JPH0999418A - Manufacture of ceramic member and molding method for ceramic powder - Google Patents

Manufacture of ceramic member and molding method for ceramic powder

Info

Publication number
JPH0999418A
JPH0999418A JP25624595A JP25624595A JPH0999418A JP H0999418 A JPH0999418 A JP H0999418A JP 25624595 A JP25624595 A JP 25624595A JP 25624595 A JP25624595 A JP 25624595A JP H0999418 A JPH0999418 A JP H0999418A
Authority
JP
Japan
Prior art keywords
plastic container
granulated powder
hollow plastic
molding
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25624595A
Other languages
Japanese (ja)
Inventor
Sukeaki Hamanaka
亮明 濱中
Hideo Tsunoda
英雄 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25624595A priority Critical patent/JPH0999418A/en
Publication of JPH0999418A publication Critical patent/JPH0999418A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic member which can easily mold the member having a complicated three-dimensional curved surface at a high speed, and a method for molding ceramic powder. SOLUTION: This method for manufacturing a ceramic member comprises the steps of filling a granulated powder 3 previously prepared in composition in an extra-thin hollow plastic vessel (body 14 and upper cover 15) having elasticity and molded in shape and size previously on the basis of a molding margin in later steps wile vibrating it by an exciter 19, pressing it by upper and lower molds 18, 21, and then sealing it by a thermally pressing ring 23 under reduced pressure by a suction pump 22 via an air bleeding hole 15-2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はセラミック部材の製
造方法及びセラミック粉体の成形方法に関し、特に3次
元曲面を有する部材、例えばタービン動翼やエンジンバ
ルブ等のセラミック製造工程に適用して有用なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic member and a method for molding a ceramic powder, and is particularly useful when applied to a member having a three-dimensional curved surface, for example, a ceramic manufacturing process such as a turbine blade or an engine valve. It is a thing.

【0002】[0002]

【従来の技術】[Prior art]

(1)従来から知られているセラミック粉体の成形方
法。 図9に示す如く、種々の方法が従来から知られている。
即ち、造粒粉(成分組成調整した粉末)に可塑性媒体や
流体を混練した後に成形するA系統では、押出し成形
法(可塑剤を添加して、口金から押出し)、射出成形
法(熱可塑性樹脂を混練し、金型内へ加熱押出し)、
スリップキャスト法(スラリー状にした造粒粉を石コウ
型内に注入し、媒体を型内へ吸収除去)などがある。一
方、造粒粉のまま直接成形するB系統では、ラバープ
レス法(ゴム型に造粒粉末を充填し水圧付与)、加圧
成形法(金型内で上下パンチによりプレス)などがあ
る。
(1) A conventionally known method for molding ceramic powder. As shown in FIG. 9, various methods are conventionally known.
That is, in system A, which is formed after kneading a granulated powder (powder whose composition has been adjusted) with a plastic medium or fluid, extrusion molding (adding a plasticizer and extruding from a die), injection molding (thermoplastic resin) Kneading and extruding into a mold)
There is a slip cast method (granular powder in the form of slurry is poured into a stone mold to absorb and remove the medium into the mold). On the other hand, in the system B in which the granulated powder is directly molded, there are a rubber pressing method (filling a rubber mold with the granulated powder and applying water pressure), a pressure molding method (pressing with a vertical punch in a mold), and the like.

【0003】(2)本発明者らによる既提案のセラミッ
ク粉体の成形方法。 上記(1)で述べたような従来から知られているセラミ
ック粉体の成形方法に対して、本発明者らが先に提案し
たセラミック粉体の成形方法は図12〜図14に示すよ
うな成形方法であった。即ち、造粒粉3を図13に示す
金型4内で上型5によりプレス押圧することによって保
形した後、その外面に弾性を有する有機系樹脂皮膜、例
えば図14に示す如く、熱溶融型樹脂により部材外表面
全域をシール被覆した後、CIP(低温静水圧加圧)を
行うセラミック粉体の成形方法であった。なお、図中の
6は下型、7は樹脂溶融体、8は加熱タンク、9は定給
機構付ポンプ、10はヒーター、11は加熱型、12は
樹脂層、13はワーク昇降機構である。
(2) A method for molding ceramic powder, which has been proposed by the present inventors. In contrast to the conventionally known method for molding ceramic powder as described in (1) above, the method for molding ceramic powder previously proposed by the present inventors is as shown in FIGS. It was a molding method. That is, after the granulated powder 3 is held in shape by pressing with the upper die 5 in the die 4 shown in FIG. 13, an organic resin film having elasticity on its outer surface, for example, as shown in FIG. This is a method of molding a ceramic powder in which CIP (low temperature isostatic pressing) is performed after sealing the entire outer surface of the member with a mold resin. In the figure, 6 is a lower mold, 7 is a resin melt, 8 is a heating tank, 9 is a pump with a constant feed mechanism, 10 is a heater, 11 is a heating mold, 12 is a resin layer, and 13 is a work lifting mechanism. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
のセラミック粉体の成形方法では、以下のような課題が
ある。
However, the above-mentioned conventional method for molding ceramic powder has the following problems.

【0005】(1)従来から知られているセラミック粉
体の成形方法の課題 図9に示した各種の成形方法には夫々の特長及び短所が
ある。例えばA系統に於ては、の押出成形法では製品
形状が口金形状で決まり、丸棒、角棒、異形断面棒など
の2次元面形状の製品しか出来ない。の射出成形法で
は金型への注入経路となる堰の部分も毎回形成する必要
があるため、製品とならないロス材を生じて、高価なセ
ラミック原料材の歩留が悪い。のスリップキャスト法
では石コウ型内へ注入したスラリーの媒体(液体)吸収
・乾燥に長時間を要し、生産性が低い。
(1) Problems of Conventionally Known Ceramic Powder Forming Methods The various forming methods shown in FIG. 9 have their respective advantages and disadvantages. For example, in the system A, the extrusion molding method determines the product shape by the die shape, and can only produce a product having a two-dimensional surface shape such as a round bar, a square bar, or a modified cross-section bar. In the injection molding method, since it is necessary to form the weir portion which becomes the injection path into the mold every time, a loss material that does not become a product is produced, and the yield of expensive ceramic raw material is poor. In the slip cast method, it takes a long time to absorb and dry the medium (liquid) of the slurry injected into the stone mold, and the productivity is low.

【0006】一方、B系統に於ては、のラバープレス
法ではゴム型が弾性体であるとは云え、ゴムの肉厚が大
きいため、曲率半径の小さい所ではゴム圧が不均一挙動
を取り、特に小型且つ複雑な3次元曲面の製品に対して
の均一面圧付与と形状追従性に乏しい。の加圧成形法
では複雑形状の金型使用により複雑な3次元製品形状に
対応できるが、断面に比べて加圧方向の長さ(高さ)が
大きい製品形状の場合には、成形体が粉体なるが故に、
均一圧縮、均一密度になり難い欠点があった。この様な
場合には後工程の焼成時に、低密度域の寸法変化が大き
い。
On the other hand, in the B system, although the rubber mold is an elastic body in the rubber pressing method, since the thickness of the rubber is large, the rubber pressure has a non-uniform behavior in a place where the radius of curvature is small. In particular, it is poor in imparting uniform surface pressure and shape conformability to a product having a small and complicated three-dimensional curved surface. The pressure molding method can handle complicated three-dimensional product shapes by using a mold with a complicated shape. However, in the case of a product shape whose length (height) in the pressing direction is larger than the cross section, the molded body is Because it is powder,
There was a drawback that it was difficult to achieve uniform compression and uniform density. In such a case, the dimensional change in the low density region is large at the time of firing in the subsequent step.

【0007】以上に述べた従来の成形方法の課題を要約
すると以下の通りである。 3次元曲面製品に対しても容易かつ高速に成形でき
ること。 セラミック原料を最大歩留にするため製品形状以外
の部材(例えば堰、注入口)を成形しないで済むこと。 後工程の焼成時に変形がなくかつ均一な収縮、密
度、強度等を得るために成形段階で均一な充填密度が得
られること。 成形工程で大量に処理できること。 次工程の機械加工時に部材保持力、加工外力に十分
耐え得る成形強度が得られること。
The problems of the conventional molding method described above are summarized as follows. Being able to easily and rapidly mold 3D curved products. In order to maximize the yield of ceramic raw materials, it is not necessary to mold members other than the product shape (such as weirs and injection ports). A uniform packing density should be obtained at the molding stage in order to obtain uniform shrinkage, density, strength, etc. without deformation during firing in the subsequent process. Be able to process a large amount in the molding process. It should be possible to obtain a molding strength that can withstand the member holding force and external processing force during machining in the next step.

