JPH10102227A - Powder material for thermal spraying excellent in high temperature corrosion resistance - Google Patents

Powder material for thermal spraying excellent in high temperature corrosion resistance

Info

Publication number
JPH10102227A
JPH10102227A JP25272796A JP25272796A JPH10102227A JP H10102227 A JPH10102227 A JP H10102227A JP 25272796 A JP25272796 A JP 25272796A JP 25272796 A JP25272796 A JP 25272796A JP H10102227 A JPH10102227 A JP H10102227A
Authority
JP
Japan
Prior art keywords
coating
corrosion resistance
powder material
case
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25272796A
Other languages
Japanese (ja)
Inventor
Toshio Yonezawa
利夫 米澤
Koji Fujimoto
浩二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25272796A priority Critical patent/JPH10102227A/en
Publication of JPH10102227A publication Critical patent/JPH10102227A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder material for thermal spraying having sufficient corrosion resistance to sulfur, vanadium, sodium or the like promoting corrosion in an environment of high temp. use, in a gas turbine using heavy oil of low quality, by forming it of specified ratios of chromium, aluminum, zirconium, cobalt and iron. SOLUTION: This powder material for thermal spraying is composed of one or more kinds among, by weight, 40 to 60% Cr, 5 to 15% Al, 0.5 to 15% Zr, and the balance one or more kinds of Co and Fe. In the case the contents of Cr and Al respectively exceed the upper limits, the ductility of coating at a high temp. can not be obtd., its thermal shock resistance also deteriorates, and cracking and the peeling of coating are made easy to occur in the use, and in the case they fall below the lower limits, its corrosion resistance in a high temp. corrosive environment is made insufficient. Zr easily forms extra-thin oxidized coating of Zr under low oxygen partial pressure, and the one having more excellent corrosion resistance can be obtd., but, in the case it falls below the lower limit, the effect can not be recognized, and in the case it exceeds the upper limit, the ductility of the coating deteriorates, and it is formed into the one poor in thermal impact resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの動
・静翼用の耐高温腐食性に優れたコーティングに適用さ
れる溶射用粉末材料に関する。さらに詳しくは、本発明
は、ボイラー用バーナディフューザ等の耐高温腐食性に
優れたコーティングに適用される溶射用粉末材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder material for thermal spraying applied to a coating excellent in high-temperature corrosion resistance for moving and stationary blades of a gas turbine. More specifically, the present invention relates to a thermal spraying powder material applied to a coating having excellent resistance to high-temperature corrosion, such as a burner diffuser for a boiler.

【0002】[0002]

【従来の技術】最近、省資源及び燃料費の低減の観点か
ら、低質の重油を燃料とするガスタービンの開発が試み
られている。しかし、このような低質の重油中には硫
黄、バナジウム、ナトリウムといった金属の腐食を促進
させる成分が多く含まれるために、高温部材であるガス
タービンの動・静翼は、非常に過酷な腐食環境下にさら
される。このような環境下では、今までの耐熱鋼、耐熱
合金の母材のみでは充分な耐食性が得られない。よっ
て、この母材の上に、Ni−50Cr系、MCrAlY
(M=Co、Ni、Fe等)などの粉末材料を厚さ10
0〜400μm程度にプラズマ溶射することによって耐
食性を向上させている。コーティング手法としては、一
般に低圧プラズマ溶射法が使われている。
2. Description of the Related Art Recently, from the viewpoint of resource saving and reduction of fuel cost, development of a gas turbine using low-quality heavy oil as fuel has been attempted. However, since such low-quality heavy oil contains many components that promote corrosion of metals such as sulfur, vanadium, and sodium, the moving and stationary blades of gas turbines, which are high-temperature components, are extremely harsh in corrosive environments. Exposed below. Under such an environment, sufficient corrosion resistance cannot be obtained only with the conventional base materials of heat-resistant steel and heat-resistant alloy. Therefore, a Ni-50Cr-based, MCrAlY
(M = Co, Ni, Fe, etc.)
Corrosion resistance is improved by plasma spraying to about 0 to 400 μm. As a coating method, a low-pressure plasma spraying method is generally used.

