JPH0997622A - Fuel cell facilities - Google Patents
Fuel cell facilitiesInfo
- Publication number
- JPH0997622A JPH0997622A JP7275122A JP27512295A JPH0997622A JP H0997622 A JPH0997622 A JP H0997622A JP 7275122 A JP7275122 A JP 7275122A JP 27512295 A JP27512295 A JP 27512295A JP H0997622 A JPH0997622 A JP H0997622A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- methane
- sludge
- fuel cell
- digestion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Treatment Of Sludge (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池設備に係
り、さらに詳細には、汚泥処理で得られた消化ガスに含
まれるメタンガスを燃料として利用した燃料電池設備に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system, and more particularly to a fuel cell system using methane gas contained in digestion gas obtained by sludge treatment as a fuel.
【0002】[0002]
【従来の技術】汚泥処理で得られる消化ガスは、メタン
を多量に含み、石油や石炭に代わる有用なエネルギー源
として期待されている。消化ガスの利用法としては、ガ
スエンジンによる発電が広く行われている。ところで、
近年開発された、連続供給される燃料のもつ化学エネル
ギーを電気化学的に直接電気エネルギーに変換する燃料
電池は、発電効率、熱回収効率ともに上記ガスエンジン
を上回り、さらに騒音、振動、NOxなどの発生も少な
く、環境に優しい発電装置である。従って、燃料電池を
消化ガスにより稼働できれば、省エネルギーまたは環境
保全の観点からも非常に有効であると考えられる。例え
ば、第32回下水道研究発表会講演集(平成7年7月2
5日発行)において、消化槽内で有機性汚泥を嫌気性微
生物により生物処理し、そこで発生した消化ガスを第
1、2吸収塔へ順次供給し、各々の吸収塔でアルカリ水
溶液の吸収液により湿式吸収することにより二酸化炭素
ガスを除去して、得られたメタンガスを燃料電池の燃料
とする技術手段が報告されている。2. Description of the Related Art Digestion gas obtained by sludge treatment contains a large amount of methane and is expected as a useful energy source in place of petroleum and coal. As a method of using digestive gas, power generation by a gas engine is widely used. by the way,
A recently developed fuel cell that electrochemically directly converts the chemical energy of a continuously supplied fuel into electric energy has higher power generation efficiency and heat recovery efficiency than those of the gas engine, and further reduces noise, vibration, NOx, etc. It is an environmentally friendly power generator with few occurrences. Therefore, if the fuel cell can be operated by digestion gas, it is considered to be very effective from the viewpoint of energy saving or environmental protection. For example, the 32nd Sewer Research Presentation Lecture Collection (July 2, 1995)
(Issued on the 5th), the organic sludge is biologically treated with anaerobic microorganisms in the digestion tank, and the digestion gas generated there is sequentially supplied to the first and second absorption towers, and the absorption solution of the alkaline aqueous solution is used in each absorption tower. It has been reported that carbon dioxide gas is removed by wet absorption and the obtained methane gas is used as a fuel for a fuel cell.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
燃料電池用の燃料として、消化ガスに含まれるメタンガ
スを使用する手段では、消化槽で発生した消化ガスをア
ルカリ水溶液により湿式吸収して二酸化炭素ガスを除去
しているので、装置全体が大型化するとともに、ランニ
ングコストも嵩み、また二酸化炭素の吸収後、その吸収
液の処理装置が必要となって、設備コストも嵩むという
問題点がある。本発明は、このような従来の技術的課題
を背景になされたもので、設備のコンパクト化、ランニ
ングコストおよび設備コストの低減が図れる燃料電池設
備を提供することを目的とする。However, in the conventional means for using methane gas contained in the digestion gas as the fuel for the fuel cell, the digestion gas generated in the digestion tank is wet-absorbed by the alkaline aqueous solution to generate carbon dioxide gas. Therefore, there is a problem that the apparatus as a whole becomes large in size, running costs increase, and a processing apparatus for absorbing the carbon dioxide is required after absorbing the carbon dioxide, resulting in increase in equipment cost. The present invention has been made in view of such a conventional technical problem, and an object of the present invention is to provide a fuel cell facility capable of downsizing the facility and reducing the running cost and the facility cost.
【0004】[0004]
【課題を解決するための手段】本発明の請求項1記載の
燃料電池設備は、有機性汚泥を嫌気性微生物を用いて生
物処理する消化槽と、該消化槽で発生した消化ガスを、
二酸化炭素濃縮ガスおよびメタン濃縮ガスに分離する消
化ガス分離膜装置と、得られたメタン濃縮ガスを燃料と
する燃料電池とを備えたことを特徴とする燃料電池設備
を提供するものである。The fuel cell facility according to claim 1 of the present invention comprises a digestion tank for biologically treating organic sludge with anaerobic microorganisms, and a digestion gas generated in the digestion tank.
It is intended to provide a fuel cell facility comprising a digestion gas separation membrane device for separating carbon dioxide concentrated gas and methane concentrated gas, and a fuel cell using the obtained methane concentrated gas as a fuel.
【0005】また、請求項2記載の燃料電池設備は、請
求項1記載の燃料電池設備において、消化ガス分離膜装
置と燃料電池との間に、メタン濃縮ガスを希薄メタンガ
スおよび高濃度メタンガスに分離するメタンガス分離膜
装置を設け、消化ガス分離膜装置の透過側より得られた
二酸化炭素濃縮ガスの一部を、消化槽へ戻して循環させ
る二酸化炭素ガス循環流路を設けたものである。The fuel cell facility according to a second aspect is the fuel cell facility according to the first aspect, wherein the methane concentrated gas is separated into a lean methane gas and a high-concentration methane gas between the digestion gas separation membrane device and the fuel cell. A methane gas separation membrane device is provided, and a carbon dioxide gas circulation channel is provided to circulate a part of the carbon dioxide concentrated gas obtained from the permeation side of the digestion gas separation membrane device back to the digestion tank.
【0006】さらに、請求項3記載の燃料電池設備は、
請求項1記載の燃料電池設備において、消化ガス分離膜
装置と燃料電池との間に、メタン濃縮ガスを希薄メタン
ガスおよび高濃度メタンガスに分離するメタンガス分離
膜装置を設け、メタンガス分離膜装置の透過側より得ら
れた希薄メタンガスの一部を、消化槽へ戻して循環させ
る希薄メタンガス循環流路を設けたものである。Further, the fuel cell equipment according to claim 3 is
The fuel cell facility according to claim 1, wherein a methane gas separation membrane device that separates the methane concentrated gas into a lean methane gas and a high-concentration methane gas is provided between the digestion gas separation membrane device and the fuel cell, and the permeate side of the methane gas separation membrane device. A dilute methane gas circulation channel is provided for returning a part of the dilute methane gas obtained as described above to the digestion tank for circulation.
