JPH1010038A - Optical acoustic cell - Google Patents

Optical acoustic cell

Info

Publication number
JPH1010038A
JPH1010038A JP16460796A JP16460796A JPH1010038A JP H1010038 A JPH1010038 A JP H1010038A JP 16460796 A JP16460796 A JP 16460796A JP 16460796 A JP16460796 A JP 16460796A JP H1010038 A JPH1010038 A JP H1010038A
Authority
JP
Japan
Prior art keywords
sample
optical
concentration
casing
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16460796A
Other languages
Japanese (ja)
Inventor
Yasutoshi Ueda
泰稔 上田
Koichi Minamiyama
幸一 南山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16460796A priority Critical patent/JPH1010038A/en
Publication of JPH1010038A publication Critical patent/JPH1010038A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To allow a measurement in a concentration range wider than in the past by about two digits by providing an optical diameter changing means for changing the optical diameter of a laser beam in a sample on the incident port side of the optical fiber of an optical acoustic cell for determining the sample concentration and optical absorption coefficient. SOLUTION: An optical acoustic cell is formed of an optical fiber 10, a casing 20, a quartz window 30, and a piezoelectric element 50, and the tip of the optical fiber 10 is spherically worked to form an optical diameter changing means. A sample is sent into the casing 20 through a sample injection port, and a laser beam 40 the optical diameter of which is changed in the sample is emitted to the sample through the incident port of the optical fiber 10. The sample in the emitted part is thermally expanded to generate a pressure wave propagated toward the circumference within the casing 20, and the pressure wave is detected by a pressure sensor. The resulting detection signal is taken out to determine the sample concentration and optical absorption coefficient.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光音響分光
法による水質計測に使用する光音響セルに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoacoustic cell used for measuring water quality by laser photoacoustic spectroscopy.

【0002】[0002]

【従来の技術】従来の光音響セルには、特開平6−28
8989号公報に記載されたものがある。この光音響セ
ルを図5により説明すると、1がケーシング、1aが同
ケーシング1に穿設した試料注入口、1bが同ケーシン
グ1に穿設した試料注出口、5aが上記ケーシング1の
対向一端面に装着した入射ポート取付フランジ、5bが
上記ケーシング1の対向他端面に装着した出射ポート取
付フランジである。
2. Description of the Related Art A conventional photoacoustic cell is disclosed in JP-A-6-28.
No. 8989 discloses this. This photoacoustic cell will be described with reference to FIG. 5. Reference numeral 1 denotes a casing; 1a, a sample injection port formed in the casing 1; 1b, a sample pouring hole formed in the casing 1; The incident port mounting flanges 5b and 5b are emission port mounting flanges mounted on the other end face of the casing 1.

【0003】2aが上記入射ポート取付フランジ5aに
ねじ2a1 を介して螺合した入射ポート、2bが上記出
射ポート取付フランジ5bにねじ2b1 を介して螺合し
た出射ポートで、これらの入射ポート2a及び出射ポー
ト2bが同一軸線上で対向するとともに、上記ねじ2a
1 、2b1 により上記軸線方向に移動調整可能に支持さ
れ、それぞれの先端部に透明体6が取付けられている。
[0003] 2a is at the exit port entrance port screwed via a screw 2a 1 to the entrance port mounting flange 5a, which 2b is screwed through the screw 2b 1 in the exit port mounting flange 5b, these entrance port 2a and the output port 2b face each other on the same axis, and the screw 2a
The transparent body 6 is attached to each of the distal ends by a support 1 and 2b 1 so as to be movable and adjustable in the axial direction.