【0008】(2)本発明者らによる既提案のセラミッ
ク粉体の成形方法の課題 本成形方法は、図13に示す如く、造粒粉3を金型プレ
ス4内で保形・成形した後、図14に示す如く、その全
外表面を有機樹脂で被覆シールし、その後に図8に示す
如くCIP(低温静水圧加圧)装置内で大量処理するセ
ラミック粉体の成形方法であった。従って、上記〜
の課題を解決した量産工法であるという特徴を有する
が、例えば図10のエンジンバルブのコッタ溝1−1の
凹部や図11に示すタービン翼の連結部2−1の凸部等
の成形を金型プレスで成形する場合には、金型からの離
型性を考慮すると、一体型では困難であり、また割型な
どを用いると金型デザインが煩雑で高価となり、金型精
度上も問題があった。金型プレス時にコッタ溝1−1を
成形せず後の機械加工で成形する場合には、少量と雖も
高価なセラミック原料にロスを生じる。また、エンジン
バルブ等の量産ラインに於ては、大幅な製造コスト低減
の観点から工程省略、外段取化、工程内の工数削減が極
て重要となるが、本成形方法では、金型プレスによる充
填・保形工程→有機樹脂シール工程→CIP工程と未だ
に工程数が多く、更なる削減が必要である。
(2) Problem of the method for forming a ceramic powder which has been proposed by the present inventors. In this forming method, as shown in FIG. 13, after the granulated powder 3 is shaped and shaped in the die press 4. As shown in FIG. 14, the whole outer surface was covered and sealed with an organic resin, and thereafter, as shown in FIG. 8, a large amount of the powder was processed in a CIP (low temperature isostatic press) device. Therefore, the above ~
The method is a mass production method that solves the above problem. However, for example, molding of the concave portion of the cotter groove 1-1 of the engine valve of FIG. 10 and the convex portion of the connecting portion 2-1 of the turbine blade shown in FIG. When molding with a die press, considering the releasability from the die, it is difficult to use an integrated die, and if a split die is used, the die design becomes complicated and expensive, and there is a problem in terms of die accuracy. there were. When the cotter groove 1-1 is not formed at the time of die pressing and is formed by a later machining process, a small amount and a lid cause a loss in the expensive ceramic raw material. Also, in mass production lines for engine valves and the like, it is extremely important to omit processes, make external setups, and reduce man-hours in the process from the viewpoint of drastically reducing manufacturing costs. The number of steps is still large, such as the filling and shape-retaining process by →, the organic resin sealing process → the CIP process, and further reduction is necessary.

【0009】要するに、 更なる3次元造形性の向上と原材料の歩留向上。 更なる工程省略と工数削減。 を達成する工法の開発が不可欠となった。In short, further improvement of three-dimensional modeling property and improvement of raw material yield. Further omission of processes and reduction of man-hours. The development of a construction method to achieve

【0010】従って本発明は上記課題を解決することが
できるセラミック部材の製造方法及びセラミック粉体の
成形方法を提供するものである。
Accordingly, the present invention provides a method for manufacturing a ceramic member and a method for molding ceramic powder, which can solve the above problems.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するセラ
ミック部材の製造方法は、予め後工程での成形代を加味
した形状・寸法に成形された弾力性を有する極薄肉の中
空プラスチック容器内に予め組成調整された造粒粉を充
填すると同時に前記中空プラスチック容器の造粒粉投入
開口部を減圧下で密封する成形工程を踏えた後、これら
のプラスチック容器ごと低温静水圧加圧により均密度化
処理を行ない、更に焼成前整形機械加工、焼成、部分研
磨仕上げを行なうことを特徴とする。
[Means for Solving the Problems] A method for manufacturing a ceramic member for solving the above-mentioned problems is described in a hollow ultra-thin plastic container having elasticity formed in advance in a shape and size in consideration of a molding allowance in a subsequent step. After filling the granulated powder whose composition has been adjusted in advance and simultaneously sealing the granulated powder charging opening of the hollow plastic container under reduced pressure, the plastic container and the plastic container are uniformly densified by low temperature isostatic pressing. It is characterized in that it is subjected to a treatment, and further subjected to shaping machining before firing, firing, and partial polishing finish.

【0012】上記課題を解決する第1のセラミック粉体
の成形方法は、予め後工程での成形代を加味した形状・
寸法に成形された弾力性を有する極薄肉の中空プラスチ
ック容器内に予め組成調整された造粒粉を充填すると同
時に前記中空プラスチック容器の造粒粉投入開口部を減
圧下で密封する成形工程において、前記中空プラスチッ
ク容器内に造粒粉を充填する方法として、前記中空プラ
スチック容器の外周を接触把持する金型内で上型を用い
て押圧すると同時に前記中空プラスチック容器の造粒粉
投入開口部を減圧下で密封することを特徴とする。
The first ceramic powder molding method for solving the above-mentioned problems is a shape / molding method that takes into account the molding allowance in the subsequent step.
In the molding step of filling the granulated powder having a composition adjusted in advance in a hollow plastic container having an elasticity and formed into a size and having a composition adjusted at the same time, the granulated powder charging opening of the hollow plastic container is sealed under reduced pressure. As a method of filling the hollow plastic container with granulated powder, the granulated powder charging opening of the hollow plastic container is depressurized at the same time as pressing with an upper mold in a mold that holds the outer periphery of the hollow plastic container in contact with the hollow plastic container. It is characterized by being sealed under.

【0013】また第2のセラミック粉体の成形方法は、
予め後工程での成形代を加味した形状・寸法に成形され
た弾力性を有する極薄肉の中空プラスチック容器内に予
め組成調整された造粒粉を充填すると同時に前記中空プ
ラスチック容器の造粒粉投入開口部を減圧下で密封する
成形工程において、前記中空プラスチック容器内に造粒
粉を充填する方法として、前記中空プラスチック容器に
振動を加えながら造粒粉を投入・充填すると共に前記中
空プラスチック容器の造粒粉投入開口部を減圧下で密封
することを特徴とする。
The second ceramic powder molding method is as follows:
The granulated powder with the composition adjusted in advance is filled in the ultra-thin hollow plastic container having elasticity and formed into the shape and size that takes into account the molding allowance in the subsequent step, and at the same time the granulated powder in the hollow plastic container is charged. In the molding step of sealing the opening under reduced pressure, as a method of filling the hollow plastic container with the granulated powder, the granulated powder is charged and filled while vibrating the hollow plastic container and the hollow plastic container is It is characterized in that the granulated powder charging opening is sealed under reduced pressure.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
(図1〜図8)に基づき詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings (FIGS. 1 to 8).

【0015】図1は本発明に係る成形工程を踏えて複雑
形状を有するセラミック製品を製作する全工程図、図2
(a)は本発明の実施例1に係るセラミック成形工程で
使用する中空プラスチック容器(カプセル)の断面図、
図2(b)は図2(a)のA−A線矢視図、図3(a)
は本発明の実施例2に係るセラミック成形工程で使用す
る中空プラスチック容器(カプセル)の断面図、図3
(b)は図3(a)のB−B線矢視図、図4は本発明の
実施例1に係るセラミック成形工程で中空プラスチック
容器に造粒粉を加振充填密封するときの状態を示す断面
図、図5は本発明の実施例1に係るセラミック成形工程
で中空プラスチック容器への造粒粉の充填・密封を完了
した状態を示す断面図、図6は本発明の実施例2に係る
セラミック成形工程で中空プラスチック容器に造粒粉を
押圧充填密封するときの状態を示す断面図、図7は本発
明の実施例1に係るセラミック成形工程で中空プラスチ
ック容器への充填・密封を完了した状態を示す断面図、
図8は中空プラスチック容器に造粒粉を充填密封したも
のをCIP(低温静水圧加圧)で一度に大量処理してい
る状況を示す断面図である。
FIG. 1 is a whole process diagram for producing a ceramic product having a complicated shape by following the forming process according to the present invention, and FIG.
(A) is a cross-sectional view of a hollow plastic container (capsule) used in the ceramic molding process according to Example 1 of the present invention,
2 (b) is a view taken along the line AA of FIG. 2 (a), and FIG. 3 (a).
3 is a cross-sectional view of a hollow plastic container (capsule) used in the ceramic molding process according to Example 2 of the present invention, FIG.
3B is a view taken along the line BB in FIG. 3A, and FIG. 4 shows a state in which the granulated powder is vibrated, filled and sealed in the hollow plastic container in the ceramic molding process according to Example 1 of the present invention. FIG. 5 is a sectional view showing a state in which the filling and sealing of the granulated powder into the hollow plastic container is completed in the ceramic molding process according to the first embodiment of the present invention, and FIG. 6 is a second embodiment of the present invention. FIG. 7 is a cross-sectional view showing a state in which the granulated powder is press-filled and sealed in the hollow plastic container in the ceramic molding process, and FIG. 7 shows the filling / sealing in the hollow plastic container in the ceramic molding process according to the first embodiment of the present invention. Sectional view showing the state
FIG. 8 is a cross-sectional view showing a state in which a hollow plastic container filled with granulated powder and hermetically sealed is subjected to a large amount of processing at one time by CIP (low temperature isostatic pressing).