【0007】[0007]
【作用】請求項1〜3記載の燃料電池設備においては、
消化槽で有機性汚泥を嫌気性微生物を用いて生物処理
し、ここで発生した消化ガスを消化ガス分離膜装置に通
して、二酸化炭素濃縮ガスとメタン濃縮ガスとに分離す
る。このように、消化ガス分離膜装置により、濃縮され
たメタン濃縮ガスを燃料電池へ燃料として供給するの
で、有機性汚泥をメタン発酵させて得られたメタンガス
を、燃料電池の燃料に使用できるほどに濃縮してその燃
料電池に供給でき、従来の消化ガスをアルカリ水溶液に
より湿式吸収して二酸化炭素ガスを除去するものに比べ
て、設備のコンパクト化が図れ、またランニングコスト
および設備コストも低減する。In the fuel cell equipment according to claims 1 to 3,
In the digestion tank, organic sludge is biologically treated using anaerobic microorganisms, and the digested gas generated here is passed through a digested gas separation membrane device to separate into carbon dioxide concentrated gas and methane concentrated gas. In this way, the digested gas separation membrane device supplies the concentrated methane-enriched gas as fuel to the fuel cell, so that the methane gas obtained by subjecting the organic sludge to methane fermentation can be used as fuel for the fuel cell. It can be concentrated and supplied to the fuel cell, and the equipment can be made compact, and the running cost and the equipment cost can be reduced as compared with the conventional method in which the digestive gas is wet-absorbed by the alkaline aqueous solution to remove the carbon dioxide gas.
【0008】請求項2記載の燃料電池設備においては、
第1段目の消化ガス分離膜装置により分離された透過側
の二酸化炭素濃縮ガスの一部を、二酸化炭素ガス循環流
路を介して消化槽へ戻すので、消化ガス分離膜装置で採
取された高濃度の二酸化炭素濃縮ガスを、消化槽の二酸
化炭素濃度の調整に適量だけ使用でき、これにより消化
槽において、少ないガス循環量で、容易に二酸化炭素濃
度の調整が可能となるとともに、メタンガスの回収率を
向上することができる。なお、消化ガス分離膜装置によ
り分離された二酸化炭素濃縮ガスの全部を、二酸化炭素
ガス循環流路を介して、消化槽へ戻すことも考えられる
が、これでは消化槽内の二酸化炭素濃縮ガスのガス量が
多くなりすぎて、消化ガス分離膜装置などの設備全体が
大型化し、これだけでなく二酸化炭素濃度が高すぎて、
得られたメタン濃縮ガスの濃度低下を招き、燃料電池の
燃料としては好ましくない。In the fuel cell equipment according to claim 2,
Part of the carbon dioxide-enriched gas on the permeate side, which was separated by the digestion gas separation membrane device of the first stage, is returned to the digestion tank through the carbon dioxide gas circulation channel, so it was collected by the digestion gas separation membrane device. A high concentration of carbon dioxide-enriched gas can be used in an appropriate amount to adjust the carbon dioxide concentration in the digestion tank. This makes it possible to easily adjust the carbon dioxide concentration in the digestion tank with a small gas circulation amount, and The recovery rate can be improved. It should be noted that it is possible to return all of the carbon dioxide-enriched gas separated by the digestion gas separation membrane device to the digestion tank via the carbon dioxide gas circulation flow path. The amount of gas becomes too large, the entire equipment such as the digestion gas separation membrane device becomes large, and not only this, but the carbon dioxide concentration is too high,
The concentration of the obtained methane-enriched gas is reduced, which is not preferable as a fuel for fuel cells.
【0009】請求項3記載の燃料電池設備においては、
第2段目のメタンガス分離膜装置の透過側より得られた
希薄メタンガスの一部を、希薄メタンガス循環流路を介
して消化槽へ戻すので、この希薄メタンガス中に含まれ
るメタンを消化槽を経て分離膜装置で回収することがで
きるので、メタンガスの回収率が向上する。また、同時
に、希薄メタンガス中に含まれる二酸化炭素ガスを、請
求項2と同様に消化槽の二酸化炭素濃度の調整に適量だ
け使用することにより、比較的少ないガス循環量で、容
易にその二酸化炭素濃度の調整が可能となる。In the fuel cell equipment according to claim 3,
Part of the lean methane gas obtained from the permeate side of the second stage methane gas separation membrane device is returned to the digestion tank through the lean methane gas circulation channel, so the methane contained in this lean methane gas is passed through the digestion tank. Since it can be recovered by the separation membrane device, the recovery rate of methane gas is improved. At the same time, by using an appropriate amount of carbon dioxide gas contained in the dilute methane gas for adjusting the carbon dioxide concentration in the digestion tank, the carbon dioxide gas can be easily obtained with a relatively small gas circulation amount. It is possible to adjust the concentration.
【0010】[0010]
【発明の実施の形態】以下、実施の形態を挙げ、本発明
をさらに詳細に説明する。なお、本発明は、後述の実施
の形態に限定されないことは言うまでもない。まず、図
1に基づいて、本発明の第1の実施の形態を説明する。
図1に示すように、本発明の第1の実施の形態の燃料電
池設備は、有機性汚泥10aを嫌気性微生物を用いて生
物処理する消化槽10と、消化槽10で発生した消化ガ
スa中の硫化水素などを除去する脱硫器20と、脱硫さ
れた消化ガスaを二酸化炭素濃縮ガスbおよびメタン濃
縮ガスcに分離する消化ガス分離膜装置30と、得られ
たメタン濃縮ガスcを燃料とする燃料電池50とを備え
ている。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to embodiments. Needless to say, the present invention is not limited to the embodiments described below. First, a first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the fuel cell equipment according to the first embodiment of the present invention has a digestion tank 10 for biologically treating organic sludge 10a with anaerobic microorganisms, and a digestion gas a generated in the digestion tank 10. A desulfurizer 20 for removing hydrogen sulfide and the like in the inside, a digestion gas separation membrane device 30 for separating the desulfurized digested gas a into a carbon dioxide enriched gas b and a methane enriched gas c, and the obtained methane enriched gas c as a fuel. And a fuel cell 50.
