調整することができる共鳴吸音機構を提供するこ
とを目的とするものである。
[0010] In view of the above circumstances, the present invention can finely change and adjust the frequency to be reduced (sound-absorbed) in accordance with the frequency of a standing wave that slightly changes according to the state of each room. It is an object of the present invention to provide a resonance sound absorbing mechanism.

【0011】[0011]

【課題を解決するための手段】即ち、この請求項1に記
載の発明は、中空形状の空洞部分を有する本体部と、こ
の本体部に連通・連結され外部に向けて開口する通気路
を設けた首部とを備え、前記首部の通気路に存在する空
気の質量と前記空洞部分の空気のばね成分による共鳴現
象を利用し、設置する室内で発生する定在波を低減・吸
収する共鳴吸音機構であって、前記空洞部分の体積、首
部の通気路の長さ、首部の開口部断面積のうち、少なく
とも一つを変更可能とする可変構造を有するものであ
る。
According to the first aspect of the present invention, there is provided a main body having a hollow hollow portion, and an air passage communicating with and connected to the main body and opening to the outside. And a resonance sound absorbing mechanism that reduces and absorbs a standing wave generated in an installation room by using a resonance phenomenon caused by a mass of air existing in an air passage of the neck and a spring component of air in the hollow portion. And having a variable structure that can change at least one of the volume of the hollow portion, the length of the ventilation path of the neck, and the cross-sectional area of the opening of the neck.

【0012】また、この請求項2に記載の発明は、首部
及び/又は空洞部分に減衰機能を有するものである。
The invention according to claim 2 has a damping function in the neck and / or the hollow portion.

【0013】[0013]

【発明の実施の形態】まず、この定在波についてこの出
願に係る発明者によって詳しく検討・解析をしてみたと
ころ、次のような知見が得られた。
BEST MODE FOR CARRYING OUT THE INVENTION First, the standing wave was examined and analyzed in detail by the inventor of the present application, and the following findings were obtained.

【0014】そもそもこの室内定在波とは、残響室では
発生せず、実際の部屋のような、密閉された空間で、壁
と壁(または、天井と床)がほぼ平行に向かい合ってい
るような場合に、必ず発生するものである。この定在波
は、例えば図1に示すように向かい合った壁と壁、また
は、天井の床との間で音が反射しあい発生するもので、
部屋の中央部では音圧が最低(空気の粒子速度は最
高)、部屋の端部では音圧が最高(空気の粒子速度は最
低)となる。このため、通常、定在波が発生する周波数
帯域では、部屋の中央部と端では重量源床衝撃音は10
dB以上の差がでてしまい、部屋全体の音圧レベルも定在
波が発生しない周波数帯域に比べて高くなってしまうこ
とになる。
In the first place, this indoor standing wave does not occur in a reverberation room, but in a closed space such as an actual room, where walls and walls (or ceiling and floor) face each other almost in parallel. This is always what happens. This standing wave is generated by sound reflection between the walls facing each other, for example, as shown in FIG. 1, or the floor of the ceiling,
At the center of the room, the sound pressure is the lowest (the air particle velocity is the highest), and at the end of the room, the sound pressure is the highest (the air particle velocity is the lowest). For this reason, in the frequency band where a standing wave is generated, the weight source floor impact noise is usually 10 at the center and at the end of the room.
A difference of more than dB will occur, and the sound pressure level of the whole room will be higher than the frequency band where no standing wave is generated.

【0015】図1を見てわかるように、平行する面の距
離Lがちょうど1/2波長(1/2λ)となる周波数
(F)で定在波が発生することになる。ここで、平行面
の距離をL、音速をCとすると、 C=λ・F となるから、この定在波の周波数Fは、 F=C/2L …(1) であり、これは1次元のみを考えた場合の1次モードの
振動を行う定在波である。
As can be seen from FIG. 1, a standing wave is generated at a frequency (F) at which the distance L between the parallel surfaces is exactly 波長 wavelength (1 / 2λ). Here, assuming that the distance between the parallel planes is L and the sound velocity is C, C = λ · F. Therefore, the frequency F of this standing wave is F = C / 2L (1), which is one-dimensional. This is a standing wave that oscillates in the first-order mode when considering only the case.