【0016】図1に示すように、本発明に係るセラミッ
クの成形方法を用いた成形工程Sの要諦は、第1工程S
1で薄肉プラスチック樹脂容器内に造粒粉を充填・密封
シールした後、第2工程S2でCIP(低温静水圧加
圧)する点にある。詳細には、セラミックの焼成前工程
の成形方法として下記の手段を順次取る。
As shown in FIG. 1, the outline of the forming step S using the ceramic forming method according to the present invention is the first step S.
After filling the thin-walled plastic resin container with the granulated powder in 1 and hermetically sealing, the CIP (low temperature isostatic pressing) is performed in the second step S2. Specifically, the following means are sequentially taken as a forming method in the pre-firing step of ceramics.

【0017】[手段1]…図2又は図3に示す如く、予
め後工程での成形代、即ち焼成前機械加工代、焼成時の
収縮代等を加味した形状・寸法に成形された弾力性のあ
る極薄肉の中空プラスチック容器(材質は、不透明であ
っても良いが、後工程の充填時に中味が透視できる様に
透明あるいは半透明であることが好ましい、例えば酢酸
ビニル、ポリスチレンなど)として、容器本体16又は
14と、上蓋17又は15とをセラミック製造ラインと
は独立(外段取的)に準備する。本体16又は14或る
いは上蓋17又は15のいづれか一方には空気抜孔(図
示例では上蓋17,15に空気抜孔17−2,15−2
を各々設けている)を予め設けておく。なお、図示は省
略するが、本体と上蓋とを分割せずに一体成形し、空気
抜孔をやや大きく成形し、後述の造粒粉注入口と兼ねて
もよい。
[Means 1] ... As shown in FIG. 2 or FIG. 3, the resilience is preliminarily formed into a shape and size in consideration of the molding allowance in the subsequent steps, that is, the machining allowance before firing, the shrinkage allowance during firing and the like. As an extremely thin hollow plastic container (the material may be opaque, but preferably transparent or translucent so that the contents can be seen through during the subsequent filling process, for example, vinyl acetate, polystyrene, etc.), The container main body 16 or 14 and the upper lid 17 or 15 are prepared independently of the ceramic production line (outer preparation). An air vent hole is provided in either one of the main body 16 or 14 or the upper lid 17 or 15 (in the illustrated example, the air vent holes 17-2, 15-2 are provided in the upper lids 17, 15).
Are respectively provided). Although not shown, the main body and the upper lid may be integrally formed without being divided, and the air vent hole may be formed to be slightly larger to serve also as a granulated powder injection port described later.

【0018】[手段2]…図4又は図6に示す如く、上
記容器本体16又は14の中に、予め組成調整された造
粒粉3を押圧もしくは加振しながら充填し、本体16又
は14と上蓋17又は15の鍔部16−2,17−1又
は14−2,15−1でシール接合(ホットシールによ
る融接もしくは、ホットメルト等による接着)する。図
5,7中の17−3,14−3がシール接合部である。
[Means 2] ... As shown in FIG. 4 or 6, the container body 16 or 14 is filled with the granulated powder 3 whose composition has been adjusted in advance while pressing or vibrating, and the body 16 or 14 is filled. Then, seal joining (fusion welding by hot sealing or bonding by hot melt or the like) is performed at the flange portions 16-2, 17-1 or 14-2, 15-1 of the upper lid 17 or 15. 17-3 and 14-3 in FIGS. 5 and 7 are seal joints.

【0019】[手段3]…図4又は図6に示す如く、上
蓋17又は15の空気抜孔17−2又は15−2に吸引
口28を押し当てて容器内に充填した造粒粉間に残留し
た微細空洞の空気を吸引すると共に、空気抜孔17−2
又は15−2を密封(ホットシール又はホットメルト接
着剤等で密封)する(図5,7中の17−4,15−
4)。なお、空気抜孔17−2又は15−2からの吸引
に際し造粒粉3も同時に吸引されるのを防止するため、
空気抜孔17−2,15−2には、不織布繊維などのフ
ィルターを予め微少に詰めておく。
[Means 3] ... As shown in FIG. 4 or 6, the suction port 28 is pressed against the air vent hole 17-2 or 15-2 of the upper lid 17 or 15 and remains between the granulated powders filled in the container. The air in the minute cavity is sucked and the air vent hole 17-2
Alternatively, 15-2 is hermetically sealed (sealed with hot seal or hot melt adhesive, etc.) (17-4, 15- in FIGS. 5 and 7).
4). In order to prevent the granulated powder 3 from being sucked at the same time when sucking from the air vent hole 17-2 or 15-2,
A filter such as a non-woven fiber is finely packed in the air vent holes 17-2 and 15-2 in advance.

【0020】[手段4]…図5又は図7に示す如く、弾
力性を有する薄肉プラスチック容器に造粒粉3が封入さ
れた造粒粉充填カプセル体36A又は36Bを、図8に
示すCIP(低温静水圧加圧)装置に大量投入し、加圧
する(密度均質化+一体化)。
[Means 4] ... As shown in FIG. 5 or 7, a granulated powder-filled capsule body 36A or 36B in which the granulated powder 3 is enclosed in a thin plastic container having elasticity is shown in FIG. A large amount of low temperature hydrostatic pressure is applied to the device and pressure is applied (density homogenization + integration).

【0021】[手段5]…CIP加圧した造粒粉充填カ
プセル体36A又は36Bを、切削機械により容器のピ
ーリングと焼成時の収縮量を加味して贅肉となる部分の
除去を行って、焼成前のNearest Net Shape の寸法・形
状に仕上げる。
[Means 5] ... The CIP-pressed granulated powder-filled capsule body 36A or 36B is fired by a cutting machine in consideration of the peeling of the container and the shrinkage amount at the time of firing to remove the portion which becomes a fat meat. Finish to the size and shape of the previous Nearest Net Shape.

【0022】[手段6]…続いて焼成、仕上げ研磨(必
要部のみ)工程を踏えて、完成する。
[Means 6] ... Then, the steps of baking and finish polishing (only necessary portions) are performed to complete the process.

【0023】次に本発明の成形方法を用いて実施した成
形工程について説明する。3次元の複雑形状を呈するセ
ラミック製品の例としては図10に示すエンジンバルブ
1や図11に示すタービン翼2等があるが、以下の実施
例では、エンジンバルブの製造方法について詳述する。
Next, the molding process carried out by using the molding method of the present invention will be described. As an example of a ceramic product having a three-dimensionally complicated shape, there is an engine valve 1 shown in FIG. 10, a turbine blade 2 shown in FIG. 11 and the like. In the following examples, a method for manufacturing an engine valve will be described in detail.

【0024】原材料としては、窒化硅素(Si
3 4 ),イットリア(Y2 3 ),アルミナ(Al2
3 )、その他の原料粉を所定比率で配合し、溶剤ワッ
クスを配合後、分配、混練した造粒粉を用いた。また対
象のエンジンバルブとしては、完成品寸法として傘径:
35.0mm、軸径:7.5φmm、全長120mmとした。
As a raw material, silicon nitride (Si
3 N 4 ), yttria (Y 2 O 3 ), alumina (Al 2
O 3 ), other raw material powders were blended at a predetermined ratio, solvent wax was blended, and the granulated powder was distributed and kneaded. As for the target engine valve, the finished product size is the umbrella diameter:
The length was 35.0 mm, the shaft diameter was 7.5 mm, and the total length was 120 mm.