【0004】4aが上記ケーシング1の試料注入口1a
に接続した試料注入管、4bが上記ケーシング1の試料
注出口1bに接続した試料注出管、7が上記試料注入管
4aに配管を介して接続した試料送液ポンプである。3
が圧力センサで、この圧力センサ3が上記ケーシング1
の内面に上記軸線に対して略直交するように設けられ、
同圧力センサ3には、アンプ8とデジタルオシロスコー
プ9とコンピュータ10とが接続されている。
[0004] 4a is a sample inlet 1a of the casing 1.
Is a sample injection pipe connected to the sample injection port 1b of the casing 1, reference numeral 4b is a sample injection pipe connected to the sample injection pipe 4a, and reference numeral 7 is a sample liquid sending pump connected to the sample injection pipe 4a via a pipe. 3
Is a pressure sensor, and this pressure sensor 3 is
Is provided on the inner surface of the so as to be substantially orthogonal to the axis,
An amplifier 8, a digital oscilloscope 9, and a computer 10 are connected to the pressure sensor 3.

【0005】11が上記ケーシング1と上記取付フラン
ジ5a、5bとの間、同取付フランジ5a、5bと上記
入出射ポート2a、2bとの間、及び上記ケーシング1
と上記圧力センサ3との間に介装したOリングである。
次に前記図5に示す光音響セルの作用を説明する。試料
を試料送液ポンプ7→試料注入管4a→試料注入口1a
を経てケーシング1(光音響セル)内へ送る。この試料
に入射ポート2aからレーザ光を照射し、照射部位の試
料を熱膨張させて、圧力波を発生させる。
Reference numeral 11 denotes a portion between the casing 1 and the mounting flanges 5a and 5b, a portion between the mounting flanges 5a and 5b and the input / output ports 2a and 2b, and
And an O-ring interposed between the pressure sensor 3 and the pressure sensor 3.
Next, the operation of the photoacoustic cell shown in FIG. 5 will be described. The sample is transferred from the sample sending pump 7 to the sample injection pipe 4a to the sample injection port 1a.
To the casing 1 (photoacoustic cell). The sample is irradiated with a laser beam from the incident port 2a, and the sample at the irradiated portion is thermally expanded to generate a pressure wave.

【0006】この圧力波、即ち、ケーシング1(光音響
セル)内を周囲に向かい伝播する圧力波を圧力センサ3
により検出し、そのとき得られる検出信号を電気信号に
変換し、アンプ8へ送って、ここで増幅し、次いでデジ
タルオシロスコープ9へ送って、ここで測定する。そし
てこの測定したデータをコンピュータ10により処理し
て、試料濃度及び光吸収係数を求める。
The pressure wave, that is, the pressure wave propagating toward the surroundings in the casing 1 (photoacoustic cell) is transmitted to the pressure sensor 3.
, The detected signal obtained at that time is converted into an electric signal, sent to an amplifier 8, amplified here, and then sent to a digital oscilloscope 9, where it is measured. The measured data is processed by the computer 10 to determine the sample concentration and the light absorption coefficient.

【0007】その際、測定する試料の濃度が高くなれ
ば、濃度に応じて入射ポート2aまたは入出射ポート2
a、2bの双方を回し、透明体6、6を圧力センサ3の
中心に近づけて、高濃度になっても同圧力センサ3が受
ける圧力が低下しないように調整する。入出射ポート2
a、2bの位置決めは、入出射ポート2a、2bを時計
方向に回し、一杯に締め込んで、それぞれの透明体6、
6を圧力センサ3の中心で突き合わせ、次いでパルスモ
ータまたはサーボモータにより、入出射ポート2a、2
bを反時計方向に回して、それぞれの透明体6、6を圧
力センサ3の中心から離す。このとき、入出射ポート2
a、2bの回転数にねじピッチを乗じた値が圧力センサ
3の中心からの距離Lになる。
At this time, if the concentration of the sample to be measured becomes higher, the input port 2a or the input / output port 2
By turning both a and 2b, the transparent bodies 6, 6 are brought close to the center of the pressure sensor 3 so that the pressure received by the pressure sensor 3 does not decrease even when the concentration becomes high. I / O port 2
For positioning of a, 2b, the input / output ports 2a, 2b are turned clockwise and fully tightened, and the respective transparent bodies 6, 2
6 at the center of the pressure sensor 3 and then input / output ports 2a, 2a by a pulse motor or a servomotor.
By turning b in the counterclockwise direction, the respective transparent bodies 6 are separated from the center of the pressure sensor 3. At this time, the input / output port 2
The value obtained by multiplying the number of rotations of a and 2b by the screw pitch is the distance L from the center of the pressure sensor 3.