【0016】これを図2に示す3次元空間に拡張する
と、次に(2)式のようになる。 Fr =(C/2)・〔(nX /LX 2 +(nY /LY 2 +(nZ /LZ 2 1/2 …(2) 〔ここで、nX ,nY ,nZ は自然数であってモード次
数、即ちモードの節の数を示す〕 実際には、1次の定在波の音圧が最も大きくなり、重量
源床衝撃音レベルを悪化させる一つの要因となる。即
ち、nX =nY =nZ =1の場合となり、(3)で求ま
る。
When this is extended to the three-dimensional space shown in FIG. 2, the following equation (2) is obtained. F r = (C / 2) · [(n x / L x ) 2 + (n y / L y ) 2 + (n z / L z ) 2 ] 1/2 (2) where n x , N Y , n Z are natural numbers and indicate the mode order, that is, the number of nodes of the mode.] In practice, the sound pressure of the first-order standing wave becomes the largest, and the weight source floor impact sound level is deteriorated. This is one factor. That becomes a case of n X = n Y = n Z = 1, obtained in (3).

【0017】一般的な部屋について概算し、定在波の発
生する周波数を求めると、表1のようになる。
Table 1 shows an approximate calculation of a general room and the frequency at which a standing wave is generated.

【0018】[0018]

【表1】 [Table 1]

【0019】表1よりわかるように、定在波の発生する
周波数については、ほとんどがJIS評価の63Hzオク
ターブバンド(45Hz〜90Hz)内にはいっていること
がわかる。さらにほとんどの場合は、重量源床衝撃音で
最もL値が高く、問題となる周波数バンドがこの63Hz
であることから、室内定在波を低減しなければ、重量源
床衝撃音の評価レベル(L値)は改善できないことにな
る。
As can be seen from Table 1, most of the frequencies at which standing waves are generated fall within the 63 Hz octave band (45 Hz to 90 Hz) evaluated by JIS. Furthermore, in most cases, the L value is the highest in the floor impact sound of the weight source, and the frequency band of interest is this 63 Hz.
Therefore, unless the indoor standing wave is reduced, the evaluation level (L value) of the weight source floor impact sound cannot be improved.

【0020】そこで、以下にこの発明に係る実施例につ
いて説明する。図3は、この発明に係る共鳴吸音機構を
示すものであり、共鳴吸音周波数の変更機構4を備えた
レゾネータ1で構成されており、床衝撃により発生する
室内定在波を低減・吸収できるようになっている。
Therefore, an embodiment according to the present invention will be described below. FIG. 3 shows a resonance sound absorbing mechanism according to the present invention, which is constituted by a resonator 1 having a resonance sound absorbing frequency changing mechanism 4 so as to reduce and absorb indoor standing waves generated by floor impact. It has become.

【0021】この実施例のレゾネータ1は、適宜の合成
樹脂で形成した大略中空円筒体2(内径D、長さL)で
構成されており、一方側端面には開口孔を設け、そこに
外部に向けて開口した開口部5を有する首部(内径d、
長さt)3が連通するように取付けてある。
The resonator 1 of this embodiment is composed of a substantially hollow cylindrical body 2 (inner diameter D, length L) formed of a suitable synthetic resin. A neck (inner diameter d,
It is attached so that length t) 3 communicates.

【0022】このレゾネータ1の変更機構4は、内周面
に沿ってスライド可能な仕切板41で構成されており、
シャフト41Aによって仕切板41のスライド動作を行
い首部3側の体積を変更させ、定在波との共鳴吸音周波
数をチューニングできるようになっている。
The changing mechanism 4 of the resonator 1 is composed of a partition plate 41 slidable along the inner peripheral surface.
The sliding operation of the partition plate 41 is performed by the shaft 41A to change the volume on the neck 3 side, so that the resonance sound absorption frequency with the standing wave can be tuned.

【0023】なお、この共鳴吸音周波数の変更機構であ
る仕切板41のスライド方法としては、シャフト41A
を用いる他に、例えば図4に示すようなねじ孔2Aに螺
合する雄ねじが切られたシャフト41Bを使用してもよ
い。また、この他の共鳴吸音周波数の変更機構として
は、例えば図5に示す角筒体21を仕切板42で仕切る
ことにより、首部31側の角筒体21の体積Vを変更さ
せるものでもよい。
As a method of sliding the partition plate 41 which is a mechanism for changing the resonance sound absorbing frequency, a shaft 41A is used.
In addition to the above, for example, a shaft 41B with a male thread cut into the screw hole 2A as shown in FIG. 4 may be used. As another mechanism for changing the resonance sound absorbing frequency, for example, the volume V of the rectangular cylindrical body 21 on the neck 31 side may be changed by partitioning the rectangular cylindrical body 21 shown in FIG.