【0011】消化槽10は、RC構造の円筒槽や、PC
構造または鋼構造の卵形槽、上下円錐槽であり、槽内雰
囲気は嫌気性とし、メタン生成菌の育成に良好な温度と
pHに保持されるものとする。消化槽10に投入された
有機性汚泥10aは、各種の嫌気性菌の作用により分解
される。まず、高分子有機質が通性嫌気性菌群(基質分
解菌)により低分子中間生成物であるアルコール、有機
酸、有機塩などに分解される。この際、多量の水素と少
量のメタンガスとが遊離するために、水素発酵とも言わ
れる。その後、低分子中間生成物が絶対嫌気性菌(メタ
ン菌)により、水溶性無機物とガスとに分解される。す
なわち、二酸化炭素ガス、メタンガス、アンモニアなど
が生成される。この際、特にメタンガスが多量に発生す
るので、メタン発酵とも言われる。The digestion tank 10 is a cylindrical tank of RC structure or a PC.
It is an oval tank having a structure or a steel structure, and an upper and lower conical tank. The atmosphere in the tank is anaerobic, and the temperature and pH are maintained at a good temperature for the growth of methanogens. The organic sludge 10a put into the digestion tank 10 is decomposed by the action of various anaerobic bacteria. First, high molecular weight organic substances are decomposed by facultative anaerobic bacteria (substrate degrading bacteria) into low molecular intermediate products such as alcohols, organic acids, and organic salts. At this time, a large amount of hydrogen and a small amount of methane gas are released, which is also called hydrogen fermentation. Then, the low-molecular intermediate product is decomposed into water-soluble inorganic substances and gas by absolutely anaerobic bacteria (methane bacteria). That is, carbon dioxide gas, methane gas, ammonia, etc. are generated. At this time, particularly a large amount of methane gas is generated, so it is also called methane fermentation.
【0012】汚泥の反応は、次式のように行われる。 炭水化物(ブドウ糖);C6 H12O6 +2H2 O→2
CH3 COOH+4H2 +2CO2 脂質(トリブチリン);C3 H5 (C3 H7 COO)
3 +10H2 O→7CH3 COOH+HCOOH+8H
2 蛋白質(トレオニン酸);3CH3 CH(OH)CH
(NH2 )COOH+7H2 O→4CH3 COOH+8
H2 +4CO2 +3NH3 メタン菌の利用可能な基質は、HCOOH、CH3 CO
OH、CH3 OH、およびH2 とCO2 とされており、
これ以外の脂肪酸は、水素生産性の酢酸生成菌により、
CH3 COOHに変換されたのち、メタン菌により、メ
タンが生成される。これらのメタン生成機構により生成
されるメタンの割合は、CH3 COOH経由(CH3 C
OOH→CH4 +CO2 )が約70%、残りはCO2 の
還元(CO2 +4H2 →CH4 +2H2 O)によると言
われている。The sludge reaction is carried out according to the following equation. Carbohydrate (glucose); C 6 H 12 O 6 + 2H 2 O → 2
CH 3 COOH + 4H 2 + 2CO 2 lipid (tributyrin); C 3 H 5 (C 3 H 7 COO)
3 + 10H 2 O → 7CH 3 COOH + HCOOH + 8H
2 protein (threonic acid); 3CH 3 CH (OH) CH
(NH 2 ) COOH + 7H 2 O → 4CH 3 COOH + 8
The usable substrates of H 2 + 4CO 2 + 3NH 3 methane bacteria are HCOOH, CH 3 CO
OH, CH 3 OH, and H 2 and CO 2 ,
Other fatty acids are produced by acetogenic bacteria that produce hydrogen.
After being converted into CH 3 COOH, methane is produced by the methane bacteria. The proportion of methane produced by these methane production mechanisms is determined by means of CH 3 COOH (CH 3 C
OOH → CH 4 + CO 2) is about 70%, the rest is said to be due to the reduction of CO 2 (CO 2 + 4H 2 → CH 4 + 2H 2 O).
【0013】アンモニアは、亜硝酸アンモンの形で消化
液中に残るから、結局、メタンガスおよび二酸化炭素ガ
スを主成分とし、少量の水素および硫化水素を含むガス
が、消化槽10で発生する消化ガスaとなる。このよう
にして発生する消化ガスaの組成は、一般にメタン65
〜70重量%、二酸化炭素30〜35重量%の混合ガス
である。通常、消化槽10の上部空間はこのような組成
の消化ガスaの雰囲気下にある。この組成の消化ガスa
の低位発熱量は23〜25MJ/Nm3 であって、例え
ばガスエンジン発電の燃料としては利用できるものの、
本発明が対象とする燃料電池50用の燃料としては、二
酸化炭素濃度が高く、改質後の水素濃度が低くなるた
め、発電効率が低くなりすぎる。Ammonia remains in the digestive liquid in the form of ammonium nitrite, so that a gas containing methane gas and carbon dioxide gas as main components and a small amount of hydrogen and hydrogen sulfide is generated in the digestion tank 10 in the end. a. The composition of the digestion gas a thus generated is generally 65
It is a mixed gas of 70 wt% and 30-35 wt% carbon dioxide. Usually, the upper space of the digestion tank 10 is under the atmosphere of the digestion gas a having such a composition. Digestion gas a of this composition
Has a lower heating value of 23 to 25 MJ / Nm 3 , which can be used as fuel for gas engine power generation,
As the fuel for the fuel cell 50 targeted by the present invention, the carbon dioxide concentration is high and the hydrogen concentration after reforming is low, so the power generation efficiency is too low.