【0025】<実施例1>図2,図4,図5に基づき説
明する。カプセルとなるプラスチック容器として、酢酸
ビニル系樹脂を用いて図2に示す本体16(識別マーク
16−3付)と上蓋17とを厚さ0.15mmで予め多数
準備した。(外段取化)
<First Embodiment> An explanation will be given with reference to FIGS. 2, 4 and 5. As a plastic container to be a capsule, a large number of a main body 16 (with identification mark 16-3) and an upper lid 17 shown in FIG. 2 having a thickness of 0.15 mm were prepared in advance using a vinyl acetate resin. (External setup)

【0026】次に図4に示す工程を行う装置として、直
径1200φmmのロータリーテーブルの6分割の位置に
加振器25の付いた振動台盤24を夫々配置し、これを
間欠的に60°づつ旋回する。ロータリーテーブル停止
位置での振動台盤直上には、以下の6工程の操作機能を
有する上部機構(旋回せず固定)がある。
Next, as an apparatus for carrying out the process shown in FIG. 4, vibrating bases 24 with vibrators 25 are arranged at positions of six divisions on a rotary table having a diameter of 1200 mm, and the vibrating bases 24 are intermittently moved by 60 °. Turn. Immediately above the vibration base at the rotary table stop position, there is an upper mechanism (fixed without turning) that has the operation functions of the following six steps.

【0027】ステーション(I):本体供給ローダー…
プラスチック容器本体16を振動台盤24上に搬入・定
置するマニピュレータ。 ステーション(II):造粒粉定給機構…上部の造粒粉供
給タンクから一定量計測し上下に昇降するホッパー26
を介してプラスチック容器本体16に造粒粉を供給する
機構。図中の3−1がホッパー26内の造粒粉、3−2
が本体16内へ供給途中の造粒粉、3が本体16内に供
給された造粒粉である。造粒粉充填時には加振器25を
作動させる。(図4(II)) ステーション(III):上蓋供給ローダー…上蓋17を取
込み本体端部に載荷、押圧する昇降機構。(図4(III
)) ステーション(IV):シール接合機構…本体16と上蓋
17の重畳した鍔部16−2,17−1を把持、押圧、
シールする機構(本実施例では、上下一対の加熱押圧治
具27によるヒートシール方式を採用した)。(図4
(IV)) ステーション(V):吸引・密封機構…吸引ポンプ22
に連結され、且つ、上下に昇降するゴム製吸引口28と
空気抜孔としてのパイプ状突起部17−2を加熱把持す
るシールヒータ29とから成る機構。(図4(V)) ステーション(VI):アンローダー…造粒粉の充填され
たカプセル体を振動台盤24から搬出するマニピュレー
タ。
Station (I): Main body supply loader ...
A manipulator for loading and placing the plastic container body 16 on the vibration base 24. Station (II): Granulated powder constant feeding mechanism ... A hopper 26 that moves up and down by measuring a fixed amount from the granulated powder supply tank at the top.
A mechanism for supplying the granulated powder to the plastic container body 16 via the. 3-1 in the figure is granulated powder in the hopper 26, 3-2
Is a granulated powder that is being supplied into the main body 16, and 3 is a granulated powder that is supplied into the main body 16. At the time of filling the granulated powder, the vibrator 25 is operated. (FIG. 4 (II)) Station (III): Top lid supply loader ... An elevating mechanism that loads the top lid 17 and loads and pushes it onto the end of the main body. (Fig. 4 (III
)) Station (IV): Seal joining mechanism ... Grips and presses the flange portions 16-2 and 17-1 in which the main body 16 and the upper lid 17 overlap.
Sealing mechanism (in the present embodiment, a heat sealing method using a pair of upper and lower heating and pressing jigs 27 is adopted). (Fig. 4
(IV)) Station (V): Suction / sealing mechanism ... Suction pump 22
And a seal heater 29 for heating and gripping the pipe-shaped protrusion 17-2 as an air vent, which is vertically connected to the rubber suction port 28. (FIG. 4 (V)) Station (VI): unloader ... A manipulator that carries out the capsule body filled with the granulated powder from the vibration table 24.

【0028】上記のロータリーテーブルを用いて、約5
秒のサイクルタイムで、図7に示すような造粒粉充填カ
プセル体36Aを連続生産した。これらを処置篭にラン
ダム投入し、図8に示すCIP装置に投入(即ち多段式
配列治具35にセット)し、加圧媒体(常温水)34を
注入口32から高圧容器30内に注入しながら、空気3
7を放出した後、上蓋31の空気抜きバルブ33を閉じ
て媒体を増圧(1500kg/cm2)した。
Using the above rotary table, about 5
With a cycle time of seconds, a granulated powder-filled capsule body 36A as shown in FIG. 7 was continuously produced. These are randomly placed in the treatment basket, placed in the CIP device shown in FIG. 8 (that is, set in the multi-stage arrangement jig 35), and the pressurized medium (normal temperature water) 34 is injected into the high-pressure container 30 from the inlet 32. While the air 3
After releasing 7, the air vent valve 33 of the upper lid 31 was closed to increase the pressure of the medium (1500 kg / cm 2 ).

【0029】以上の手順で得られたCIP後のカプセル
体に対しN/C工作機でプラスチック容器の除去と焼成
時収縮量を加味した贅肉の除去を行ない、焼成前のNet
Shape 形状のグリーン化セラミックを得た。
The C / capsule body obtained by the above procedure was subjected to N / C machine tool removal of the plastic container and removal of the extraneous flesh in consideration of the amount of shrinkage during firing.
A green ceramic in the shape of Shape was obtained.

【0030】続いて、加熱焼成を行い、研削盤にて、一
部の要部について仕上研磨を施した。
Subsequently, heating and firing were performed, and finish grinding was performed on a part of a main part using a grinder.

【0031】<実施例2>図3,図6,図7に基き説明
する。カプセルとなるプラスチック容器として、酢酸ビ
ニル系樹脂を用いて図3に示す本体14と上蓋(識別マ
ーク15−3付)15を厚さ約0.15mmで予め別工程
で多数準備した。なお、容器本体14の軸部形状として
は、図7(b)に示すごとく、予めエンタシス(中太り
円柱)形状とした。このエンタシス形状の設定に際して
は、上下金型18,21による造粒粉圧縮荷重の軸方向
伝達分布、充填密度、及び焼成時の収縮率のコンピュー
タ解析と要素実験により設定した。
<Second Embodiment> An explanation will be given based on FIGS. 3, 6 and 7. As a plastic container to be a capsule, a large number of main bodies 14 and upper lids (with identification marks 15-3) 15 shown in FIG. 3 having a thickness of about 0.15 mm were prepared in advance in a separate process using vinyl acetate resin. The shape of the shaft of the container body 14 was previously set to an entasis (medium thick column) shape as shown in FIG. 7B. In setting the entasis shape, the axial transmission distribution of the granulated powder compressive load by the upper and lower molds 18 and 21, the packing density, and the shrinkage rate during firing were set by computer analysis and elemental experiments.

【0032】充填シール装置としては、上記実施例1と
同様に、直径1200φmmのロータリーテーブル式と
し、ステーションとしては下記の〜に加えてローデ
ィング、アンローディングの計6ステーションとした。
As in the first embodiment, the filling and sealing apparatus was a rotary table type having a diameter of 1200 mm, and the stations were a total of 6 stations including loading and unloading in addition to the items below.

【0033】容器本体14を金型18内に挿入。 容器本体18に造粒粉3を注入、加振。 上蓋15を載荷、上金型21で造粒粉3を圧縮、鍔部
15−1,14−2をシール。 空気抜孔15−2より容器内を減圧すると同時に空気
抜孔15−2を密閉シール。
Insert the container body 14 into the mold 18. The granulated powder 3 is injected into the container body 18 and vibrated. The upper lid 15 is loaded, the granulated powder 3 is compressed by the upper mold 21, and the collar portions 15-1 and 14-2 are sealed. The inside of the container is depressurized through the air vent hole 15-2 and, at the same time, the air vent hole 15-2 is hermetically sealed.