【0024】また、このレゾネータとして、この実施例
のような樹脂材料で形成するもの以外に、例えば各種の
金属、セラミックス、その他のものが適用可能であり、
要は空気等の通気性のないものであればよい。なお、弾
性率、密度等については特に制限はない。さらに、この
レゾネータの形状としては、円筒形、角筒形に限るもの
ではなく、例えば円錐形、円錐台形、球形等、種々の形
状(例えば図6など複雑な形状でもよい)が可能であ
る。また、この実施例では首部を1箇所設けてあるが、
特にこれに限るものではなく、2箇所以上でもよい。
As the resonator, for example, various metals, ceramics, and others can be applied in addition to the resonator made of a resin material as in this embodiment.
In short, any material that does not have air permeability such as air may be used. There are no particular restrictions on the elastic modulus, density, and the like. Further, the shape of the resonator is not limited to a cylindrical shape or a rectangular tube shape, but may be various shapes (for example, a complicated shape as shown in FIG. 6) such as a conical shape, a truncated conical shape, and a spherical shape. In this embodiment, one neck is provided.
The invention is not particularly limited to this, and two or more locations may be used.

【0025】次に、この実施例に係るレゾネータの原理
について説明する。この実施例に係るレゾネータは、変
更機構を用いて共鳴吸音周波数を正確に(微)調整する
ことにより、発生する室内定在波を低減・吸収できるよ
うになっているが、レゾネータの共鳴とは、図7におい
て、機械系におけるばね−マス系の共振現象と同様に、
首部33での空気の質量S・t・ρ(機械系のマスMに
相当)と、空洞内の空気のばね成分ρ・C2 ・S/V
(機械系ばねKに相当)による共鳴現象のことをいう。
ここで、Sは開口部の面積、tは首部長さ、ρは空気の
密度、Cは空気中の音速、Vは空洞部の体積である。
Next, the principle of the resonator according to this embodiment will be described. The resonator according to this embodiment can reduce (absorb) the generated indoor standing wave by precisely (finely) adjusting the resonance sound absorption frequency using the changing mechanism. In FIG. 7, similar to the resonance phenomenon of the spring-mass system in the mechanical system,
The mass S · t · ρ of the air at the neck 33 (corresponding to the mass M of the mechanical system) and the spring component ρ · C 2 · S / V of the air in the cavity
(Equivalent to the mechanical spring K).
Here, S is the area of the opening, t is the length of the neck, ρ is the density of air, C is the speed of sound in air, and V is the volume of the cavity.

【0026】一般に図7における(4)式、即ちレゾネー
タの共鳴吸音周波数(F0 )は F0 =(C/2π)・〔S/V(t+0.8d)〕1/2 … (4) (ただし、d:連通路の内径)で一義的に計算されるか
ら、この周波数F0 を前述の式(3)で求まる定在波に正
しくチューニング(同調)することにより、定在波を効
果的に低減できることがわかる。
In general, equation (4) in FIG. 7, that is, the resonance sound absorption frequency (F 0 ) of the resonator is F 0 = (C / 2π) · [S / V (t + 0.8d)] 1/2 (4) ( However, since it is uniquely calculated by d: the inner diameter of the communication path, the standing wave is effectively tuned (tuned) by properly tuning this frequency F 0 to the standing wave obtained by the above-mentioned equation (3). It can be seen that it can be reduced.

【0027】一方、3次元の定在波を1次モードのみ全
て改善するためには、(3)式,(4)式より3種類のレゾ
ネータ(F0X,F0Y,F0Z)を用意する必要がある。ま
たレゾネータの吸音周波数F0 の調整のためには、(4)
式でわかるように、V,t,S(又はd)のパラメータ
のうち少なくともどれか1要素以上を可変にしておけば
よいことが分かる。従って、実際の設置場所での定在波
周波数が設置する現場によっては(3)式等の見積りから
ずれる場合、V,t,S(又はd)を変更すればよい。
なおゾネータの吸音周波数F0 の見積りには、上式(4)
以外に、FEM(有限要素法),BEM(境界要素法)
等の数値解析による方法もあり、より複雑な形状に対応
可能であるが、実験値と対応づけたデータベースの蓄積
が必要となる。
On the other hand, in order to improve only the first-order mode of the three-dimensional standing wave, three types of resonators (F 0X , F 0Y , F 0Z ) are prepared from equations (3) and (4). There is a need. In order to adjust the sound absorption frequency F 0 of the resonator, (4)
As can be seen from the equation, at least one or more of the parameters of V, t, S (or d) should be variable. Therefore, if the standing wave frequency at the actual installation location deviates from the estimation based on Equation (3) depending on the installation site, V, t, S (or d) may be changed.
The above equation (4) is used to estimate the sound absorption frequency F 0 of the zonator.
Besides, FEM (Finite Element Method), BEM (Boundary Element Method)
There is also a method based on numerical analysis such as this, and it is possible to cope with more complicated shapes, but it is necessary to accumulate a database in association with experimental values.