【0003】[0003]

【発明が解決しようとする課題】しかし、最近では、さ
らに低質の燃料(C重油等)が用いられてきており、腐
食をいっそう高める環境下に金属部品がさらされるよう
になってきた。従って、上記従来材による溶射コーティ
ングでは、充分な耐食性が得られないため、ガスタービ
ンの性能低下が起き、保護被膜としての機能を充分に維
持することができなくなってきた。このような事情か
ら、Ni−50Cr系、MCrAlY等の従来材よりも
更に高温での耐食性及び耐熱衝撃性に優れた溶射被膜が
得られる溶射用粉末材料が要求されるようになってき
た。
However, recently, lower quality fuels (such as heavy fuel oil C) have been used, and metal parts have been exposed to an environment that further increases corrosion. Therefore, in the thermal spray coating using the conventional material, sufficient corrosion resistance cannot be obtained, so that the performance of the gas turbine is reduced, and the function as a protective coating cannot be sufficiently maintained. Under these circumstances, there has been a demand for a powder material for thermal spraying that can provide a thermal spray coating having better corrosion resistance and thermal shock resistance at higher temperatures than conventional materials such as Ni-50Cr and MCrAlY.

【0004】そこで、本発明は、低質重油を燃料とする
ガスタービンにおいて、高温使用環境下で、腐食を促進
させる成分である硫黄、バナジウム、ナトリウム等に対
して、従来材であるNi−50Cr系、MCrAlY等
よりも充分な耐食性を有する溶射用粉末材料を提供する
ものである。
Accordingly, the present invention relates to a gas turbine using low-quality heavy oil as a fuel, in which a conventional Ni-50Cr-based material is used against sulfur, vanadium, sodium, etc., which are components that promote corrosion in a high-temperature use environment. , MCrAlY, and the like.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を解
決するためになされたものであり、その要旨は、化学組
成が重量比で、40〜60%のクロムと、5〜15%の
アルミニウムと、0.5〜15%のジルコニウムと、コ
バルトおよび鉄の群から選ばれた1種または2種の元素
および不可避的不純物からなる残部とからなる溶射用粉
末材料である。このような材料により、高温使用環境下
で腐食を促進させる成分である硫黄、バナジウム、ナト
リウムに対する高い耐食性を有する溶射被膜が得られ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned object, and the gist of the invention is that the chemical composition is such that, by weight, 40 to 60% chromium and 5 to 15% A thermal spraying powder material comprising aluminum, 0.5 to 15% of zirconium, and one or two elements selected from the group consisting of cobalt and iron, and the balance comprising unavoidable impurities. With such a material, a sprayed coating having high corrosion resistance to sulfur, vanadium, and sodium, which are components that promote corrosion in a high-temperature use environment, can be obtained.

【0006】[0006]

【発明の実施の形態】本発明者らは、硫黄、バナジウ
ム、ナトリウムといった腐食を促進させる成分に対し
て、高温での耐食性を有する溶射用粉末材料として以下
の化学成分の組成を限定した。クロム(Cr)は、アル
ミニウム(Al)と共に耐高温腐食性を維持するために
不可欠な元素であり、CrとAlの複合酸化物が保護被
膜として働き、耐食性を向上する。そのためにCrとA
lのどちらか一方がなければ充分な耐食性が得られな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have limited the composition of the following chemical components as a thermal spray powder material having corrosion resistance at high temperatures with respect to components which promote corrosion such as sulfur, vanadium and sodium. Chromium (Cr) is an element indispensable for maintaining high-temperature corrosion resistance together with aluminum (Al), and a composite oxide of Cr and Al works as a protective film to improve corrosion resistance. Therefore Cr and A
Unless either one of l is used, sufficient corrosion resistance cannot be obtained.