【0034】上記のロータリーテーブルを用いて、約5
秒のサイクルタイムで、図5(b)に示す造粒粉充填カ
プセル体36Bを連続生産した。以下は上記実施例1と
同様の手順でセラミックエンジンバルブを完成した。
Using the above rotary table, about 5
With a cycle time of seconds, the granulated powder-filled capsule body 36B shown in FIG. 5B was continuously produced. Below, a ceramic engine valve was completed in the same procedure as in Example 1 above.

【0035】なお、CIP後のエンタシス部に対する機
械加工精度は重要であり、N/C工作機を用いた。
The machining accuracy for the entasis portion after CIP is important, and an N / C machine tool was used.

【0036】〈作用・効果〉 [作用]…図2及び図3に示す如く、極薄肉の中空プ
ラスチック製の本体14又は16と上蓋15又は17で
中間製品の外殻(シェル)を形成でき、後工程で造粒粉
3を充填しても形状維持できる。また、プラスチック容
器成形時に例えば図10に示すエンジンバルブ1の傘部
1−2の表面に識別マーク(突起記号)15−3,16
−3を形成でき、軸部にはコッタ溝14−1,16−1
となる凹部形状も形成できる。造粒粉充填後の密封直前
に空気抜きを行うための空気抜孔15−2,17−2も
形成できる。
<Operation / Effect> [Operation] As shown in FIGS. 2 and 3, the outer shell of the intermediate product can be formed by the ultrathin hollow plastic body 14 or 16 and the upper lid 15 or 17. The shape can be maintained even if the granulated powder 3 is filled in the subsequent step. Further, when molding the plastic container, for example, identification marks (protrusion symbols) 15-3, 16 are formed on the surface of the umbrella portion 1-2 of the engine valve 1 shown in FIG.
-3 can be formed, and the cotter grooves 14-1 and 16-1 are formed on the shaft portion.
It is also possible to form a concave shape that becomes Air vent holes 15-2 and 17-2 for venting air immediately after sealing after filling the granulated powder can be formed.

【0037】[作用]…図6に示す如く、プラスチッ
ク容器本体14の外周と適合する下金型18内にこの容
器本体14を挿入後、加振器19で加振しながら造粒粉
3を充填するので、充填率が高まると共に、上金型21
を介して上蓋15で押圧するので、充填密度が更に高ま
る。また本体14の鍔部14−2と上蓋15の鍔部15
−1とが重なった時点で加熱押圧リング23(昇降式)
でシール接合することにより造粒粉3を中空容器(カプ
セル)内に封じ込むことができる。一方、図4に示す方
式では、金型は用いないで、プラスチック容器本体16
を振動台盤24上に載荷し、加振器19による加振状態
で造粒粉3を供給することにより(図4(II)参照)、
容器内の全域に恒って均一かつ高密度で造粒粉3を充填
できる。本体16の鍔部16−2、及び上蓋17の鍔部
17−2を接着剤シールもしくはヒートシールすること
により造粒粉3をカプセル(中空容器)内に封じ込むこ
とができる(図4(II),(IV)参照)。
[Operation] As shown in FIG. 6, after the container body 14 is inserted into the lower mold 18 that fits the outer periphery of the plastic container body 14, the granulated powder 3 is shaken by the vibrator 19 while vibrating. Since it is filled, the filling rate is increased and the upper die 21
Since it is pressed by the upper lid 15 via, the packing density is further increased. Further, the collar portion 14-2 of the main body 14 and the collar portion 15 of the upper lid 15
-1 Heating press ring 23 when it overlaps (elevating type)
The granulated powder 3 can be enclosed in the hollow container (capsule) by performing the seal joining with. On the other hand, in the method shown in FIG. 4, the mold is not used, and the plastic container body 16
Is loaded on the vibration table 24, and the granulated powder 3 is supplied while being excited by the vibrator 19 (see FIG. 4 (II)).
The granulated powder 3 can be filled uniformly and with high density all over the container. The granulated powder 3 can be enclosed in a capsule (hollow container) by adhesive-sealing or heat-sealing the collar portion 16-2 of the main body 16 and the collar portion 17-2 of the upper lid 17 (Fig. 4 (II ), (IV)).

【0038】[作用]…図4〜図7に示す如く、上下
の鍔部16−2,17−1又は14−2,15−1をシ
ール接合後、空気抜孔15−2,17−2を介して吸引
口28より吸引ポンプ22でカプセル内部の微少残留空
気を除去できる。同時に、空気抜孔15−2,17−2
の突起部をシールすることにより、カプセル内に造粒粉
3を完全密封できる。なお、空気抜孔15−2,17−
2の突起部内には繊維状フィルターを充填しているの
で、残留空気吸引時に造粒粉3が同時に吸引・放出され
るのを防止できる。
[Operation] As shown in FIGS. 4 to 7, after the upper and lower collar portions 16-2, 17-1 or 14-2, 15-1 are joined by sealing, the air vent holes 15-2, 17-2 are formed. Through the suction port 28, the suction pump 22 can remove minute residual air inside the capsule. At the same time, the air vent holes 15-2, 17-2
The granulated powder 3 can be completely sealed in the capsule by sealing the protrusions. The air vent holes 15-2, 17-
Since the fibrous filter is filled in the protrusions of No. 2, it is possible to prevent the granulated powder 3 from being sucked and discharged at the same time when the residual air is sucked.

【0039】[作用]…図8に示す如く、造粒粉充填
カプセル体36A又は36Bを同時に多数、CIP加圧
することにより、カプセル体36A,36B内の造粒粉
3は、粒間密着力が高まり、一体化する。なお、CIP
加圧後のカプセル体36A,36Bは勿論、CIP加圧
前のカプセル体36A,36Bも共にシェル(殻)で被
覆されているため補強されているので少々乱暴なハンド
リング搬送などにも十分に耐え得る。従って、カプセル
体36A,36BのCIP装置投入に当り、ランダム投
入が可能であり、一回の投入量を増大でき、生産性向上
と低コスト化に有利となる。
[Operation] As shown in FIG. 8, a large number of the granulated powder-filled capsule bodies 36A or 36B are simultaneously CIP-pressed, so that the granulated powder 3 in the capsule bodies 36A, 36B has an intergranular adhesion force. Increase and become one. In addition, CIP
Not only the capsule bodies 36A and 36B after pressurization but also the capsule bodies 36A and 36B before CIP pressurization are both reinforced because they are covered with a shell, so that they can withstand a little rough handling conveyance. obtain. Therefore, when the capsule bodies 36A and 36B are charged into the CIP device, they can be randomly charged, and the amount of each charge can be increased, which is advantageous in improving productivity and reducing costs.

【0040】[作用]…CIP後のカプセル体36
A,36Bは、内部の造粒粉3が一体化していること、
及びシェルで補強されているので、機械加工時のチャッ
ク把持にも十分耐え、且つ、役目を終えたシェルは切削
・研削で容易に除去できると共に、次工程の焼成時収縮
量を加味した贅肉除去により、焼成前のほぼNet Shape
(Nearest Net Shape )形状のグリーン化セラミック
を、高歩留(高価なセラミック原料の歩留、折損・欠落
防止による個数歩留)で提供できる。
[Operation] ... Capsule body 36 after CIP
In A and 36B, the granulated powder 3 inside is integrated,
Since it is reinforced with a shell, it can withstand chucking during machining, and the finished shell can be easily removed by cutting and grinding. As a result, almost Net Shape before firing
(Nearest Net Shape) shaped green ceramics can be provided with high yield (yield of expensive ceramic raw materials, and number yield by preventing breakage and chipping).