【0028】そこで、この実施例では、空洞部の体積V
を変更させるように構成してある。なお、レゾネータの
吸音効果は、V、Sが大きい程大きくなるが、レゾネー
タの内部の一辺が低減したい周波数の波長(λ)の1/
4以上となると、レゾネータ内で別の共鳴現象が起こ
り、逆にレゾネータから発音してしまう恐れがあるの
で、レゾネータの最長辺の長さを(Lmax )とすると、
次式を満たす必要がある。 Lmax ≦(1/4)λ=(1/4)C/F0 …(5)
Therefore, in this embodiment, the volume V of the cavity is
Is configured to be changed. Note that the sound absorbing effect of the resonator increases as V and S increase, but one side of the resonator has one side of the wavelength (λ) of the frequency to be reduced.
If it is more than 4, another resonance phenomenon occurs in the resonator, and on the contrary, there is a possibility that sound is emitted from the resonator. Therefore, when the length of the longest side of the resonator is (L max ),
The following equation must be satisfied. Lmax ≦ (1 /) λ = (1 /) C / F 0 (5)

【0029】例えば人間の最低可聴周波数20Hzを考え
ると、 Lmax ≦(1/4)(340/20)≒4.25m よって、実用上は、レゾネータの各辺(長さ)寸法は
4.25m以下とする必要がある。また、レゾネータの
配置(設置)については、図8のように、部屋の一方向
について、レゾネータの位置を1〜4まで変えて改善量
をプロットすると図9のようになった。
[0029] For example, consider a human lowest audible frequency 20Hz, L max ≦ (1/4) (340/20) ≒ 4.25m Thus, practically, each side (length) of the resonator dimensions 4.25M It is necessary to: In addition, as for the arrangement (installation) of the resonators, as shown in FIG. 8, when the position of the resonator is changed from 1 to 4 in one direction of the room, the improvement amount is plotted as shown in FIG.

【0030】部屋の定在波低減のためには、定在波の音
圧が高い部分にレゾネータを配置する程大きな効果が得
られることがわかった。実際には、理想的な位置、部屋
のはじ、すみに設置できない場合は、改善量が少なくな
るが、その分、レゾネータの個数を増やす、またはV、
Sを増加し、レゾネータ自体の吸音力を増加させる等で
対応することが可能である。
In order to reduce the standing wave in the room, it has been found that the greater the arrangement of the resonator in the portion where the sound pressure of the standing wave is high, the greater the effect can be obtained. Actually, if it cannot be installed at the ideal position, at the edge of the room, or near the corner, the amount of improvement will be small, but the number of resonators will be increased accordingly, or V,
This can be dealt with by increasing S and increasing the sound absorbing power of the resonator itself.

【0031】次に、この実施例に係るレゾネータ1を設
置場合に合わせた最適体積Vに調整して4階建の集合住
宅の3階に配置しておき、JIS A1418にのっと
り、2,3階を使用して、タイヤ落下評価実験を行なっ
た。なお、このときのレゾネータ1については、 のような図3に示したレゾネータを用いた。ここで、体
積Vを可変とし、実際の部屋の定在波周波数に微調整を
行った。
Next, the resonator 1 according to this embodiment is adjusted to the optimum volume V in accordance with the case where it is installed, and is arranged on the third floor of a four-story apartment house, and according to JIS A1418, on the second and third floors. Was used to perform a tire drop evaluation experiment. In addition, about the resonator 1 at this time, The resonator shown in FIG. 3 was used. Here, the volume V was made variable, and fine adjustment was made to the standing wave frequency of the actual room.

