JPH0997419A - Magnetic disk, production of magnetic disk and magnetic recorder - Google Patents
Magnetic disk, production of magnetic disk and magnetic recorderInfo
- Publication number
- JPH0997419A JPH0997419A JP19184696A JP19184696A JPH0997419A JP H0997419 A JPH0997419 A JP H0997419A JP 19184696 A JP19184696 A JP 19184696A JP 19184696 A JP19184696 A JP 19184696A JP H0997419 A JPH0997419 A JP H0997419A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording
- guard band
- disk
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Recording Or Reproducing By Magnetic Means (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Magnetic Record Carriers (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主に計算機周辺記
憶装置に使用される磁気ディスク、磁気ディスクの製造
方法、及び磁気記録装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk mainly used for a computer peripheral storage device, a method for manufacturing the magnetic disk, and a magnetic recording device.
【0002】[0002]
【従来の技術】磁気ディスクは、高面記録密度、高デー
タ転送速度、高速アクセス、高信頼性、低価格等の特長
を有しており、計算機周辺記憶装置の主流をなしてい
る。過去10年間に磁気ディスクの面記録密度は数10
倍の伸びを示しており、今後もその面記録密度の向上に
期待が持たれている。2. Description of the Related Art Magnetic disks have the characteristics of high areal recording density, high data transfer rate, high speed access, high reliability and low price, and are the mainstream of computer peripheral storage devices. The areal recording density of the magnetic disk is several tens in the past 10 years.
It has doubled its growth, and there are hopes for further improvements in its areal recording density.
【0003】磁気記録は、磁気ヘッドから発生する信号
磁界によって磁気記録層中に記録磁区列を形成して記録
を行い、この記録磁区列から記録層外部に漏洩する信号
磁界を磁気ヘッドによって再生する事を原理とする。面
記録密度を向上する上では、磁気記録層中に形成する記
録磁区をいかに微細化できるか、微細な記録磁区から漏
洩する微小磁界をいかに高感度に再生できるかがポイン
トである。In magnetic recording, a recording magnetic domain is formed in a magnetic recording layer by a signal magnetic field generated from a magnetic head for recording, and a signal magnetic field leaking from the recording magnetic domain to the outside of the recording layer is reproduced by the magnetic head. The thing is the principle. In order to improve the areal recording density, the point is how the recording magnetic domains formed in the magnetic recording layer can be miniaturized, and the minute magnetic field leaking from the minute recording magnetic domains can be reproduced with high sensitivity.
【0004】記録磁区を微細化する上では、第1に、磁
気記録層に最近接する磁気ヘッド先端部を微細化するこ
と、より具体的には、記録(再生)磁気ギャップを狭く
することと、記録(再生)磁極トラック幅を狭くするこ
とにあり、第2に、磁気ヘッド先端部と磁気記録層との
間隙(スペーシング)を狭くすること、第3に、磁気ヘ
ッド先端部から空間的に発散する磁界による記録磁区端
部のにじみ(フリンジング)を極力低減すること、第4
に、磁気ヘッド先端部を磁気記録層の所定の記録再生位
置にできるだけ高精度で位置決めすること、が重要であ
る。To miniaturize the recording magnetic domain, firstly, the tip of the magnetic head closest to the magnetic recording layer should be miniaturized, more specifically, the recording (reproducing) magnetic gap should be narrowed. To narrow the recording (reproducing) magnetic pole track width. Secondly, to narrow the gap (spacing) between the magnetic head tip and the magnetic recording layer. Thirdly, spatially from the magnetic head tip. To minimize fringing of the edges of the recording domain due to the diverging magnetic field;
In addition, it is important to position the tip of the magnetic head at a predetermined recording / reproducing position on the magnetic recording layer with the highest possible accuracy.