【0007】しかし、このCrとAlを保護被膜とした
場合、化学組成のCr及びAl量がそれぞれ重量比で6
0%と15%の上限値を超えると、被膜の延性がなくな
り、高温での延性が得られず、また、耐熱衝撃性も低下
し、使用中に割れや被膜剥離を生じ易くなる。そして、
化学組成のCr及びAl量がそれぞれ重量比で40%と
5%の下限値を下回ると、耐熱衝撃性の低下の問題は無
くなるが、高温腐食環境下での耐食性が充分なものは得
られない。従って、溶射材料中のCr及びAl量は、そ
れぞれ重量比で40〜60%、5〜15%の範囲が好ま
しく、約45%、約8%がさらに好ましい。
However, when Cr and Al are used as the protective coating, the amounts of Cr and Al in the chemical composition are 6 by weight, respectively.
If the content exceeds the upper limits of 0% and 15%, ductility of the coating is lost, ductility at a high temperature cannot be obtained, and thermal shock resistance is reduced, and cracks and coating peeling are likely to occur during use. And
When the amounts of Cr and Al in the chemical composition are below the lower limits of 40% and 5% by weight, respectively, the problem of a decrease in thermal shock resistance is eliminated, but a material having insufficient corrosion resistance in a high-temperature corrosive environment cannot be obtained. . Therefore, the amounts of Cr and Al in the thermal spraying material are preferably in the range of 40 to 60% and 5 to 15% by weight, more preferably about 45% and about 8%.

【0008】一方、ジルコニウム(Zr)は、Zrの酸
化物生成の自由エネルギーが著しく小さいので、一般的
にコーティングした際、低酸素分圧下において、Zrの
極薄の酸化被膜を形成し易く、CrとAlの被膜のみの
形成による耐食性の向上よりも、いっそう優れたものが
得られる。
On the other hand, zirconium (Zr) has a remarkably low free energy of formation of oxide of Zr, and therefore, when coated, it is easy to form an ultrathin oxide film of Zr under a low oxygen partial pressure. A more excellent corrosion resistance can be obtained than the improvement of corrosion resistance by forming only a film of Al and Al.

【0009】但し、Zrの添加量を0.5%以下にする
と、Zrを添加した効果が認められないため、0.5%
以上添加することが望ましい。また、Zrの添加量を1
5%以上にすると、逆に、溶射被膜の延性が低下し、耐
熱衝撃性に乏しいものとなる。従って、添加するZr量
は重量比で0.5〜15%が望ましく、約5%が好まし
い。更に、残部は、コバルト(Co)または鉄(F
e)、若しくはCoとFeである。CoまたはFeは、
この溶射被膜を形成するための重要な元素であり、高温
での長時間使用時における耐熱性を得るためにも必要な
成分である。また、Co及びFeは、ニッケル(Ni)
に比較して、硫化物の生成が著しく小さいために、高温
腐食環境下で優れた耐食性を示す。なお、不可避の不純
物は、できるだけ少ないことが望ましい。本発明による
溶射用粉末材料の粒径は、溶射方法や被膜の厚さ等に応
じて適宜選択することができ、特に限定されないが、平
均で10〜100μm程度が好ましい。
However, if the amount of Zr added is 0.5% or less, the effect of adding Zr is not recognized, so that 0.5%
It is desirable to add above. Further, the addition amount of Zr is 1
On the other hand, when the content is 5% or more, the ductility of the thermal sprayed coating is reduced, and the thermal shock resistance is poor. Therefore, the amount of Zr to be added is desirably 0.5 to 15% by weight, preferably about 5%. Further, the balance is cobalt (Co) or iron (F
e) or Co and Fe. Co or Fe is
It is an important element for forming this thermal spray coating, and is also necessary for obtaining heat resistance during long-term use at high temperatures. Co and Fe are nickel (Ni)
As compared with, the formation of sulfide is remarkably small, so that it shows excellent corrosion resistance in a high-temperature corrosive environment. It is desirable that the unavoidable impurities be as small as possible. The particle size of the thermal spraying powder material according to the present invention can be appropriately selected according to the thermal spraying method, the thickness of the coating, and the like, and is not particularly limited, but is preferably about 10 to 100 μm on average.