【0032】図10に示すバングマシン5にて、3階床
の5点を加振し、その時の騒音を、2階5点でそれぞれ
計測し、平均としたときのデータを求めた。部屋の寸法
は、6帖相当で約3.6×2.7m、高さ2.4mであ
る。スラブ=150mm厚、各方向の定在波を概算すると
(3)式より、 LX (3.6m)=C/2LX ≒47Hz LY (2.7m)=C/2LY ≒63Hz LZ (2.4m)=C/2LZ ≒71Hz となる。この部屋の床衝撃音を計測してみると、特にX
方向の定在波による騒音が最もレベルが大きいことがわ
かった。これは、部屋のドアや窓の配置の影響と考えら
れる。そこで、ここではX方向についての実験を行っ
た。実際の部屋の定在波は、音の計測より、46Hzと、
上記(3)式からの概算値47Hzからずれていたが、レゾ
ネータの体積V(実際には、図3の仕切板41を動かし
て調整した)を変え、46Hzに調整したレゾネータを用
いた。 (1) オクターブバンド分析結果については、共鳴吸音機
構を備えていない場合に比べ、図11に示すように、6
3Hzバンドで4dBの改善、すなわち、遮音等級(L値)
が1ランクアップした。 (2) 狭帯域スペクトル分析結果については、共鳴吸音機
構を備えていない場合に比べ、図12に示すように、4
6Hzのピーク値において約10dB程度の低減が見られ
た。 (3) 時系列波形分析結果については、共鳴吸音機構を備
えていない場合に比べ、図13に示すように、減衰時間
が大幅に低減した。なお、(2),(3)については、中央
マイク以外のマイクから計測された結果である。
With the bang machine 5 shown in FIG. 10, five points on the third floor were vibrated, and the noise at that time was measured at five points on the second floor, respectively, and the average data was obtained. The size of the room is about 3.6 x 2.7m, which is equivalent to 6 quires, and the height is 2.4m. Slab = 150 mm thickness and to approximate the standing wave in each direction (3) from the equation, L X (3.6m) = C / 2L X ≒ 47Hz L Y (2.7m) = C / 2L Y ≒ 63Hz L Z a (2.4m) = C / 2L Z ≒ 71Hz. When we measure the floor impact sound of this room, especially X
It was found that the noise due to the standing wave in the direction had the highest level. This is thought to be due to the arrangement of doors and windows in the room. Therefore, an experiment in the X direction was performed here. The standing wave of the actual room is 46Hz from the sound measurement,
Although it deviated from the approximate value of 47 Hz from the above equation (3), the resonator V was adjusted to 46 Hz by changing the volume V of the resonator (actually adjusted by moving the partition plate 41 in FIG. 3). (1) Regarding the octave band analysis result, as shown in FIG.
4dB improvement in 3Hz band, ie sound insulation grade (L value)
Increased by one rank. (2) As shown in FIG. 12, the result of the narrow band spectrum analysis was 4 times smaller than the case without the resonance sound absorbing mechanism.
At a peak value of 6 Hz, a reduction of about 10 dB was observed. (3) As for the result of the time-series waveform analysis, as shown in FIG. 13, the decay time was significantly reduced as compared with the case where the resonance sound absorbing mechanism was not provided. Note that (2) and (3) are results measured from microphones other than the central microphone.

【0033】また、この実施例では、体積Vの変更・調
整を行う構成としてあるが、これ以外に例えば図14に
示すように、首部3にキャップ3Aをスライド可能に装
着させたり、図15に示すようにねじを切った首部3B
とキャップ3Cとを螺合させ、それぞれスライドさせた
り回転させて、首部3の長さtを可変構造としてもよ
い。同様に、首部を蛇腹状として伸縮性を付与する構造
としてもよい。また、図16に示すように、首部3に、
内径寸法dの異なるキャップ3D〜3Fを選択的にセッ
トさせて首部3の内径dを変更させてもよい。
In this embodiment, the volume V is changed / adjusted. In addition, for example, as shown in FIG. 14, a cap 3A can be slidably mounted on the neck 3, or as shown in FIG. Neck 3B threaded as shown
The length t of the neck 3 may be made variable by screwing the cap 3 </ b> C and the cap 3 </ b> C and sliding or rotating the cap 3 </ b> C. Similarly, the neck portion may have a bellows shape to provide elasticity. In addition, as shown in FIG.
The inner diameter d of the neck 3 may be changed by selectively setting the caps 3D to 3F having different inner diameters d.

【0034】さらに、図17及び図18に示すように、
カメラのシャッタの絞りのような構造として、内径寸法
dを変更させてもよい。さらに、これらレゾネータの体
積V、首部(通気路)の長さt、首部の通気路の開口断
面積Sのいずれか2つ若しくは全てを可変構造としても
よい。
Further, as shown in FIGS. 17 and 18,
The inner diameter d may be changed as a structure like a diaphragm of a camera shutter. Further, any two or all of the volume V of these resonators, the length t of the neck (air passage), and the opening cross-sectional area S of the air passage of the neck may be variable.

【0035】さらに、首部の連通路内壁面に空気抵抗材
を組み込んで(例えば貼着する)、空気抵抗による減衰
機能を付与したり、首部開口端面に通気性のある綿、ガ
ーゼ、ウレタン、布、メッシュ材などを取り付けるなど
として、同様に減衰機能を付与するのもよい。さらにこ
の他に、レゾネータの空洞部分に水等の液体、粘度等の
固体、砂等の粒体を収容させて体積Vの変更・調整を行
う構成としてもよい。
Further, an air resistance material is incorporated (for example, attached) on the inner wall surface of the communication passage of the neck to provide an attenuating function by air resistance, or air-permeable cotton, gauze, urethane, cloth, etc. Similarly, a damping function may be provided by attaching a mesh material or the like. In addition to this, the volume V may be changed and adjusted by storing a liquid such as water, a solid such as viscosity, and a granular material such as sand in the cavity of the resonator.