【0014】消化槽10の汚泥の投入管と消化汚泥の排
出管との間には、排出される消化汚泥により投入汚泥を
加熱する汚泥/汚泥熱交換器11が設けられており、ま
た消化槽10の上部には、消化ガスaの一部を槽内の水
面下へ導入して気液の接触を良くするバブリング手段1
2が設けられている。なお、機械攪拌式のものでもよ
い。消化ガス分離膜装置30は、二酸化炭素とメタンの
透過係数比の高い高分子気体分離膜で分離された2室か
らなる。導出された消化ガスaを一方の部屋30aに導
き(以下「非透過側」という)、他方の室30b(以下
「透過側」という)の圧力を非透過側30aよりも低く
すると、消化ガスa中の希薄メタンガスを含む二酸化炭
素濃縮ガスbが高分子気体分離膜を透過側30bへと透
過し、透過しないメタン濃縮ガスcが分離される。二酸
化炭素濃縮ガスbは、希薄メタンガスを燃焼させる余剰
ガス燃焼装置40に連結されたリーンガスタンク31に
蓄えられる一方、メタン濃縮ガスcは、消化ガス分離膜
装置30と燃料電池50との間にあるメタンリッチガス
タンク32に蓄えられる。A sludge / sludge heat exchanger 11 for heating the input sludge by the discharged digested sludge is provided between the sludge input pipe and the digested sludge discharge pipe of the digester tank 10, and the digester tank is also provided. At the upper part of 10, bubbling means 1 for introducing a part of the digestion gas a below the water surface in the tank to improve the contact between gas and liquid.
2 are provided. A mechanical stirring type may be used. The digestion gas separation membrane device 30 is composed of two chambers separated by a polymer gas separation membrane having a high permeability coefficient ratio of carbon dioxide and methane. When the derived digestion gas a is guided to one chamber 30a (hereinafter referred to as "non-permeation side") and the pressure of the other chamber 30b (hereinafter referred to as "permeation side") is made lower than that of the non-permeation side 30a, the digestion gas a The carbon dioxide-enriched gas b containing the dilute methane gas therein permeates the polymer gas separation membrane to the permeation side 30b, and the methane-enriched gas c that does not permeate is separated. The carbon dioxide-enriched gas b is stored in the lean gas tank 31 connected to the surplus gas combustor 40 that burns the lean methane gas, while the methane-enriched gas c is between the digestion gas separation membrane device 30 and the fuel cell 50. It is stored in the methane-rich gas tank 32.
【0015】ここで、使用する高分子気体分離膜として
は、三酢酸セルロース膜、ポリスルホン膜、ポリエーテ
ルスルホン膜、スチレンをグラフトし、スルホン化した
ポリテトラフルオロエチレン膜、ポリイミド膜、カーボ
ン膜、微多孔質ガラス複合膜などのほか、酸素と窒素の
分離に用いられる高分子膜などが挙げられる。また、消
化槽10と燃料電池50(この第1の実施の形態では、
リン酸型燃料電池を採用している)との間には、消化槽
10内の有機性汚泥10aを微生物処理し易い35〜5
5℃に保持するための熱交換システム60が配備されて
いる。The polymer gas separation membrane used here is a cellulose triacetate membrane, a polysulfone membrane, a polyethersulfone membrane, a styrene-grafted and sulfonated polytetrafluoroethylene membrane, a polyimide membrane, a carbon membrane, a fine membrane. In addition to porous glass composite membranes, polymer membranes used for separating oxygen and nitrogen can be cited. Further, the digestion tank 10 and the fuel cell 50 (in the first embodiment,
35 to 5 that easily treats the organic sludge 10a in the digestion tank 10 with microorganisms.
A heat exchange system 60 for maintaining at 5 ° C is provided.
【0016】ところで、燃料電池は、連続供給される燃
料のもつ化学エネルギーを、電気化学的に直接電気エネ
ルギーに変換するもので、各種のものが開発されてい
る。燃料電池の種類では、使用する電解液(電解質)の
種類によって分類すると、アルカリ電解液を用いるアル
カリ水溶液電解質燃料電池、酸性電解液を用いるリン酸
電解質燃料電池、溶融塩電解質を用いる溶融炭酸塩電解
質燃料電池、固体電解質を用いる固体電解質燃料電池、
高分子固体電解質を用いるイオン交換膜燃料電池などが
ある。By the way, the fuel cell electrochemically directly converts the chemical energy of the continuously supplied fuel into electrical energy, and various types have been developed. The types of fuel cells are classified according to the type of electrolyte solution (electrolyte) used. An alkaline aqueous electrolyte fuel cell using an alkaline electrolyte solution, a phosphoric acid electrolyte fuel cell using an acidic electrolyte solution, and a molten carbonate electrolyte using a molten salt electrolyte. Fuel cell, solid electrolyte fuel cell using solid electrolyte,
There is an ion exchange membrane fuel cell using a polymer solid electrolyte.
【0017】このうち、リン酸電解質燃料電池は、燃料
に純水素と限らず、天然ガス、メタノールなどから改質
して得られた水素ガスでも使用可能なものであり、電解
液としてリン酸を用いて、低温で作動する燃料電池であ
る。また、電池の基本構成は、リン酸を含浸させたマト
リックス(多孔体)を挟んで燃料極と空気極とを対峙さ
せ、これを囲んで燃料ガスまたは空気の通路が設けられ
ている。また、溶融炭酸塩電解質燃料電池は、各種の炭
酸塩、例えば炭酸リチウム、炭酸カリウム、炭酸ナトリ
ウムなどの混合物は比較的低い温度で溶融し、炭酸イオ
ンによる導電性を示す。これを多孔性セラミック板(マ
トリックス)に含浸させるか、マグネシア、アルミナの
粉末と混ぜてペーストとして電解質を作る。この電池は
600〜650℃のような高温で作動させる。基本構成
は、マトリックスまたはペースト状の溶融塩電解質を挟
んで燃料極と空気極とが設けられている。Of these, the phosphoric acid electrolyte fuel cell can be used not only with pure hydrogen as a fuel but also with hydrogen gas obtained by reforming from natural gas, methanol, etc., and phosphoric acid is used as an electrolytic solution. It is a fuel cell that operates at low temperatures. In addition, the basic configuration of the battery is such that a fuel electrode and an air electrode are opposed to each other with a matrix (porous body) impregnated with phosphoric acid sandwiched therebetween, and a fuel gas or air passage is provided to surround the fuel electrode and the air electrode. Further, in the molten carbonate electrolyte fuel cell, various carbonates, for example, a mixture of lithium carbonate, potassium carbonate, sodium carbonate, etc. are melted at a relatively low temperature and show conductivity by carbonate ions. This is impregnated into a porous ceramic plate (matrix), or mixed with powder of magnesia and alumina to form an electrolyte as a paste. The cell operates at elevated temperatures such as 600-650 ° C. The basic configuration is such that a fuel electrode and an air electrode are provided with a molten salt electrolyte in a matrix or paste form sandwiched therebetween.