【0008】入出射ポート2a、2bを圧力センサ3の
中心から離した状態で、試料の濃度が高くなると、圧力
信号強度が低下してくる。このため、入出射ポート2
a、2bの透明体6、6を圧力センサ3の中心に近づけ
て、圧力信号強度を上げる。しかし試料の濃度が低いの
に、入出射ポート2a、2bの透明体6、6を圧力セン
サ3の中心にセットすると、圧力センサ3の受圧面の全
域で信号を受けられないので、圧力信号強度が逆に低下
することになる。そのため、試料濃度の変化に応じて、
その都度、入出射ポート2a、2bを移動させて、圧力
信号強度が強く且つ試料濃度に対する信号強度の直線性
の良い位置に入出射ポート2a、2bをセットする。
When the sample concentration increases with the input / output ports 2a and 2b separated from the center of the pressure sensor 3, the pressure signal intensity decreases. Therefore, the input / output port 2
By bringing the transparent bodies 6 and 6 of a and 2b closer to the center of the pressure sensor 3, the pressure signal strength is increased. However, if the transparent members 6, 6 of the input / output ports 2a, 2b are set at the center of the pressure sensor 3 even though the concentration of the sample is low, the signal cannot be received over the entire pressure receiving surface of the pressure sensor 3, so that the pressure signal intensity Conversely decreases. Therefore, according to the change in sample concentration,
In each case, the input / output ports 2a, 2b are moved to set the input / output ports 2a, 2b at positions where the pressure signal intensity is strong and the signal intensity is highly linear with respect to the sample concentration.

【0009】[0009]

【発明が解決しようとする課題】前記図5に示す従来の
光音響セルは、入射ポート2aから透明体6を通して試
料中に照射したレーザ光が試料によるエネルギー吸収を
受けた後、出射ポート2bの透明体(石英窓)6を経て
セル外に抜ける。このとき、光音響信号をP、試料の濃
度をC、光路長(入射ポート2aの透明体6と出射ポー
ト2bの透明体6との間の距離)をL’とすると、P∝
-CL'になるので、L’が一定の場合、高濃度に対して
は信号が飽和し、低濃度に対しては信号が小さくなり過
ぎて、何れの場合にも、濃度測定が不可能になる。
In the conventional photoacoustic cell shown in FIG. 5, the laser beam applied to the sample from the entrance port 2a through the transparent body 6 is subjected to energy absorption by the sample. It passes through the transparent body (quartz window) 6 and out of the cell. At this time, if the photoacoustic signal is P, the sample concentration is C, and the optical path length (the distance between the transparent body 6 at the entrance port 2a and the transparent body 6 at the exit port 2b) is L ', then P∝
Since e- CL ' , when L' is constant, the signal is saturated for a high density, and the signal is too small for a low density. In any case, the density measurement is impossible. become.

【0010】この対策としては、入射ポート2aと出射
ポート2bとを動かして、光路長L’を可変にしていた
が、光路長L’を1mm以下にすることが非常に困難で
あり、高濃度の測定を十分に行うことができなかった。
また光路長L’が長くなることにより、その間でのレー
ザ光の強度が主として試料(液)中でのエネルギー吸収
により減衰して、低濃度までの測定を十分に行うことが
できなかった。
As a countermeasure, the light path length L 'is made variable by moving the input port 2a and the light output port 2b. However, it is very difficult to reduce the light path length L' to 1 mm or less. Could not be sufficiently measured.
In addition, when the optical path length L ′ becomes longer, the intensity of the laser beam during that period is attenuated mainly by energy absorption in the sample (liquid), and it is not possible to sufficiently perform measurement up to a low concentration.