【0036】次に、この発明にかかる他の実施例の共鳴
吸音機構について説明する。図19は、この発明にかか
る共鳴吸音機構を示すものであり、この共鳴吸音機構
は、適宜の部材や部位(例えば、ドア、壁、柱、家具、
室内具、梁、床、その他の建物の内外のいずれのもので
も可能)に形成されており、空洞部分を有する本体部2
0と、この本体部20に連通する通気路を設けた首部3
0と、首部30の外部にむけて開口する開口部50と、
共鳴吸音周波数の変更機構(図略)とを備えている。な
お、この変更機構としては、先の実施例のもののいずれ
であってもよい。
Next, a resonance sound absorbing mechanism according to another embodiment of the present invention will be described. FIG. 19 shows a resonance sound absorbing mechanism according to the present invention. The resonance sound absorbing mechanism includes appropriate members and parts (for example, doors, walls, columns, furniture,
The main body 2 having a hollow portion, which is formed of a room tool, a beam, a floor, and any other object inside or outside the building.
0 and a neck 3 provided with an air passage communicating with the main body 20.
0, an opening 50 that opens toward the outside of the neck 30,
A resonance sound absorption frequency changing mechanism (not shown). The change mechanism may be any one of the above embodiments.

【0037】[0037]

【発明の効果】以上説明してきたように、この発明によ
れば、共鳴吸音機構の空洞部分の体積、首部の通気路の
長さ、首部の開口部断面積のうち、少なくとも一つを変
更可能とする可変構造としたから、例えば設置場所の大
きさに合わせて計算(理論)上定められている吸音周波
数帯域を、設置する個々の室内の状況(例えば実際の梁
や柱等の寸法にずれ等)や家具の配置等に合わせて最適
値にきめ細かく変更・調整することができるようにな
り、延いては高品質の共鳴吸音機構を提供することがで
きる。さらに、最良な吸音周波数帯域は一定に維持させ
たまま、設置する場所のスペースに合わせて部分的な寸
法の変更調節を行うことも可能である。
As described above, according to the present invention, it is possible to change at least one of the volume of the hollow portion of the resonance sound absorbing mechanism, the length of the ventilation path of the neck, and the sectional area of the opening of the neck. Therefore, for example, the sound absorption frequency band calculated (theoretical) according to the size of the installation location is changed to the situation in the individual room where the installation is performed (for example, deviation from the actual dimensions of beams, columns, etc.). And the like, and the arrangement of furniture can be finely changed and adjusted to an optimum value, thereby providing a high-quality resonance sound absorbing mechanism. Furthermore, it is also possible to adjust the partial size change according to the space of the installation place while keeping the best sound absorption frequency band constant.

【0038】さらに、この請求項2に記載の発明によれ
ば、共鳴吸音機構に減衰機能を付与してあるから、本質
的には極く狭い範囲のみをカバーしている吸音周波数帯
域を拡大させることができる。
Further, according to the second aspect of the present invention, since the resonance sound absorbing mechanism is provided with an attenuating function, the sound absorbing frequency band essentially covering only a very narrow range is expanded. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】定在波を示す説明図。FIG. 1 is an explanatory diagram showing a standing wave.

【図2】3次元的に定在波を説明するための説明図。FIG. 2 is an explanatory diagram for describing a standing wave three-dimensionally.

【図3】この発明にかかる共鳴吸音機構を示す概略斜視
図。
FIG. 3 is a schematic perspective view showing a resonance sound absorbing mechanism according to the present invention.

【図4】同機構の変形例を示す要部断面図。FIG. 4 is a sectional view of a main part showing a modification of the mechanism.

【図5】他の共鳴吸音機構を示す斜視図。FIG. 5 is a perspective view showing another resonance sound absorbing mechanism.

【図6】さらに他の共鳴吸音機構を示す斜視図。FIG. 6 is a perspective view showing still another resonance sound absorbing mechanism.

【図7】この発明の共鳴吸音機構を説明する原理図。FIG. 7 is a principle diagram illustrating a resonance sound absorbing mechanism of the present invention.

【図8】共鳴吸音機構の配置状態を示す説明図。FIG. 8 is an explanatory diagram showing an arrangement state of a resonance sound absorbing mechanism.

【図9】定在波の低減についての改善量を示すグラフ。FIG. 9 is a graph showing the amount of improvement in the reduction of standing waves.

【図10】タイヤ落下評価実験を示す説明図。FIG. 10 is an explanatory diagram showing a tire drop evaluation experiment.

【図11】オクターブバンド分析結果を示すグラフ。FIG. 11 is a graph showing an octave band analysis result.

【図12】狭帯域スペクトルの分析結果を示すグラフ。FIG. 12 is a graph showing an analysis result of a narrow band spectrum.