【0041】また、図6、図7に示す如く上金型21を
介して、プラスチック容器(カプセル)内の造粒粉3を
押圧する方式では、押圧方向に於て金型接触面からの距
離の増加につれて造粒粉3内の伝播荷重が激減し、軸部
中央付近で造粒粉3の充填率が低下する傾向にあるが、
図7(b)に示す如く、予めプラスチック容器(本体1
4)をエンタシス(中太り円柱)状に仕上げておき、C
IP後のカプセル除去後のNearest Net Shape 加工に於
てもエンタシス仕上げすることにより、焼成後の形状は
直円柱に仕上げることができ、材料歩留の向上と焼成後
硬化したセラミックの仕上研磨時間の短縮ができて低コ
スト化に有利となる。
Further, in the method of pressing the granulated powder 3 in the plastic container (capsule) through the upper mold 21 as shown in FIGS. 6 and 7, the distance from the mold contact surface in the pressing direction. The propagation load in the granulated powder 3 is drastically reduced with the increase of, and the filling rate of the granulated powder 3 tends to decrease near the center of the shaft portion.
As shown in FIG. 7B, a plastic container (main body 1
4) is finished in the shape of entasis (thick cylinder), and C
Even in the Nearest Net Shape processing after removing the capsules after IP, the shape after firing can be finished into a right circular cylinder by entasis finishing, which improves the material yield and improves the finishing polishing time of the hardened ceramic after firing. It can be shortened, which is advantageous for cost reduction.

【0042】従って上記成形方法によれば、以下の効果
が得られる。
Therefore, according to the above molding method, the following effects can be obtained.

【0043】[効果]…予め製作しておいた極薄肉の
プラスチック容器(本体14,16、上蓋15,17)
の中に造粒粉3を充填・シールするので、3次元曲面成
品に対しても容易かつ高速に成形できる。
[Effects] ... Preliminarily manufactured ultra-thin plastic containers (main bodies 14, 16 and upper lids 15, 17)
Since the granulated powder 3 is filled in and sealed in, the three-dimensional curved surface product can be molded easily and at high speed.

【0044】[効果]…同上の理由により、成形時に
製品以外の堰や流路等の無駄部を成形しないので、高価
なセラミック原料を高歩留化できる。
[Effects] For the same reason as above, since unnecessary parts such as weirs and flow paths other than the product are not formed at the time of molding, expensive ceramic raw materials can be produced at a high yield.

【0045】[効果]…実施例1(図4)ではプラス
チック容器内に造粒粉3を加振充填しているので全領域
で均一充填されており、後工程の焼成時の変形がなく且
つ均一な収縮、密度、強度等が得られる。一方、実施例
2(図6)ではプラスチック容器内に造粒粉3を加振充
填すると共に上下金型21,18で押圧しているので、
充填密度は更に高くなる。反面、押圧荷重分布が不均一
となるので、この荷重不均一分布を考慮した形状(例え
ばエンタシス)に予めプラスチック容器形状を成形して
おくことにより、後工程の焼成時の収縮後に製品形状、
寸法、密度、強度等が均一となる。
[Effect] In Example 1 (FIG. 4), since the granulated powder 3 was vibratingly filled in the plastic container, the granulated powder 3 was uniformly filled in all areas, and there was no deformation during firing in the subsequent process and Uniform shrinkage, density, strength, etc. can be obtained. On the other hand, in Example 2 (FIG. 6), the granulated powder 3 was vibratingly filled in the plastic container and pressed by the upper and lower molds 21 and 18,
The packing density is higher. On the other hand, since the pressing load distribution becomes non-uniform, by pre-molding the plastic container shape into a shape (for example, entasis) that considers this non-uniform load distribution, the product shape after shrinking during firing in the post process,
Uniform dimensions, density, strength, etc.

【0046】[効果]…造粒粉3は、夫々、薄肉かつ
弾力性を有するプラスチック容器内に密封充填されてい
るので、CIP加圧時にカプセル体36A,36Bの外
面全域に均一な圧力が負荷されるため、CIP装置内に
同時投入でき、大量バッチ処理が可能となる。また、夫
々のカプセル体36A,36Bはシェル(殻)で被覆さ
れているので、シェル内の造粒粉3は損傷を受けにくい
ため、CIP装置内にランダム投入でき装置内充填率を
高め、生産性向上、低コスト化に寄与する。また、プラ
スチック容器は予め別ラインで所定形状に予備成形して
あるので、粉末充填からシール迄(図4(II)〜
(V))の各工程をロータリーテーブル上或るいは直線
生産ライン上に設けることにより、超軽量なプラスチッ
ク容器のローディング、アンローディングも含めて、高
速かつ大量に処理できる。
[Effect] Since the granulated powder 3 is hermetically filled in each thin and elastic plastic container, a uniform pressure is applied to the entire outer surface of the capsules 36A and 36B during CIP pressurization. Therefore, they can be simultaneously charged into the CIP device, and large-scale batch processing can be performed. Moreover, since the capsules 36A and 36B are covered with shells, the granulated powder 3 in the shells is less likely to be damaged. Contributes to improved productivity and cost reduction. In addition, since the plastic container is pre-formed in a predetermined shape in a separate line, from powder filling to sealing (Fig. 4 (II) ~
By providing each step of (V)) on a rotary table or on a straight production line, high-speed and large-volume processing including loading and unloading of ultralight plastic containers can be performed.

【0047】[効果]…造粒粉3の充填・密封された
カプセル体36A,36Bはシェル被覆により補強され
ているため、マテハン時や機械加工時の保持外力、加工
外力、更にはカプセル体間の相互衝突、干渉或るいは落
下等による折損、欠落を防止できるので、個数歩留を高
め、低コスト化に寄与する。
[Effect] ... Since the capsule bodies 36A and 36B filled and sealed with the granulated powder 3 are reinforced by the shell coating, the holding external force, the external processing force during the material handling or machining, and the space between the capsule bodies. Since it is possible to prevent breakage and chipping due to mutual collision, interference or drop, etc., the number yield is increased and the cost is reduced.

【0048】[効果]…予備成形したプラスチック容
器は微細な凸部(例:識別マーク15−3,16−3)
や凹部(例:コッタ溝14−1)を設けることが出来る
ので、従来に増して3次元造形性を高めると共に、この
微細凹凸部に対して、加振等により造粒粉充填性が高ま
る結果、原材料の歩留が向上する。
[Effect] ... The preformed plastic container has fine protrusions (eg, identification marks 15-3 and 16-3).
Since it is possible to provide a concave portion or a concave portion (eg, cotter groove 14-1), the three-dimensional molding property is improved more than ever, and the granulated powder filling property is enhanced by vibrating the fine concavo-convex portion. , The raw material yield is improved.

【0049】[効果]…プラスチック容器は別工程で
予備成形するので、既提案発明の成形方法(図12参
照)で実施した樹脂皮膜塗布シール工程を省略できる。
また、上記の効果で述べたように凹凸部も成形できる
ので、焼成前及び後の切削あるいは研磨工数を大幅に削
減できる。
[Effect] Since the plastic container is preformed in a separate step, the resin film coating sealing step carried out by the molding method of the previously proposed invention (see FIG. 12) can be omitted.
Further, since the uneven portion can be formed as described in the above effect, the number of cutting or polishing steps before and after firing can be significantly reduced.

【0050】[効果]…本発明の方法では、プラスチ
ック容器内に造粒粉3を密封シール後、液体、特に水に
よる静水圧加圧を施すため、万一密封シール不足やその
結果の均一密度化不足が生じた場合の不良品選別を容易
にする。即ち、加圧水はシール不良部からカプセル内に
浸透し、また一旦浸透した水は半月放置してもカプセル
内から蒸発しないため重量増となるので、CIP工程後
のライン上に自動重量測定判別機を設置することで品質
を保証できる。
[Effect] In the method of the present invention, after the granulated powder 3 is hermetically sealed in the plastic container, hydrostatic pressure is applied by a liquid, especially water, so that the hermetic seal is insufficient and the resulting uniform density is obtained. This facilitates the selection of defective products in the event of insufficient productization. That is, the pressurized water permeates into the capsule from the defective seal part, and the water once permeated does not evaporate from the capsule even if left standing for half a month, which increases the weight. Quality can be guaranteed by installing it.

【0051】[0051]

【発明の効果】以上発明の実施の形態と共に具体的に説
明したように本発明によれば、以下の効果が得られる。
As described above in detail with the embodiments of the invention, according to the present invention, the following effects can be obtained.

【0052】[効果]…予め製作しておいた極薄肉の
プラスチック容器の中に造粒粉を充填・シールするの
で、3次元曲面成品に対しても容易かつ高速に成形でき
る。
[Effect] Since the granulated powder is filled and sealed in a prefabricated ultra-thin plastic container, it can be molded easily and at high speed even for a three-dimensional curved surface product.

【0053】[効果]…同上の理由により、成形時に
製品以外の堰や流路等の無駄部を成形しないので、高価
なセラミック原料を高歩留化できる。
[Effect] For the same reason as above, since waste parts such as weirs and flow paths other than the product are not molded at the time of molding, an expensive ceramic raw material can be produced at a high yield.