【0011】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、従来の光音響セルよりも
2桁程度広い濃度範囲の測定が可能になる光音響セルを
提供しようとする点にある。
The present invention has been made in view of the above problems, and has as its object to provide a photoacoustic cell capable of measuring a concentration range about two orders of magnitude wider than that of a conventional photoacoustic cell. It is in the point.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光音響セルは、試料を試料注入入口からケ
ーシング内へ送り、この試料に光ファイバの入射ポート
からレーザ光を照射し、照射部位の試料を熱膨張させ
て、ケーシング内を周囲に向かい伝播する圧力波を発生
させるとともに、この圧力波を圧力センサにより検出
し、そのとき得られる検出信号を取り出して、試料濃度
及び光吸収係数を求める光音響セルにおいて、前記光フ
ァイバの入射ポート側にレーザ光の光径を試料中で変え
る光径変更手段を設けている。
In order to achieve the above object, a photoacoustic cell of the present invention sends a sample from a sample injection inlet into a casing, and irradiates the sample with laser light from an input port of an optical fiber. Then, the sample at the irradiation site is thermally expanded to generate a pressure wave that propagates toward the surroundings in the casing, and the pressure wave is detected by a pressure sensor, and a detection signal obtained at that time is taken out to obtain a sample concentration and light. In the photoacoustic cell for obtaining the absorption coefficient, a light diameter changing means for changing the light diameter of the laser light in the sample is provided on the incident port side of the optical fiber.

【0013】[0013]

【発明の実施の形態】次に本発明の光音響セルを図1〜
図4に示す実施形態により説明すると、図1(a)は、
高濃度溶液の濃度測定に適用する場合の一構成例を示す
縦断側面図、図1(b)は、高濃度溶液の濃度測定に適
用する場合の他の構成例を示す縦断側面図、図2は、低
濃度溶液の濃度測定に適用する場合の構成例を示す縦断
側面図、図3及び図4は、図1及び図2に示す光音響セ
ルの実施効果例を示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a photoacoustic cell according to the present invention will be described with reference to FIGS.
Referring to the embodiment shown in FIG. 4, FIG.
FIG. 1 (b) is a vertical sectional side view showing another configuration example when applied to the measurement of the concentration of a high-concentration solution, and FIG. Is a longitudinal side view showing a configuration example when applied to the measurement of the concentration of a low-concentration solution, and FIGS. 3 and 4 are explanatory diagrams showing examples of effects of the photoacoustic cell shown in FIGS. 1 and 2.

【0014】先ず高濃度溶液の濃度測定に適用する図1
(a)の光音響セルについて説明すると、10が光ファ
イバ、20がケーシング、30が石英窓、40がレーザ
光、50が圧力センサに相当する圧電素子(またはマイ
クロフォン)で、光ファイバ10の先端部を球面加工し
ており、この球面加工部が光径変更手段に相当してい
る。
First, FIG. 1 applied to the concentration measurement of a high concentration solution
The photoacoustic cell of (a) will be described. 10 is an optical fiber, 20 is a casing, 30 is a quartz window, 40 is a laser beam, and 50 is a piezoelectric element (or microphone) corresponding to a pressure sensor. The portion is spherically processed, and this spherically processed portion corresponds to a light diameter changing unit.

【0015】この図1(a)に示す音響セルでは、光フ
ァイバ10の先端部を球面加工しており、レーザ光40
の光径を溶液中で広げて、高濃度溶液の濃度を測定す
る。次に高濃度溶液の濃度測定に適用する図1(b)の
光音響セルについて説明すると、10が光ファイバ、2
0がケーシング、30が石英窓、40がレーザ光、50
が圧力センサに相当する圧電素子(またはマイクロフォ
ン)、60がレンズで、レンズ60が光径変更手段に相
当している。このレンズ60は、ケーシング20内に設
置しても、ケーシング20外に設置してもよい。
In the acoustic cell shown in FIG. 1A, the tip of the optical fiber 10 is spherically processed, and the laser light 40
Is spread in the solution, and the concentration of the highly concentrated solution is measured. Next, the photoacoustic cell of FIG. 1B applied to the measurement of the concentration of a highly concentrated solution will be described.
0 is a casing, 30 is a quartz window, 40 is a laser beam, 50
Denotes a piezoelectric element (or microphone) corresponding to a pressure sensor, 60 denotes a lens, and the lens 60 corresponds to a light diameter changing unit. This lens 60 may be installed inside the casing 20 or outside the casing 20.