【0018】ところで、上記燃料電池のうち、リン酸電
解質燃料電池は、近年、都市ガスに適用可能であり、特
にその普及が著しい。このリン酸電解質燃料電池は、硫
化水素などの硫化物から改質装置の触媒および電池本体
の電極を保護するための脱硫器、メタンから水素を生成
する水蒸気改質装置、一酸化炭素を二酸化炭素に変換す
るCO変成器および電池本体と反応後の凝縮水を処理す
る水処理装置などが一体化されてなる。By the way, of the above fuel cells, the phosphoric acid electrolyte fuel cell is applicable to city gas in recent years, and its spread is particularly remarkable. This phosphoric acid electrolyte fuel cell uses a desulfurizer to protect the catalyst of the reformer and the electrodes of the cell body from sulfides such as hydrogen sulfide, a steam reformer that produces hydrogen from methane, and carbon monoxide to carbon dioxide. The CO converter for converting into water and the battery body are integrated with a water treatment device for treating the condensed water after the reaction.
【0019】前記熱交換システム60は、消化槽10側
の、汚泥/温水熱交換器61を有する汚泥循環ループ6
2と、燃料電池50側の、温水ボイラ63および排熱回
収装置64、高温水槽65、低温水槽66を有する温水
循環ループ67と、汚泥循環ループ62および温水循環
ループ67を接続する接続温水循環ループ68とを備え
ている。なお、温水ボイラ63は、温水循環ループ67
内の循環水を昇温させるために、リーンガスタンク31
から余剰ガス燃焼装置40へ導かれる途中の、希薄メタ
ンガスを加熱用燃料として供給する。The heat exchange system 60 comprises a sludge circulation loop 6 having a sludge / hot water heat exchanger 61 on the digestion tank 10 side.
2, a hot water circulation loop 67 having a hot water boiler 63, an exhaust heat recovery device 64, a high temperature water tank 65, and a low temperature water tank 66 on the fuel cell 50 side, and a connection hot water circulation loop connecting the sludge circulation loop 62 and the hot water circulation loop 67. And 68. The hot water boiler 63 has a hot water circulation loop 67.
In order to raise the temperature of the circulating water inside, the lean gas tank 31
The dilute methane gas is supplied as a fuel for heating while being guided from the exhaust gas combustion device 40 to the excess gas combustion device 40.
【0020】熱交換システム60は、温水循環ループ6
7内の循環水を、排熱回収装置64における燃料電池5
0の発電時の反応熱と、温水ボイラ63の燃焼熱とによ
り昇温させ、昇温された循環水を高温水槽65に供給
し、それを接続温水循環ループ68の循環水として汚泥
/温水熱交換器61へ送り込み、ここで汚泥循環ループ
62内の汚泥を昇温させることにより、消化槽10内の
汚泥を前記温度に保持するものである。なお、図1にお
いて、記号70は各種圧送ポンプ、記号71は各種バキ
ューム装置である。The heat exchange system 60 includes a hot water circulation loop 6
The circulating water in the fuel cell 5 in the exhaust heat recovery device 64
0 is generated by the reaction heat at the time of power generation and the combustion heat of the hot water boiler 63, and the raised circulating water is supplied to the high temperature water tank 65, which is used as the circulating water of the connection hot water circulation loop 68 for sludge / hot water heat. The sludge in the digestion tank 10 is maintained at the above temperature by sending it to the exchanger 61 and raising the temperature of the sludge in the sludge circulation loop 62. In FIG. 1, symbol 70 is various pressure pumps and symbol 71 is various vacuum devices.
【0021】次に、本発明の第1の実施の形態における
燃料電池設備10の動作を説明する。汚泥/汚泥熱交換
器11を介して、消化汚泥により加熱された投入汚泥
は、消化槽10に投入される。ここで、バブリング手段
12により、消化槽10内の有機性汚泥10aが循環消
化ガスによりバブリングされて消化液の攪拌が行われ、
メタン発酵が良好に行われる。この際、燃料電池50の
熱および温水ボイラ63の熱により加熱された温水循環
ループ67の循環水、それから接続温水循環ループ68
の循環水を介して、汚泥循環ループ62の汚泥が汚泥/
温水熱交換器61により熱交換され、温められた汚泥が
消化槽10内へ戻される。このように、燃料電池50か
らの排ガスを消化槽10の汚泥加熱に利用できるので、
極めて高い熱効率が得られる。Next, the operation of the fuel cell equipment 10 according to the first embodiment of the present invention will be described. The input sludge heated by the digested sludge is introduced into the digestion tank 10 via the sludge / sludge heat exchanger 11. Here, the bubbling means 12 bubbling the organic sludge 10a in the digestion tank 10 with the circulating digestion gas to stir the digestion liquid,
Good methane fermentation. At this time, the circulating water of the hot water circulation loop 67 heated by the heat of the fuel cell 50 and the heat of the hot water boiler 63, and then the connected hot water circulation loop 68.
The sludge in the sludge circulation loop 62 becomes sludge /
The sludge heated by the hot water heat exchanger 61 and warmed is returned to the digestion tank 10. In this way, since the exhaust gas from the fuel cell 50 can be used to heat the sludge in the digestion tank 10,
Extremely high thermal efficiency is obtained.
【0022】消化槽10で発生した消化ガスaは、脱硫
器20において硫化水素などの硫化物が脱硫され、その
のち消化ガス分離膜装置30へ送られる。ここで、分離
された一方の希薄メタンガスを含む二酸化炭素濃縮ガス
bがリーンガスタンク31へ送られ、他方のメタン濃縮
ガスcがメタンリッチガスタンク32に一時貯溜された
のち、燃料電池50の燃料として供給される。なお、リ
ーンガスタンク31に一時貯溜された希薄メタンガスを
含む二酸化炭素濃縮ガスbは、余剰ガス燃焼装置40に
送られて燃焼されるが、途中、その一部が温水ボイラ6
3へ導入されて加熱用燃料とされ、燃焼ガスは余剰ガス
燃焼装置40から排出される。The digestion gas a generated in the digestion tank 10 is desulfurized with sulfides such as hydrogen sulfide in the desulfurizer 20, and then sent to the digestion gas separation membrane device 30. Here, the separated carbon dioxide-enriched gas b containing one diluted methane gas is sent to the lean gas tank 31, and the other methane-enriched gas c is temporarily stored in the methane-rich gas tank 32, and then supplied as fuel for the fuel cell 50. To be done. The carbon dioxide-enriched gas b containing the lean methane gas temporarily stored in the lean gas tank 31 is sent to the surplus gas combustor 40 and burned.