【0054】[効果]…プラスチック容器内に造粒粉
を加振充填することにより全領域で均一に充填できるの
で、後工程の焼成時の変形がなく且つ均一な収縮、密
度、強度等が得られる。また、プラスチック容器内に造
粒粉を充填する際に上下型で押圧することにより、充填
密度が高くなる。
[Effects] ... By vibrating and filling the granulated powder into the plastic container, it is possible to uniformly fill the entire region, so that uniform shrinkage, density, strength, etc. can be obtained without deformation during firing in the subsequent process. To be Further, when the granulated powder is filled in the plastic container, the packing density is increased by pressing with the upper and lower molds.

【0055】[効果]…造粒粉は薄肉且つ弾力性を有
するプラスチック容器内に密封充填されているので、C
IP加圧時にカプセル体外面全域に均一な圧力が負荷さ
れるため、CIP装置内に同時投入でき、大量バッチ処
理が可能となる。また、造粒粉充填カプセル体は、シェ
ル(殻)で被覆されているので、シェル内の造粒粉は損
傷を受けにくいため、CIP装置内にランダム投入でき
装置内充填率を高め、生産性向上、低コスト化に寄与す
る。また、プラスチック容器は予め別ラインで所定形状
に予備成形してあるので、粉末充填からシール迄の各工
程をロータリーテーブル上或は直線生産ライン上に設け
ることにより、超軽量なプラスチック容器のローディン
グ、アンローディングも含めて、高速かつ大量に処理で
きる。
[Effect] Since the granulated powder is hermetically filled in a thin and elastic plastic container, C
Since a uniform pressure is applied to the entire outer surface of the capsule body at the time of pressurizing the IP, the capsules can be simultaneously charged into the CIP device and a large-scale batch processing can be performed. Further, since the granulated powder-filled capsule body is covered with the shell, the granulated powder in the shell is less likely to be damaged, so that the granulated powder can be randomly charged into the CIP device to increase the filling rate in the device and improve the productivity. It contributes to improvement and cost reduction. In addition, since the plastic container is pre-formed into a predetermined shape in a separate line in advance, by installing each process from powder filling to sealing on the rotary table or on a straight production line, loading of the super lightweight plastic container, High-speed and large-volume processing including unloading is possible.

【0056】[効果]…造粒粉の充填・密封されたカ
プセル体はシェル被覆により補強されているため、マテ
ハン時や機械加工時の保持外力、加工外力、更にはカプ
セル体間の相互衝突、干渉或るいは落下等による折損、
欠落を防止できるので、個数歩留を高め、低コスト化に
寄与する。
[Effect] Since the capsule body filled and sealed with the granulated powder is reinforced by the shell coating, the holding external force and the processing external force at the time of material handling and machining, as well as mutual collision between capsule bodies, Breakage due to interference or drop,
Since chipping can be prevented, the number yield is increased and the cost is reduced.

【0057】[効果]…予備成形したプラスチック容
器は微細な凸部(識別マーク等)や凹部(コッタ溝等)
を設けることが出来るので、従来に増して3次元造形性
を高めると共に、この微細凹凸部に対して、加振等によ
り造粒粉充填性が高まる結果、原材料の歩留が向上す
る。
[Effect] ... The preformed plastic container has fine projections (identification marks, etc.) and recesses (cotter grooves, etc.).
Since it is possible to improve the three-dimensional shapeability as compared with the conventional case, the granulated powder filling property is improved by vibrating the fine irregularities to improve the yield of raw materials.

【0058】[効果]…プラスチック容器は別工程で
予備成形するので、既提案発明の成形方法で実施した樹
脂皮膜塗布シール工程を省略できる。また、上記の効果
で述べたように凹凸部も成形できるので、焼成前及び
後の切削あるいは研磨工数を大幅に削減できる。
[Effect] Since the plastic container is preformed in a separate step, the resin film coating sealing step carried out by the molding method of the previously proposed invention can be omitted. Further, since the uneven portion can be formed as described in the above effect, the number of cutting or polishing steps before and after firing can be significantly reduced.

【0059】[効果]…本発明の方法ではプラスチッ
ク容器内に造粒粉を密封シール後、液体、特に水による
静水圧加圧を施すため、万一密封シール不足やその結果
の均一密度化不足が生じた場合の不良品選別を容易にす
る。即ち、加圧水はシール不良部からカプセル内に浸透
し、また一旦浸透した水は半月放置してもカプセル内か
ら蒸発しないため重量増となるので、CIP工程後のラ
イン上に自動重量測定判別機を設置することで品質を保
証できる。
[Effect] In the method of the present invention, since the granulated powder is hermetically sealed in the plastic container, hydrostatic pressure is applied by a liquid, especially water, so that the hermetic seal is insufficient and the resulting uniform density is insufficient. Facilitates the selection of defective products in the case of occurrence of. That is, the pressurized water permeates into the capsule from the defective seal part, and the water once permeated does not evaporate from the capsule even if left standing for half a month, which increases the weight. Quality can be guaranteed by installing it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る成形工程を踏えて複雑形状を有す
るセラミック製品を製作する全工程図である。
FIG. 1 is an overall process diagram of manufacturing a ceramic product having a complicated shape by following a forming process according to the present invention.

【図2】(a)は本発明の実施例1に係るセラミック成
形工程で使用する中空プラスチック容器(カプセル)の
断面図、(b)は(a)のA−A線矢視図である。
2A is a cross-sectional view of a hollow plastic container (capsule) used in a ceramic molding process according to Example 1 of the present invention, and FIG. 2B is a view taken along the line AA of FIG.

【図3】(a)本発明の実施例2に係るセラミック成形
工程で使用する中空プラスチック容器(カプセル)の断
面図、(b)は(a)のB−B線矢視図である。
3A is a cross-sectional view of a hollow plastic container (capsule) used in a ceramic molding process according to Example 2 of the present invention, and FIG. 3B is a view taken along the line BB of FIG.

【図4】本発明の実施例1に係るセラミック成形工程で
中空プラスチック容器に造粒粉を加振充填密封するとき
の状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a hollow plastic container is vibrated, filled and sealed with granulated powder in a ceramic molding process according to Example 1 of the present invention.

【図5】本発明の実施例1に係るセラミック成形工程で
中空プラスチック容器に造粒粉の充填・密封を完了した
状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state where the hollow plastic container has been completely filled and sealed with the granulated powder in the ceramic molding process according to Example 1 of the present invention.

【図6】本発明の実施例2に係るセラミック成形工程で
中空プラスチック容器に造粒粉を押圧充填密封するとき
の状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state when the hollow plastic container is pressed, filled, and sealed with the granulated powder in the ceramic molding process according to Example 2 of the present invention.

【図7】本発明の実施例に係るセラミック成形工程でプ
ラスチック容器に造粒粉の充填・密封を完了した状態を
示す断面図である。
FIG. 7 is a cross-sectional view showing a state where filling and sealing of a plastic container with granulated powder is completed in a ceramic molding process according to an example of the present invention.

【図8】中空プラスチック容器に造粒粉を充填密封した
ものをCIP(低温静水圧加圧)で一度に大量処理して
いる状況を示す断面図である。
FIG. 8 is a cross-sectional view showing a state in which a hollow plastic container filled with granulated powder and hermetically sealed is subjected to a large amount of processing at one time by CIP (low temperature isostatic pressing).

【図9】従来のセラミック製造工程に於ける成形工程の
代表例を示すフロー図である。
FIG. 9 is a flowchart showing a typical example of a forming process in a conventional ceramic manufacturing process.

【図10】3次元曲面を有する製品例としてエンジンバ
ルブの外観を示す正面図である。
FIG. 10 is a front view showing the appearance of an engine valve as a product example having a three-dimensional curved surface.

【図11】3次元曲面を有する製品例としてタービン動
翼の外観を示す斜視図である。
FIG. 11 is a perspective view showing an external appearance of a turbine rotor blade as a product example having a three-dimensional curved surface.

【図12】従来の成形方法を用いた成形工程を示すフロ
ー図である。
FIG. 12 is a flowchart showing a molding process using a conventional molding method.

【図13】従来の成形方法において造粒粉を充填すると
きの状態を示す断面図である。
FIG. 13 is a cross-sectional view showing a state when the granulated powder is filled in the conventional molding method.