【図13】時系列波形の分析結果を示すグラフ。FIG. 13 is a graph showing an analysis result of a time-series waveform.

【図14】共鳴吸音周波数の変更機構を示す要部断面
図。
FIG. 14 is an essential part cross-sectional view showing a mechanism for changing the resonance sound absorbing frequency.

【図15】変更機構の変形例を示す要部断面図。FIG. 15 is a sectional view of a main part showing a modification of the change mechanism.

【図16】変更機構の他の変形例を示す断面図。FIG. 16 is a sectional view showing another modification of the change mechanism.

【図17】変更機構のさらに他の変形例を示す概略斜視
図。
FIG. 17 is a schematic perspective view showing still another modified example of the changing mechanism.

【図18】図17の変更機構を絞った状態を示すが概略
斜視図。
FIG. 18 is a schematic perspective view showing a state in which the change mechanism of FIG. 17 is narrowed.

【図19】この発明に係る他の共鳴吸音機構を示す概略
断面図。
FIG. 19 is a schematic sectional view showing another resonance sound absorbing mechanism according to the present invention.

【符号の説明】[Explanation of symbols]

1 共鳴吸音機構(レゾネータ) 2,20,21,22 本体部 3,30,31,32 首部 4,40 変更機構 5,50 開口部 1 Resonant sound absorbing mechanism (resonator) 2,20,21,22 Main body 3,30,31,32 Neck 4,40 Changing mechanism 5,50 Opening

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の体積を有する本体部と、この本体
部の空洞部に連通・する通気路を画成するとともに本体
部に連結する首部と、この首部の外部に向けて開口する
開口部とを備え、前記首部の通気路に存在する空気の質
量と前記空洞部分の空気のばね成分とによる共鳴現象を
利用し、設置する室内で発生する定在波等の低周波数騒
音を低減・吸収する共鳴吸音機構であって、 前記空洞部分の体積、首部の通気路の長さ、開口部断面
積のうち、少なくとも一つを変更可能とする可変構造を
有することを特徴とする共鳴吸音機構。
1. A main body having a predetermined volume, a neck defining an air passage communicating with a cavity of the main body and connecting to the main body, and an opening opening to the outside of the neck. Utilizing a resonance phenomenon caused by the mass of air present in the air passage of the neck and the spring component of air in the cavity, reduces and absorbs low frequency noise such as standing waves generated in a room where the air conditioner is installed. A resonance sound absorbing mechanism having a variable structure that allows at least one of a volume of the hollow portion, a length of an air passage in a neck portion, and a cross-sectional area of an opening to be changed.
【請求項2】 首部及び/又は空洞部分に減衰機能を有
することを特徴とする請求項1に記載の共鳴吸音機構。
2. The resonance sound absorbing mechanism according to claim 1, wherein the neck and / or the cavity has a damping function.
JP8274188A 1996-09-25 1996-09-25 Resonance sound absorbing mechanism Pending JPH10102621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8274188A JPH10102621A (en) 1996-09-25 1996-09-25 Resonance sound absorbing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8274188A JPH10102621A (en) 1996-09-25 1996-09-25 Resonance sound absorbing mechanism

Publications (1)

Publication Number Publication Date
JPH10102621A true JPH10102621A (en) 1998-04-21

Family

ID=17538269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8274188A Pending JPH10102621A (en) 1996-09-25 1996-09-25 Resonance sound absorbing mechanism

Country Status (1)

Country Link
JP (1) JPH10102621A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049129A (en) * 2000-12-19 2002-06-26 류정열 Resonator tuning method
KR20030092306A (en) * 2002-05-29 2003-12-06 전환표 A Control Module Of An Indoor Reverberation And Control Device Of The Control Module
US7337877B2 (en) * 2004-03-12 2008-03-04 Visteon Global Technologies, Inc. Variable geometry resonator for acoustic control
ITMI20110902A1 (en) * 2011-05-20 2012-11-21 Consorzio Intellimech DEVICE FOR FITTING PRESSURE WAVES
WO2013114807A1 (en) * 2012-02-03 2013-08-08 三菱電機株式会社 Active noise control device
GB2565033A (en) * 2017-05-23 2019-02-06 Kp Acoustics Ltd Acoustic resonators
CN110322868A (en) * 2019-06-06 2019-10-11 江苏科技大学 A kind of driving frequency-conversion Helmholz resonance device and its frequency modulation noise-reduction method
CN111883350A (en) * 2020-07-21 2020-11-03 武汉大学 Transformer substation noise frequency selection suppression device considering temperature factors and frequency selection method
CN113738476A (en) * 2021-08-16 2021-12-03 安徽江淮汽车集团股份有限公司 Air pipe assembly, noise elimination system and noise elimination method
WO2024019277A1 (en) * 2022-07-22 2024-01-25 (주)새론건설 Noise prevention resonator and installation method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970868A (en) * 1982-10-15 1984-04-21 Nippon Denso Co Ltd Variable volume resonant muffler system
JPH0273698U (en) * 1988-11-24 1990-06-05
JPH03963A (en) * 1989-05-29 1991-01-07 Honda Motor Co Ltd Intake air noise reduction device for internal combustion engine
JPH052396A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Sound absorbing composite panel
JPH05143081A (en) * 1991-11-25 1993-06-11 Shigeo Hase Variable sound absorption device regarding chair in and trim of hall
JPH05232967A (en) * 1992-02-21 1993-09-10 Matsushita Electric Ind Co Ltd Sound absorbing body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970868A (en) * 1982-10-15 1984-04-21 Nippon Denso Co Ltd Variable volume resonant muffler system
JPH0273698U (en) * 1988-11-24 1990-06-05
JPH03963A (en) * 1989-05-29 1991-01-07 Honda Motor Co Ltd Intake air noise reduction device for internal combustion engine
JPH052396A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Sound absorbing composite panel
JPH05143081A (en) * 1991-11-25 1993-06-11 Shigeo Hase Variable sound absorption device regarding chair in and trim of hall
JPH05232967A (en) * 1992-02-21 1993-09-10 Matsushita Electric Ind Co Ltd Sound absorbing body