【0016】この図1(b)に示す光音響セルでは、レ
ンズ60により、レーザ光40の光径を溶液中で広げ
て、高濃度溶液の濃度を測定する。上記図1(a)
(b)に示す光音響セルでは、所定の広がり角度を得ら
れれば、何れの場合でも同様の効果を達成可能である。
次に低濃度溶液の濃度測定に適用する図2の光音響セル
について説明すると、10が光ファイバ、20がケーシ
ング、21、21が集光レンズ、30が石英窓、40’
がレーザ光、50が圧力センサに相当する圧電素子(ま
たはマイクロフォン)で、各集光レンズ21が光径変更
手段に相当している。
In the photoacoustic cell shown in FIG. 1B, the light diameter of the laser light 40 is expanded in the solution by the lens 60, and the concentration of the high concentration solution is measured. FIG. 1 (a) above
In the photoacoustic cell shown in (b), the same effect can be achieved in any case as long as a predetermined spread angle can be obtained.
Next, the photoacoustic cell of FIG. 2 applied to the measurement of the concentration of a low-concentration solution will be described. 10 is an optical fiber, 20 is a casing, 21 and 21 are condenser lenses, 30 is a quartz window, and 40 ′.
Is a laser beam, 50 is a piezoelectric element (or microphone) corresponding to a pressure sensor, and each condenser lens 21 corresponds to a light diameter changing unit.

【0017】この図2に示す光音響セルでは、集光レン
ズ21、21により、レーザ光40の光径を絞ったり、
平行にしたりして、低濃度溶液の濃度を測定する。上記
各光音響セルの作用をさらに具体的に説明すると、レー
ザ光音響分光法は、被測定試料による光の吸収により発
生する圧力波の強度を、圧電素子またはマイクロフォン
50で検知して、試料の濃度を求める方法であり、図2
に示すようにレーザ光40’が平行光である場合、理論
的に音響信号P、レーザ光強度I、試料濃度C、試料の
吸収係数α、光路長L’の間には、次の関係がある。
In the photoacoustic cell shown in FIG. 2, the diameter of the laser beam 40 is reduced by the condensing lenses 21 and 21,
Measure the concentration of the low concentration solution, for example, in parallel. The operation of each photoacoustic cell will be described more specifically. In the laser photoacoustic spectroscopy, the intensity of a pressure wave generated by light absorption by a sample to be measured is detected by a piezoelectric element or a microphone 50, and the sample is measured. FIG. 2 shows a method for determining the concentration.
When the laser light 40 ′ is parallel light as shown in FIG. 6, the following relationship theoretically exists between the acoustic signal P, the laser light intensity I, the sample concentration C, the absorption coefficient α of the sample, and the optical path length L ′. is there.

【0018】[0018]

【数1】 (Equation 1)

【0019】しかし図3に示すように試料中でレーザ光
を広げてやると、初期レーザ光径をr、レーザ入射位置
からの距離をx、レーザ光の広がり角をθとすると、
式は次のようになる。
However, as shown in FIG. 3, when the laser beam is spread in the sample, if the initial laser beam diameter is r, the distance from the laser incident position is x, and the spread angle of the laser beam is θ,
The formula is as follows:

【0020】[0020]

【数2】 (Equation 2)

【0021】図4は、ウランの吸収係数を用いて試算し
たものであるが、図4から明らかなように式は、式
に比べて、濃度Cに対する信号の飽和が小さく、より高
濃度まで、信号の飽和なしに濃度計測が可能になる。
FIG. 4 is a trial calculation using the absorption coefficient of uranium. As is clear from FIG. 4, the equation shows that the saturation of the signal with respect to the concentration C is smaller than that of the equation. Concentration measurement can be performed without signal saturation.