【図14】従来の成形方法において樹脂を被覆シールす
るときの状態を示す断面図である。
FIG. 14 is a cross-sectional view showing a state in which a resin is covered and sealed by a conventional molding method.

【符号の説明】[Explanation of symbols]

1 エンジンバルブ 1−1 コッタ溝 2 タービン翼 2−1 連絡部 3,3−1,3−2 造粒粉 14,16 容器本体 14−2,16−2,15−1,17−1 鍔部 15,17 上蓋 15−2,17−2 空気抜孔 18 下金型 19,25 加振器 20 下型 21 上金型 22 吸引ポンプ 23 加熱押圧リング 24 振動台盤 26 ホッパー 28 吸引口 29 シールヒータ 30 高圧容器 31 上蓋 32 注入口 33 空気抜きバルブ 34 加圧媒体(常温水) 35 多段式配列治具 36A,36B 造粒粉充填カプセル体 1 Engine Valve 1-1 Cotta Groove 2 Turbine Blade 2-1 Connection Part 3,3-1, 3-2 Granulated Powder 14,16 Container Main Body 14-2, 16-2, 15-1, 17-1 Collar Part 15, 17 Upper lid 15-2, 17-2 Air vent hole 18 Lower mold 19,25 Vibrator 20 Lower mold 21 Upper mold 22 Suction pump 23 Heating pressing ring 24 Vibrating bed 26 Hopper 28 Suction port 29 Seal heater 30 High-pressure container 31 Upper lid 32 Injection port 33 Air vent valve 34 Pressurized medium (normal temperature water) 35 Multi-stage arrangement jig 36A, 36B Granule powder filled capsule body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め後工程での成形代を加味した形状・
寸法に成形された弾力性を有する極薄肉の中空プラスチ
ック容器内に予め組成調整された造粒粉を充填すると同
時に前記中空プラスチック容器の造粒粉投入開口部を減
圧下で密封する成形工程を踏えた後、これらのプラスチ
ック容器ごと低温静水圧加圧により均密度化処理を行な
い、更に焼成前整形機械加工、焼成、部分研磨仕上げを
行なうことを特徴とするセラミック部材の製造方法。
1. A shape in which a molding allowance is preliminarily taken into consideration in a subsequent step
A step of filling a granulated powder having a preliminarily adjusted composition in an ultrathin hollow plastic container molded to size and at the same time sealing the granulated powder charging opening of the hollow plastic container under reduced pressure is performed. After that, a method for producing a ceramic member is characterized in that the plastic container is subjected to low temperature isostatic pressing to obtain a uniform density treatment, and further pre-firing shaping machining, firing, and partial polishing finish.
【請求項2】 予め後工程での成形代を加味した形状・
寸法に成形された弾力性を有する極薄肉の中空プラスチ
ック容器内に予め組成調整された造粒粉を充填すると同
時に前記中空プラスチック容器の造粒粉投入開口部を減
圧下で密封する成形工程において、前記中空プラスチッ
ク容器内に造粒粉を充填する方法として、前記中空プラ
スチック容器の外周を接触把持する金型内で上型を用い
て押圧すると同時に前記中空プラスチック容器の造粒粉
投入開口部を減圧下で密封することを特徴とするセラミ
ック粉体の成形方法。
2. A shape that takes into account a molding allowance in a later step
In the molding step of filling the granulated powder having a composition adjusted in advance in a hollow plastic container having an elasticity and formed into a size and having a composition adjusted at the same time, the granulated powder charging opening of the hollow plastic container is sealed under reduced pressure. As a method of filling the hollow plastic container with the granulated powder, the upper part of the hollow plastic container is pressed by using an upper mold in a mold for contacting and holding the outer periphery of the hollow plastic container, and at the same time, the granulated powder charging opening of the hollow plastic container is depressurized. A method for forming a ceramic powder, which comprises sealing below.
【請求項3】 予め後工程での成形代を加味した形状・
寸法に成形された弾力性を有する極薄肉の中空プラスチ
ック容器内に予め組成調整された造粒粉を充填すると同
時に前記中空プラスチック容器の造粒粉投入開口部を減
圧下で密封する成形工程において、前記中空プラスチッ
ク容器内に造粒粉を充填する方法として、前記中空プラ
スチック容器に振動を加えながら造粒粉を投入・充填す
ると共に前記中空プラスチック容器の造粒粉投入開口部
を減圧下で密封することを特徴とするセラミック粉体の
成形方法。
3. A shape in which a molding allowance is preliminarily taken into consideration in a post process.
In the molding step of filling the granulated powder having a composition adjusted in advance in a hollow plastic container having an elasticity and formed into a size and having a composition adjusted at the same time, the granulated powder charging opening of the hollow plastic container is sealed under reduced pressure. As a method of filling the hollow plastic container with the granulated powder, the granulated powder is charged and filled while vibrating the hollow plastic container, and the granulated powder charging opening of the hollow plastic container is sealed under reduced pressure. A method of molding a ceramic powder, which is characterized in that:
JP25624595A 1995-10-03 1995-10-03 Manufacture of ceramic member and molding method for ceramic powder Withdrawn JPH0999418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25624595A JPH0999418A (en) 1995-10-03 1995-10-03 Manufacture of ceramic member and molding method for ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25624595A JPH0999418A (en) 1995-10-03 1995-10-03 Manufacture of ceramic member and molding method for ceramic powder

Publications (1)

Publication Number Publication Date
JPH0999418A true JPH0999418A (en) 1997-04-15

Family

ID=17289960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25624595A Withdrawn JPH0999418A (en) 1995-10-03 1995-10-03 Manufacture of ceramic member and molding method for ceramic powder

Country Status (1)

Country Link
JP (1) JPH0999418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607978A (en) * 2016-12-14 2017-05-03 江苏宜翔陶瓷科技有限公司 Accurately-positioning molding method capable of controlling bonding mud amount and device using method
CN107379216A (en) * 2017-06-19 2017-11-24 宁波百诺肯轴承有限公司 Automobile bearing manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607978A (en) * 2016-12-14 2017-05-03 江苏宜翔陶瓷科技有限公司 Accurately-positioning molding method capable of controlling bonding mud amount and device using method
CN107379216A (en) * 2017-06-19 2017-11-24 宁波百诺肯轴承有限公司 Automobile bearing manufacturing equipment

Similar Documents

Publication Publication Date Title
JPS61273298A (en) Molding method for powder
JPH05131419A (en) Method for producing ceramic molding and device for pressing said ceramic molding
CN106738560A (en) Isostatic cool pressing gum cover mould and its forming method
CN109290518B (en) V-method vertical modeling process and casting process
CN216682659U (en) Die for forming solid zirconia ceramic structural part
EP0249936A2 (en) Method for molding powders
JPH0999418A (en) Manufacture of ceramic member and molding method for ceramic powder
US4560336A (en) Apparatus for producing dry-pressed moulding from a particulate or granular moulding material
FI82414C (en) SAETT VID TILLVERKNING AV FORMKROPPAR AV FIBERARMERAD PLAST SAMT ANORDNING FOER ANVAENDNING VID SAODAN TILLVERKNING.
CN114571578A (en) Workpiece forming method
CN206644372U (en) Separate type powder compression mold
CN102020469B (en) Method for preparing hollow object by blow molding of zirconia ceramic
JPH0788014B2 (en) Molding tool for making molded products made of concrete and mortar molding materials containing plastic materials or synthetic resins
JPH09123133A (en) Molding method for ceramic powder and manufacture of ceramic member
JPH11156484A (en) Manufacture of metallic mold for forming and gypsum mold used for it
JPS6136331Y2 (en)
CN110843092B (en) Equipment for producing octagonal cylinder refractory brick casting mold for regenerator and application method of equipment
JPH0999417A (en) Manufacture of ceramic member and molding method for ceramic powder
CA2328099A1 (en) Method for preparation of test bodies
JPH074807B2 (en) Manufacturing method of ceramic mold
JPS61127302A (en) Method and device for manufacturing pottery
JP3007456B2 (en) Manufacturing method of hollow ceramic body
JPH04224906A (en) Packing method for bonding material in manufacturing process of resin concrete
JPS60193604A (en) Method and device for manufacturing pottery
JPS5822323B2 (en) Press-fit molding method for ceramic products

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203