3 is introduced into the fuel cell 3 as heating fuel, and the combustion gas is discharged from the surplus gas combustion device 40.
【0023】因みに、容量3,000m3 の消化槽に、
汚泥を200m3 /D投入し、汚泥温度50℃でメタン
発酵させると、メタンガス濃度が約63%の消化ガスa
が2,800Nm3 /D発生し、その消化ガスを消化ガ
ス分離膜装置30で二酸化炭素を分離すると、メタンガ
ス濃度が約90%のメタン濃縮ガスが1,570m3/
D得られた。これは、都市ガス用に使用されている20
0kwのリン酸型燃料電池の燃料に相当する。By the way, in a digestion tank with a capacity of 3,000 m 3 ,
When sludge was added at 200 m 3 / D and methane fermentation was carried out at a sludge temperature of 50 ° C, digestive gas a with a methane gas concentration of about 63%
2,800 Nm 3 / D is generated, and when the digested gas is separated into carbon dioxide by the digestion gas separation membrane device 30, methane-enriched gas having a methane gas concentration of about 90% is 1,570 m 3 / D.
D obtained. It is used for city gas 20
It corresponds to a fuel of a 0 kw phosphoric acid fuel cell.
【0024】このように、消化ガス分離膜装置30によ
り濃縮されたメタン濃縮ガスcを、燃料改質装置(図示
せず)を経て、水素ガスに改質して燃料電池50へ燃料
として供給するようにした。このため、有機性汚泥10
aをメタン発酵させて得られたメタンガスを、燃料電池
50の燃料に使用できるほどに濃縮してその燃料電池5
0に供給でき、従来技術の欄で説明した消化ガスをアル
カリ水溶液により湿式吸収して二酸化炭素ガスを除去す
るものに比べて、設備のコンパクト化が図れ、またラン
ニングコストおよび設備コストも低減する。The methane-enriched gas c thus concentrated by the digestion gas separation membrane device 30 is reformed into hydrogen gas through a fuel reformer (not shown) and supplied to the fuel cell 50 as fuel. I did it. Therefore, the organic sludge 10
The methane gas obtained by methane-fermenting a is concentrated to a level that can be used as a fuel for the fuel cell 50, and the fuel cell 5
In addition, the equipment can be made compact, and the running cost and the equipment cost can be reduced as compared with the case where the digestive gas is wet-absorbed by the alkaline aqueous solution to remove the carbon dioxide gas as described in the section of the prior art.
【0025】次に、図2に基づいて、本発明の第2の実
施の形態の燃料電池設備を説明する。図2に示すよう
に、本発明の第2の実施の形態の燃料電池設備は、消化
ガス分離膜装置30と消化槽10との間に、消化ガス分
離膜装置30より得られた二酸化炭素濃縮ガスbの一部
を、バブリング手段12を介して、消化槽10へ戻して
循環させる二酸化炭素ガス循環流路81を設けること
で、消化ガス分離膜装置30で採取された高濃度の二酸
化炭素濃縮ガスbを、消化槽10の二酸化炭素濃度の調
整に適量だけ使用し、これにより消化槽10において、
少ないガス循環量で、容易に二酸化炭素濃度の調整が可
能とするとともに、二酸化炭素濃縮ガスb中に含まれる
メタンの回収を図った。Next, based on FIG. 2, the fuel cell equipment of the second embodiment of the present invention will be explained. As shown in FIG. 2, in the fuel cell equipment of the second embodiment of the present invention, the carbon dioxide concentration obtained from the digestion gas separation membrane device 30 is provided between the digestion gas separation membrane device 30 and the digestion tank 10. By providing a carbon dioxide gas circulation flow path 81 for returning a part of the gas b to the digestion tank 10 through the bubbling means 12 and circulating it, the high concentration carbon dioxide concentrated in the digestion gas separation membrane device 30 is concentrated. The gas b is used in an appropriate amount to adjust the carbon dioxide concentration in the digester tank 10, whereby in the digester tank 10,
The carbon dioxide concentration can be easily adjusted with a small gas circulation amount, and the methane contained in the carbon dioxide concentrated gas b is recovered.
【0026】次に、図3に基づいて、本発明の第3の実
施の形態の燃料電池設備を説明する。図3に示すよう
に、本発明の第3の実施の形態の燃料電池設備は、メタ
ンガス分離膜装置80より得られたメタンガスの一部を
消化槽10へ戻して循環させる希薄メンタンガス循環流
路82を設けることにより、この希薄メタンガスd中に
含まれるメタンを有効に回収するとともに、二酸化炭素
ガスを、第2の実施の形態と同様に、消化槽10の二酸
化炭素濃度の調整に適量だけ使用することにより、比較
的少ないガス循環量で、容易にその二酸化炭素濃度の調
整を可能とした例である。Next, based on FIG. 3, the fuel cell equipment of the third embodiment of the present invention will be explained. As shown in FIG. 3, in the fuel cell equipment according to the third embodiment of the present invention, a dilute mental gas circulation channel 82 for returning a part of the methane gas obtained from the methane gas separation membrane device 80 to the digestion tank 10 and circulating it. By providing the methane, the methane contained in the dilute methane gas d is effectively recovered, and the carbon dioxide gas is used in an appropriate amount for adjusting the carbon dioxide concentration in the digestion tank 10 as in the second embodiment. This is an example in which the carbon dioxide concentration can be easily adjusted with a relatively small gas circulation amount.
【0027】次に、図4に基づいて、本発明の第4の実
施の形態の燃料電池設備を説明する。図4に示すよう
に、本発明の第4の実施の形態の燃料電池設備は、消化
ガス分離膜装置30より得られた二酸化炭素濃縮ガスb
の一部を消化槽10に戻し、メタンガス分離膜装置80
より得られた希薄メタンガスを消化ガス分離膜装置30
の入口側に戻すことにより、消化槽10における二酸化
炭素濃度の調整とメタン回収率の向上を同時に図ること
が可能である。Next, the fuel cell equipment of the fourth embodiment of the present invention will be explained based on FIG. As shown in FIG. 4, the fuel cell facility according to the fourth embodiment of the present invention is a carbon dioxide-enriched gas b obtained from the digestion gas separation membrane device 30.
Part of the methane gas separation membrane device 80 is returned to the digestion tank 10.
The diluted methane gas obtained from the digestive gas separation membrane device 30
It is possible to adjust the carbon dioxide concentration in the digestion tank 10 and improve the methane recovery rate at the same time by returning to the inlet side of.