【0010】[0010]

【実施例】表1に示す化学組成(ここで、Co及びFe
の「Bal.」とは、残部を示す。以下、表2において
も同様とする。)の材料を真空溶解し、アルゴンガスに
より噴霧した。得られた粉末を分級し、粒径が10〜4
5μmになるようにした。
EXAMPLES The chemical compositions shown in Table 1 (where Co and Fe
“Bal.” Indicates the remainder. Hereinafter, the same applies to Table 2. ) Was melted in vacuum and sprayed with argon gas. The obtained powder is classified and the particle size is 10 to 4
The thickness was set to 5 μm.

【0011】[0011]

【表1】 [Table 1]

【0012】このコーティングに用いる溶射用粉末材料
の特性を調べるために、ガスタービンの動・静翼材に多
く用いられているNi基耐熱合金(IN738LC)及
びCo基耐熱合金(ECY768)をコーティング試験
片の基材とした。この基材として用いたIN738LC
及びECY768の化学組成は、表2に示すとおりであ
る。
In order to examine the characteristics of the thermal spraying powder material used for this coating, a coating test was performed on a Ni-base heat-resistant alloy (IN738LC) and a Co-base heat-resistant alloy (ECY768), which are often used for the moving and stationary blade materials of a gas turbine. One piece of the base material was used. IN738LC used as this substrate
And the chemical composition of ECY768 is as shown in Table 2.

【0013】[0013]

【表2】 [Table 2]

【0014】コーティング試験片としては、基材の丸棒
(粒径10mm×長さ65mm、コーティング部の長さ30
mm)を用いた。そして、基材と同様な化学組成をもつ粉
末を用いて真空溶解し、アルゴンガスを用いて噴霧し
た。そして、得られた球状の粉末を分級し、粒径が10
0〜300μm程度になるようにした。この球状のメタ
ルブラスト材を用いて、上記丸棒の外周部を数分間ブラ
ストした。
As a coating test piece, a round rod of a base material (particle diameter 10 mm × length 65 mm, coating part length 30
mm) was used. And it melt | dissolved in vacuum using the powder which has the same chemical composition as a base material, and sprayed using argon gas. Then, the obtained spherical powder is classified, and the particle size is 10
The thickness was set to about 0 to 300 μm. Using this spherical metal blast material, the outer peripheral portion of the round bar was blasted for several minutes.

【0015】その後、この前処理が終った丸棒の基材を
低圧プラズマ溶射容器内に取り付け、表3に示した条件
で溶射した。表1に示した化学組成の材料を用いて低圧
プラズマ溶射によりコーティングした膜厚は、耐食性維
持を考え500μm〜1000μmの厚膜とした。更
に、コーティングした試験片を真空炉を利用して115
0℃×2時間の加熱処理をし、基材との密着性向上を図
った。
Thereafter, the base material of the round bar after the pretreatment was mounted in a low-pressure plasma spraying container and sprayed under the conditions shown in Table 3. The film thickness coated by low-pressure plasma spraying using the material having the chemical composition shown in Table 1 was set to be 500 μm to 1000 μm in consideration of maintaining corrosion resistance. Further, the coated test piece was subjected to 115
A heat treatment at 0 ° C. × 2 hours was performed to improve the adhesion to the substrate.

【0016】[0016]

【表3】 [Table 3]

【0017】このコーティングした試験片の被膜性状を
確認すべく、高温腐食試験及び高温熱衝撃試験を行っ
た。その結果を表4に示す。
A high-temperature corrosion test and a high-temperature thermal shock test were performed to confirm the film properties of the coated test piece. Table 4 shows the results.

【0018】[0018]

【表4】 [Table 4]