【0022】[0022]

【発明の効果】本発明は前記のように試料を試料注入入
口からケーシング内へ送り、この試料に光ファイバの入
射ポートからレーザ光を照射し、照射部位の試料を熱膨
張させて、ケーシング内を周囲に向かい伝播する圧力波
を発生させるとともに、この圧力波を圧力センサにより
検出し、そのとき得られる検出信号を取り出して、試料
濃度及び光吸収係数を求める光音響セルにおいて、前記
光ファイバの入射ポート側にレーザ光の光径を試料中で
変える光径変更手段を設けており、従来の光音響セルよ
りも2桁程度広い濃度範囲の測定が可能になる。即ち、
高濃度試料の測定では、レーザ光強度の強い領域をいか
に小さくするか、また低濃度試料の測定では、試料に吸
収される全レーザエネルギーをいかに高くするかが重要
であり、従来の光音響セルも、本発明の光音響セルも、
上記の点を狙っているが、従来の光音響セルではレーザ
光の入出射ポートを動かすので、調整に限界があり、ポ
ート間を例えば1μm程度に設定することが困難であ
る。しかし本発明の光音響セルなら、ポート間を例えば
1μm程度に設定することができて、従来の光音響セル
よりも2桁程度広い濃度範囲の測定が可能になる。
According to the present invention, as described above, the sample is sent from the sample injection inlet into the casing, and the sample is irradiated with laser light from the input port of the optical fiber, thereby thermally expanding the sample at the irradiated portion, thereby allowing the sample to enter the casing. A pressure wave that propagates toward the surroundings is generated, and the pressure wave is detected by a pressure sensor, a detection signal obtained at that time is taken out, and a photoacoustic cell for obtaining a sample concentration and a light absorption coefficient is used. A light diameter changing means for changing the light diameter of the laser light in the sample is provided on the incident port side, and it is possible to measure a concentration range that is about two orders of magnitude wider than that of a conventional photoacoustic cell. That is,
In the measurement of high-concentration samples, it is important how to reduce the region where the laser beam intensity is strong, and in the measurement of low-concentration samples, how high the total laser energy absorbed by the sample is important. The photoacoustic cell of the present invention also
Although the above point is aimed at, since the conventional photoacoustic cell moves the input / output port of the laser beam, there is a limit in adjustment, and it is difficult to set the distance between the ports to, for example, about 1 μm. However, with the photoacoustic cell of the present invention, the distance between ports can be set to, for example, about 1 μm, and a measurement in a concentration range that is about two orders of magnitude wider than that of a conventional photoacoustic cell becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の光音響セルを高濃度試料の
濃度測定に適用する場合の一構成例を示す縦断側面図、
(b)は、高濃度溶液の濃度測定に適用する場合の他の
構成例を示す縦断側面図である。
FIG. 1A is a longitudinal sectional side view showing an example of a configuration in which a photoacoustic cell of the present invention is applied to concentration measurement of a high concentration sample,
(B) is a longitudinal side view showing another configuration example when applied to the concentration measurement of a high concentration solution.

【図2】本発明の光音響セルを低濃度試料の濃度測定に
適用する場合の構成例を示す縦断側面図である。
FIG. 2 is a vertical sectional side view showing a configuration example when the photoacoustic cell of the present invention is applied to concentration measurement of a low concentration sample.

【図3】図1及び図2に示す光音響セルの実施効果例を
示す説明図である。
FIG. 3 is an explanatory diagram showing an example of the effect of the photoacoustic cell shown in FIGS. 1 and 2;

【図4】図1及び図2に示す光音響セルの実施効果例を
示す説明図である。
FIG. 4 is an explanatory diagram showing an example of the effect of the photoacoustic cell shown in FIGS. 1 and 2;

【図5】従来の光音響セルを示す縦断側面図である。FIG. 5 is a vertical sectional side view showing a conventional photoacoustic cell.