【0028】以上、本発明の実施の形態を説明したが、
本発明はこの実施の形態に限定されるものではなく、要
旨を逸脱しない範囲での設計の変更などがあっても本発
明に含まれる。例えば、実施の形態では、脱硫器を消化
槽と消化ガス分離膜装置との間に設けたが、これに限定
しなくても、例えば燃料電池の燃料供給側に設けてもよ
い。また、硫化水素は、消化ガス分離膜の二酸化炭素濃
縮ガス側に混入するため、脱硫器は必ずしも必要ではな
い。The embodiment of the present invention has been described above.
The present invention is not limited to this embodiment, and any modification of the design without departing from the scope of the present invention is included in the present invention. For example, in the embodiment, the desulfurizer is provided between the digestion tank and the digestive gas separation membrane device, but the present invention is not limited to this and may be provided, for example, on the fuel supply side of the fuel cell. Further, since hydrogen sulfide is mixed in the carbon dioxide concentrated gas side of the digestion gas separation membrane, the desulfurizer is not always necessary.
【0029】[0029]
【発明の効果】請求項1〜3記載の燃料電池設備におい
ては、このように消化ガス分離膜装置により、濃縮され
たメタン濃縮ガスを燃料電池へ燃料として供給するよう
にしたので、従来の消化ガスをアルカリ水溶液により湿
式吸収して二酸化炭素ガスを除去するものに比べて、設
備のコンパクト化が図れ、またランニングコストおよび
設備コストも低減できる。In the fuel cell equipment according to claims 1 to 3, the digested gas separation membrane device is used to supply the concentrated methane-enriched gas as fuel to the fuel cell. The equipment can be made compact, and the running cost and the equipment cost can be reduced as compared with the case where the carbon dioxide gas is removed by wet-absorbing the gas with an alkaline aqueous solution.
【0030】請求項2〜3記載の燃料電池設備において
は、消化ガス分離膜装置により分離された二酸化炭素濃
縮ガスの一部を二酸化炭素ガス循環流路を介して、また
メタンガス分離膜装置より分離されたメタンガスの一部
を希薄メタンガス循環流路を介して、それぞれ消化槽へ
戻すようにしたので、メタン回収率の向上が図れるとと
もに、少ないガス循環量で消化槽内での二酸化炭素濃度
の調整が容易にできる。In the fuel cell equipment according to claims 2 to 3, a part of the carbon dioxide-enriched gas separated by the digestion gas separation membrane device is separated through the carbon dioxide gas circulation channel and from the methane gas separation membrane device. Since a part of the generated methane gas is returned to the digestion tank via the dilute methane gas circulation channel, the methane recovery rate can be improved and the carbon dioxide concentration in the digestion tank can be adjusted with a small gas circulation amount. Can be done easily.
【図1】本発明の第1の実施の形態の燃料電池設備の概
略構成図である。FIG. 1 is a schematic configuration diagram of a fuel cell facility according to a first embodiment of the present invention.
【図2】本発明の第2の実施の形態の燃料電池設備の要
部概略構成図である。FIG. 2 is a schematic configuration diagram of a main part of fuel cell equipment according to a second embodiment of the present invention.
【図3】本発明の第3の実施の形態の燃料電池設備の要
部概略構成図である。FIG. 3 is a schematic configuration diagram of a main part of fuel cell equipment according to a third embodiment of the present invention.
【図4】本発明の第4の実施の形態の燃料電池設備の要
部概略構成図である。FIG. 4 is a schematic configuration diagram of main parts of a fuel cell facility according to a fourth embodiment of the present invention.
10 消化槽 10a 有機性汚泥 20 脱硫器 30 消化ガス分離膜装置 50 燃料電池 80 メタンガス分離膜装置 81 二酸化炭素ガス循環流路 82 希薄メンタンガス循環流路 a 消化ガス b 二酸化炭素濃縮ガス c メタン濃縮ガス d 希薄メタンガス e 高濃度メタンガス 10 Digestion Tank 10a Organic Sludge 20 Desulfurizer 30 Digestion Gas Separation Membrane Device 50 Fuel Cell 80 Methane Gas Separation Membrane Device 81 Carbon Dioxide Circulation Flow Path 82 Dilute Menthane Gas Circulation Flow Path a Digestion Gas b Carbon Dioxide Concentration Gas c Methane Concentration Gas d Dilute methane gas e High-concentration methane gas
───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 浩之 神奈川県川崎市川崎区大川町2番1号 三 菱化工機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Taniguchi 2-1, Okawacho, Kawasaki-ku, Kawasaki-shi, Kanagawa Sanryo Kakoki Co., Ltd.
Claims (3)
処理する消化槽と、消化槽で発生した消化ガスを、二酸
化炭素濃縮ガスおよびメタン濃縮ガスに分離する消化ガ
ス分離膜装置と、得られたメタン濃縮ガスを燃料とする
燃料電池とを備えたことを特徴とする燃料電池設備。1. A digestion tank for biologically treating organic sludge using anaerobic microorganisms, and a digestion gas separation membrane device for separating digestion gas generated in the digestion tank into carbon dioxide-enriched gas and methane-enriched gas. And a fuel cell using the methane-enriched gas as a fuel.
に、メタン濃縮ガスを希薄メタンガスおよび高濃度メタ
ンガスに分離するメタンガス分離膜装置を設け、消化ガ
ス分離膜装置の透過側より得られた二酸化炭素濃縮ガス
の一部を、消化槽へ戻して循環させる二酸化炭素ガス循
環流路を設けた請求項1記載の燃料電池設備。2. A methane gas separation membrane device for separating a methane-enriched gas into a dilute methane gas and a high-concentration methane gas is provided between the digestion gas separation membrane device and the fuel cell, and the methane gas separation membrane device is obtained from the permeation side of the digestion gas separation membrane device. The fuel cell facility according to claim 1, further comprising a carbon dioxide gas circulation flow path for returning a part of the carbon dioxide concentrated gas to the digestion tank for circulation.