【0019】高温腐食試験は、溶融塩(組成:60V2
5 −40Na2 SO4 )を入れた磁性のアルミナルツ
ボに供試体を浸漬させ、このルツボを電気炉に挿入し、
ガスタービン燃焼模擬ガスを流通させた状態で、900
℃×100時間保持した後に供試体を取り出し、湯洗及
び酸洗(18wt%NaOH+3wt%KMnO4 の水
溶液と10%クエン酸アンモニウム水溶液で1時間煮
沸)することで供試体の表面の酸化被膜を除去した。こ
ののち、該供試体の重量を測定し、腐食減量を求めると
ともに、断面組織を観察して腐食によるコーティングの
損傷厚さを測定した。高温熱衝撃試験では、図1に示す
ように供試体を990℃まで約180秒で急速加熱し、
その後にアルミナ粉体を冷媒としてふきつけることによ
り60℃にまで約240秒で冷却させる操作を繰り返し
た。その後、熱応力によるコーティングの割れ及び剥離
の有無を評価した。ここで、最大繰り返し数は1000
回と定めた。この値は、実機ガスタービン翼の寿命末期
までに繰り返す起動停止回数をクリアするために設定し
た値である。
The high-temperature corrosion test was performed using a molten salt (composition: 60 V 2
The specimen was immersed in a magnetic alumina crucible containing O 5 -40Na 2 SO 4 ), and this crucible was inserted into an electric furnace.
With the gas turbine combustion simulation gas flowing, 900
After holding at 100 ° C. × 100 hours, the specimen is taken out, washed with hot water and pickled (boiling with an aqueous solution of 18 wt% NaOH + 3 wt% KMnO 4 and a 10% ammonium citrate aqueous solution for 1 hour) to remove an oxide film on the surface of the specimen. did. Thereafter, the weight of the specimen was measured to determine the weight loss of corrosion, and the cross-sectional structure was observed to measure the thickness of the coating damaged by corrosion. In the high temperature thermal shock test, the specimen was rapidly heated to 990 ° C. in about 180 seconds as shown in FIG.
Thereafter, the operation of cooling to 60 ° C. in about 240 seconds by wiping the alumina powder as a refrigerant was repeated. Thereafter, the presence or absence of cracking and peeling of the coating due to thermal stress was evaluated. Here, the maximum number of repetitions is 1000
Times. This value is a value set in order to clear the number of times of starting and stopping repeated by the end of the life of the actual gas turbine blade.

【0020】表4に示すように、本発明の化学組成をも
つ溶射用粉末材料を用いて得たコーティング試験片によ
る高温腐食試験では、従来材に比較して優れた耐食性を
有しており、腐食減量の目標値を100mg/cm2
下、及び最大腐食減厚量の目標値を50μm以下と定め
ると、これらの目標値を充分に満足した値を得ることが
できた。また、高温熱衝撃試験では、従来材と同様に最
大繰り返し数の1000回をクリアし、コーティングの
割れ及び剥離は認められず、健全なものであった。この
場合も、割れ及び剥離なしの状態を目標条件をすると、
本発明材はこの目標条件を満足することができた。表4
の「評価」の欄における丸印は、この高温腐食試験の上
記目標値と高温熱衝撃試験の目標条件の両方を満足した
ことを示し、バツ印は満足しなかったことを示す。
As shown in Table 4, in a high-temperature corrosion test using a coating test piece obtained by using a thermal spray powder material having the chemical composition of the present invention, the coating material has excellent corrosion resistance as compared with the conventional material. When the target value of the corrosion loss was set to 100 mg / cm 2 or less and the target value of the maximum corrosion loss was set to 50 μm or less, it was possible to obtain values that sufficiently satisfied these target values. In addition, in the high-temperature thermal shock test, as in the case of the conventional material, the maximum number of repetitions was 1,000, and the coating was free of cracks and peeling. Also in this case, if the target condition is a state without cracking and peeling,
The material of the present invention was able to satisfy this target condition. Table 4
The circles in the column of "Evaluation" indicate that both the target value of the high-temperature corrosion test and the target conditions of the high-temperature thermal shock test were satisfied, and the cross mark did not.

【0021】これに対し、比較材および従来材において
は、上記の目標値、目標条件の少なくとも一項目を満足
しなかった。従って、本発明の材料は、高温での耐食性
に優れたものであると言える。
On the other hand, the comparative material and the conventional material did not satisfy at least one of the above target values and target conditions. Therefore, it can be said that the material of the present invention has excellent corrosion resistance at high temperatures.