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049129A (en) * 2000-12-19 2002-06-26 류정열 Resonator tuning method
KR20030092306A (en) * 2002-05-29 2003-12-06 전환표 A Control Module Of An Indoor Reverberation And Control Device Of The Control Module
US7337877B2 (en) * 2004-03-12 2008-03-04 Visteon Global Technologies, Inc. Variable geometry resonator for acoustic control
ITMI20110902A1 (en) * 2011-05-20 2012-11-21 Consorzio Intellimech DEVICE FOR FITTING PRESSURE WAVES
WO2013114807A1 (en) * 2012-02-03 2013-08-08 三菱電機株式会社 Active noise control device
GB2565033A (en) * 2017-05-23 2019-02-06 Kp Acoustics Ltd Acoustic resonators
GB2565033B (en) * 2017-05-23 2021-12-01 Kp Enview Ltd Acoustic resonators
CN110322868A (en) * 2019-06-06 2019-10-11 江苏科技大学 A kind of driving frequency-conversion Helmholz resonance device and its frequency modulation noise-reduction method
CN111883350A (en) * 2020-07-21 2020-11-03 武汉大学 Transformer substation noise frequency selection suppression device considering temperature factors and frequency selection method
CN111883350B (en) * 2020-07-21 2021-11-05 国网河南省电力公司电力科学研究院 Transformer substation noise frequency selection suppression device considering temperature factors and frequency selection method
CN113738476A (en) * 2021-08-16 2021-12-03 安徽江淮汽车集团股份有限公司 Air pipe assembly, noise elimination system and noise elimination method
WO2024019277A1 (en) * 2022-07-22 2024-01-25 (주)새론건설 Noise prevention resonator and installation method therefor

Similar Documents

Publication Publication Date Title
US7712580B2 (en) Active/passive distributed absorber for vibration and sound radiation control
US11741928B2 (en) Soundproof structure
CN108457393B (en) Sound absorbing structure for anechoic chamber and anechoic chamber comprising same
JP2005250474A (en) Sound attenuation structure
US11756521B2 (en) Soundproof structure and soundproof unit
JPH10102621A (en) Resonance sound absorbing mechanism
US20200378111A1 (en) Acoustic Tile
US11749248B2 (en) Soundproof structure
US20200349915A1 (en) Soundproof structure
JPH11152845A (en) Soundproof ceiling
JPH11152844A (en) Soundproof ceiling
JPH10102618A (en) Soundproof wall
RU2579027C1 (en) Kochetov sound-absorbing structure for factory building
Bader et al. Metamaterial labyrinth wall for very low and broad-band sound absorption
Nakanishi Sound Absorption of Thin Resonators Including a Winding Neck Extension in Surface Panel
Gourdon et al. Silencer design for awning windows: Modified Helmholtz resonators with perforated foam
JP2011058188A (en) Sound room
JP2017020291A (en) Perforated sound absorbing board and sound absorbing structure
JPH10102614A (en) Sound insulation floor
JPH10105178A (en) Sound isolation device
JP2009204836A (en) Sound absorption structure, sound absorption structure group, sound box, method of adjusting sound structure and noise reduction method
JPH10102616A (en) Soundproof column
JPH10102936A (en) Soundproof door
JP2010097146A (en) Sound absorbing structure, sound absorbing structure group and acoustic room
SU1735519A1 (en) Sound-absorbing structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705