に、メタン濃縮ガスを希薄メタンガスおよび高濃度メタ
ンガスに分離するメタンガス分離膜装置を設け、メタン
ガス分離膜装置の透過側より得られた希薄メタンガスの
一部を、消化槽へ戻して循環させる希薄メタンガス循環
流路を設けた請求項1記載の燃料電池設備。3. A methane gas separation membrane device for separating the methane-enriched gas into a lean methane gas and a high-concentration methane gas is provided between the digestion gas separation membrane device and the fuel cell, and the lean gas obtained from the permeation side of the methane gas separation membrane device is provided. The fuel cell facility according to claim 1, wherein a dilute methane gas circulation channel is provided for returning a part of the methane gas to the digestion tank for circulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7275122A JPH0997622A (en) | 1995-09-29 | 1995-09-29 | Fuel cell facilities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7275122A JPH0997622A (en) | 1995-09-29 | 1995-09-29 | Fuel cell facilities |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0997622A true JPH0997622A (en) | 1997-04-08 |
Family
ID=17551021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7275122A Withdrawn JPH0997622A (en) | 1995-09-29 | 1995-09-29 | Fuel cell facilities |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0997622A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067895A (en) * | 1998-08-19 | 2000-03-03 | Toshiba Corp | Fuel cell power generating system |
JP2003089795A (en) * | 2001-09-18 | 2003-03-28 | Sumitomo Heavy Ind Ltd | Concentrated gas production device and concentrated gas production method |
JP2004303482A (en) * | 2003-03-28 | 2004-10-28 | Mitsui Eng & Shipbuild Co Ltd | Fuel cell power generation process and fuel cell system |
JP2007254572A (en) * | 2006-03-23 | 2007-10-04 | Ngk Insulators Ltd | Methane concentration system and its operation method |
JP2009066513A (en) * | 2007-09-12 | 2009-04-02 | Obihiro Univ Of Agriculture & Veterinary Medicine | Methane fermentation method |
JP2013209497A (en) * | 2012-03-30 | 2013-10-10 | Metawater Co Ltd | Methane fermentation gas purification system and methane fermentation gas purification method |
KR101441492B1 (en) * | 2012-09-12 | 2014-09-17 | 두산중공업 주식회사 | Biogas fuel cells system and gas supplying method thereto |
EP2830136A1 (en) * | 2013-07-23 | 2015-01-28 | Doosan Heavy Industries & Construction Co. Ltd. | Fuel cell, and generation system and method using the same |
JP2015213881A (en) * | 2014-05-12 | 2015-12-03 | 三菱化工機株式会社 | Sludge digestion treatment system |
JP2017153292A (en) * | 2016-02-25 | 2017-08-31 | 株式会社東芝 | Digestion gas power generation system |
-
1995
- 1995-09-29 JP JP7275122A patent/JPH0997622A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067895A (en) * | 1998-08-19 | 2000-03-03 | Toshiba Corp | Fuel cell power generating system |
JP2003089795A (en) * | 2001-09-18 | 2003-03-28 | Sumitomo Heavy Ind Ltd | Concentrated gas production device and concentrated gas production method |
JP2004303482A (en) * | 2003-03-28 | 2004-10-28 | Mitsui Eng & Shipbuild Co Ltd | Fuel cell power generation process and fuel cell system |
JP4605992B2 (en) * | 2003-03-28 | 2011-01-05 | 三井造船株式会社 | Fuel cell power generation process and fuel cell system |
JP2007254572A (en) * | 2006-03-23 | 2007-10-04 | Ngk Insulators Ltd | Methane concentration system and its operation method |
JP2009066513A (en) * | 2007-09-12 | 2009-04-02 | Obihiro Univ Of Agriculture & Veterinary Medicine | Methane fermentation method |
JP2013209497A (en) * | 2012-03-30 | 2013-10-10 | Metawater Co Ltd | Methane fermentation gas purification system and methane fermentation gas purification method |
KR101441492B1 (en) * | 2012-09-12 | 2014-09-17 | 두산중공업 주식회사 | Biogas fuel cells system and gas supplying method thereto |
EP2830136A1 (en) * | 2013-07-23 | 2015-01-28 | Doosan Heavy Industries & Construction Co. Ltd. | Fuel cell, and generation system and method using the same |
KR20150011688A (en) * | 2013-07-23 | 2015-02-02 | 두산중공업 주식회사 | Fuel cell, generation system and method using the same |
US10079399B2 (en) | 2013-07-23 | 2018-09-18 | Doosan Heavy Industries & Construction Co., Ltd. | Fuel, cell, and generation system and method using the same |
JP2015213881A (en) * | 2014-05-12 | 2015-12-03 | 三菱化工機株式会社 | Sludge digestion treatment system |
JP2017153292A (en) * | 2016-02-25 | 2017-08-31 | 株式会社東芝 | Digestion gas power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4010811B2 (en) | Fuel cell power generation method and fuel cell power generation system | |
RU2661930C2 (en) | Method and system for producing carbon dioxide, purified hydrogen and electricity from reformed process gas feed | |
JP2674850B2 (en) | Ammonia production method | |
EP0798798A3 (en) | Method of and apparatus for refroming fuel and fuel cell system with fuel-reforming apparatus incorporated therein | |
Turco et al. | Treatment of biogas for feeding high temperature fuel cells: removal of harmful compounds by adsorption processes | |
JP2002275482A (en) | Method for power generation by digested gas and power generation system | |
JP3938223B2 (en) | Digestion gas fuel cell equipment | |
JP2002319428A (en) | Molten carbonate fuel cell power generating device | |
JPH0997622A (en) | Fuel cell facilities | |
JP2000501227A (en) | Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment | |
JPH01294367A (en) | Fuel cell system | |
JP2001023677A (en) | Fuel cell power generating method and fuel cell power generating system | |
JP2001000949A (en) | Digestion gas storing apparatus | |
JP3891544B2 (en) | Hydrogen fermentation bioreactor with built-in fuel cell | |
JPH05129029A (en) | Power generation system formed by using fuel cell | |
JP2004171802A (en) | Fuel cell system | |
JP2003135088A (en) | Method for producing hydrogen and generating electric power by using microorganism and apparatus therefor | |
JP4124636B2 (en) | Fuel cell / methane fermentation cycle system | |
JPS63126173A (en) | Power generating system of fused carbonate type fuel cell | |
JP2003221204A (en) | Method of driving for power generation and others by digestion gas and system for the same | |
CN219160348U (en) | Low-carbon emission system combining electrochemical technology and coal-fired ammonia mixing technology | |
JPH03236166A (en) | Power generating method for molten carbonate fuel cell | |
JP2004199878A (en) | Fuel cell power generating system | |
JPH0821412B2 (en) | Fuel cell power generation method | |
JP2003178790A (en) | Fuel cell power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021203 |