【0022】[0022]

【発明の効果】以上詳述したように、本発明によれば、
高温での耐食性に優れ、硫黄、バナジウム、ナトリウム
に対する耐食性に優れた溶射用粉末材料が得られる。
As described in detail above, according to the present invention,
A thermal spray powder material having excellent corrosion resistance at high temperatures and excellent corrosion resistance to sulfur, vanadium, and sodium can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高温熱衝撃試験における試験片の温度と加熱時
間を示すグラフである。
FIG. 1 is a graph showing the temperature and heating time of a test piece in a high-temperature thermal shock test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が重量比で、40〜60%のク
ロムと、5〜15%のアルミニウムと、0.5〜15%
のジルコニウムと、コバルトおよび鉄の群から選ばれた
1種または2種の元素および不可避的不純物からなる残
部とからなる溶射用粉末材料。
1. The chemical composition by weight of 40-60% chromium, 5-15% aluminum, 0.5-15%
And zirconium, and one or two elements selected from the group consisting of cobalt and iron, and the balance comprising unavoidable impurities.
JP25272796A 1996-09-25 1996-09-25 Powder material for thermal spraying excellent in high temperature corrosion resistance Withdrawn JPH10102227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25272796A JPH10102227A (en) 1996-09-25 1996-09-25 Powder material for thermal spraying excellent in high temperature corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25272796A JPH10102227A (en) 1996-09-25 1996-09-25 Powder material for thermal spraying excellent in high temperature corrosion resistance

Publications (1)

Publication Number Publication Date
JPH10102227A true JPH10102227A (en) 1998-04-21

Family

ID=17241428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25272796A Withdrawn JPH10102227A (en) 1996-09-25 1996-09-25 Powder material for thermal spraying excellent in high temperature corrosion resistance

Country Status (1)

Country Link
JP (1) JPH10102227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913495A1 (en) * 1997-10-31 1999-05-06 Mitsubishi Heavy Industries, Ltd. Spray coating powder material and high-temperature components coated therewith
KR100452451B1 (en) * 2002-06-14 2004-10-12 현대자동차주식회사 Composition of powder-alloy for thermal spray coating and manufacturing method of cylinder block using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913495A1 (en) * 1997-10-31 1999-05-06 Mitsubishi Heavy Industries, Ltd. Spray coating powder material and high-temperature components coated therewith
US6190785B1 (en) 1997-10-31 2001-02-20 Mitsubishi Heavy Industries, Ltd. Spray coating powder material and high-temperature components coated therewith
KR100452451B1 (en) * 2002-06-14 2004-10-12 현대자동차주식회사 Composition of powder-alloy for thermal spray coating and manufacturing method of cylinder block using the same

Similar Documents

Publication Publication Date Title
US3129069A (en) Oxidation-resistant turbine blades
US5154885A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US9222164B2 (en) Process for forming a chromium diffusion portion and articles made therefrom
JPS5837145A (en) Coating composition
JPS6136061B2 (en)
US5268238A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof
JPS5989745A (en) Metal coating composition for high temperature
JP2005298973A (en) Nickel based superalloy, composition, article and gas turbine engine blade
WO2014069180A1 (en) Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME
JP2826824B2 (en) Thermal insulation coating method and gas turbine combustor
JPH01257A (en) Oxidation-resistant and high-temperature corrosion-resistant nickel-based alloy coating materials and composite products using the same
JP4217626B2 (en) High temperature protective layer
JPH11131206A (en) Powder material for thermal spraying coating and high temperature member using the same
JP2934599B2 (en) High temperature corrosion resistant composite surface treatment method
JP3241745B2 (en) Alloy compositions and articles for cobalt-based forging
JPH10102227A (en) Powder material for thermal spraying excellent in high temperature corrosion resistance
JPS59118847A (en) High temperature resistant protective layer alloy
JP4060072B2 (en) Coating interlayer to improve compatibility between substrate and aluminum-containing oxidation resistant metal coating
US6528178B1 (en) High temperature resistant article with improved protective coating bonding and method of manufacturing same
US20050031482A1 (en) Alloys for high temperature applications, articles made therefrom, and method for repair of articles
JPS6267145A (en) Alloy for protective layer having resistance to wear and high temperature
JPH04246113A (en) Tuyere in blast furnace
JP2721723B2 (en) Heat-resistant cast alloy for gas turbine blades
JP3917564B2 (en) Heat- and oxidation-resistant thermal spray coating member and method for producing the same
JPS6328983B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202