【符号の説明】[Explanation of symbols]

10 光ファイバ 20 ケーシング 30 石英窓 40 レーザ光 50 圧力センサ(圧電素子またはマイクロフォ
ン)
Reference Signs List 10 optical fiber 20 casing 30 quartz window 40 laser beam 50 pressure sensor (piezoelectric element or microphone)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料を試料注入入口からケーシング内へ
送り、この試料に光ファイバの入射ポートからレーザ光
を照射し、照射部位の試料を熱膨張させて、ケーシング
内を周囲に向かい伝播する圧力波を発生させるととも
に、この圧力波を圧力センサにより検出し、そのとき得
られる検出信号を取り出して、試料濃度及び光吸収係数
を求める光音響セルにおいて、前記光ファイバの入射ポ
ート側にレーザ光の光径を試料中で変える光径変更手段
を設けたことを特徴とする光音響セル。
A sample is sent from a sample injection inlet into a casing, and the sample is irradiated with a laser beam from an input port of an optical fiber to thermally expand the sample at an irradiation site and propagate a pressure propagating in the casing toward the periphery. While generating a wave, this pressure wave is detected by a pressure sensor, and a detection signal obtained at that time is taken out, and in a photoacoustic cell for obtaining a sample concentration and a light absorption coefficient, a laser beam is applied to the incident port side of the optical fiber. A photoacoustic cell comprising a light diameter changing means for changing a light diameter in a sample.
JP16460796A 1996-06-25 1996-06-25 Optical acoustic cell Withdrawn JPH1010038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16460796A JPH1010038A (en) 1996-06-25 1996-06-25 Optical acoustic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16460796A JPH1010038A (en) 1996-06-25 1996-06-25 Optical acoustic cell

Publications (1)

Publication Number Publication Date
JPH1010038A true JPH1010038A (en) 1998-01-16

Family

ID=15796407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16460796A Withdrawn JPH1010038A (en) 1996-06-25 1996-06-25 Optical acoustic cell

Country Status (1)

Country Link
JP (1) JPH1010038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517252A (en) * 2004-10-04 2008-05-22 ユニヴァーシティー オブ サウスカロライナ Heat selective multivariate optical computing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517252A (en) * 2004-10-04 2008-05-22 ユニヴァーシティー オブ サウスカロライナ Heat selective multivariate optical computing

Similar Documents

Publication Publication Date Title
US7921693B2 (en) Photo-acoustic spectrometer apparatus
Spagnolo et al. Mid-infrared fiber-coupled QCL-QEPAS sensor
JP5022363B2 (en) Photoacoustic detector and photoacoustic detection method
JP2013506838A (en) Gas sensor based on photoacoustic detection
US5151590A (en) Photoacoustic cell and photoacoustic measuring device
US20070195434A1 (en) Optical system including a weak lens and a beam translation plate for selectively coupling to the lowest order mode of an optical resonator
CN112924388A (en) Orthogonal dual channel acoustic resonance module and device comprising same
WO2022267555A1 (en) Radial cavity quartz-enhanced photoacoustic spectrophone and gas detection device comprising same
JP2009250825A (en) Probe for absorbance measurement, and absorptiometer
JPH1010038A (en) Optical acoustic cell
JP2001272259A (en) Flowmeter
JP3012868B2 (en) Photoacoustic cell
CN108885168B (en) Detection system and signal enhancement device
JPH03239950A (en) Laser breakdown analyzing apparatus
JPH0843305A (en) Smoke density measuring device
JP2005531037A (en) Laser beam automatic centering apparatus and method of manufacturing the apparatus
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
CN216361769U (en) Heavy metal detection system of single laser source, three-pulse LIBS and fluorescence spectrum
CN116379974B (en) Device and method for detecting surface characteristics of optical element by using multi-wavelength light source
JP2809361B2 (en) Open cell for photoacoustic signal measurement
Takamoto et al. In vivo percutaneous absorptiometry by a laser photoacoustic method using a novel open-ended cell combined with light guide
JPS6360856B2 (en)
JPH0736051U (en) Gas analyzer
Cwik et al. A quantitative schlieren method for the investigation of axisymmetrical shock waves
JPH0321502Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902