【0005】また、微細記録磁区からの微小磁界を高感
度再生する上では再生原理的なブレークスルーが必要と
されている。近年、従来の誘導再生原理とは異なる磁気
抵抗効果を利用する再生原理が提案され実証されてきて
おり、さらに巨大磁気抵抗効果材料の研究開発が進めら
れていることから、今後の微小磁界再生の主流をなすも
のとみなされている。Further, in reproducing a minute magnetic field from a minute recording magnetic domain with high sensitivity, a breakthrough in reproducing principle is required. In recent years, a reproduction principle utilizing a magnetoresistive effect different from the conventional induction reproduction principle has been proposed and demonstrated, and further research and development of giant magnetoresistive effect materials have been promoted. It is considered to be mainstream.
【0006】上記した記録再生密度の高密度化への技術
ポイントは、現行の磁気記録で採用されている長手媒体
を用いたヘッド浮上形の記録再生形態(誘導再生型)で
も、垂直媒体を用いたヘッド接触形の記録再生形態(磁
気抵抗再生型)でも、共通する事項である。The technical point for increasing the recording / reproducing density is to use the vertical medium even in the head flying type recording / reproducing mode (induction reproducing type) using the longitudinal medium adopted in the current magnetic recording. The head contact type recording / reproducing mode (magnetoresistive reproducing type) is also a common matter.
【0007】従来からフリンジングを低減化する方策と
して、狭スペーシング化によるヘッドからのフリンジ磁
界の低減と、記録層の磁化転移幅の低減化と、をあげる
ことができる。しかしながら従来の磁気ディスクにおい
ては、原理的にフリンジングを無くすのは不可能である
ため、あるフリンジ値を見込んだ余裕のあるトラック幅
とする必要があり、狭トラック化の阻害要因となってい
る。Conventionally, as measures for reducing fringing, it is possible to reduce the fringe magnetic field from the head by narrowing the spacing and to reduce the magnetic transition width of the recording layer. However, in the conventional magnetic disk, it is impossible to eliminate fringes in principle, so it is necessary to make the track width to have a certain fringe value, which is an obstacle to narrowing the track. .
【0008】また、ヘッドの位置決めについては、磁気
記録ディスクと磁気ヘッドをドライブに設置した後で、
サーボライターを用いて記録層中に磁気的なサーボ信号
とアドレス信号を記録し、実動作中にこのサーボ情報を
用いて行っているのが現状である。しかしながら、磁気
記録層が単純に連続する平坦面である限り、トラッキン
グ精度はヘッドの機械的精度に制限されるので、これも
狭トラック化の阻害要因となっている。Regarding the positioning of the head, after installing the magnetic recording disk and the magnetic head in the drive,
Under the present circumstances, a servo writer is used to record a magnetic servo signal and an address signal in the recording layer, and this servo information is used during actual operation. However, as long as the magnetic recording layer is simply a continuous flat surface, the tracking accuracy is limited to the mechanical accuracy of the head, which is also an obstacle to narrowing the track.
【0009】高精度トラッキング化の一つのアプローチ
は、特開平2−201730号公報に開示されるディス
クリートトラックである。これは、予め磁気ディスク基
板に物理的な凹凸を設けておき、この上に磁気記録層を
形成して、凹部からの信号と凸部からの信号の違いを利
用してトラックサーボを行うものである。このようなP
ERM(Pre Embossed Rigid Magnetic )ディ
スクでは、トラッキング精度は基板に設けられる物理的
な凹凸の精度で決定され、凹凸は光ディスク基板プロセ
スにしたがって設ければ、変動量が0.01μmオーダ
程度の高精度化を実現することができる。One approach for achieving high precision tracking is the discrete track disclosed in Japanese Patent Laid-Open No. 2-201730. This is one in which physical unevenness is provided on the magnetic disk substrate in advance, a magnetic recording layer is formed on this, and track servo is performed by utilizing the difference between the signal from the concave portion and the signal from the convex portion. is there. Such P
In an ERM (Pre Embossed Rigid Magnetic) disk, the tracking accuracy is determined by the accuracy of the physical unevenness provided on the substrate, and if the unevenness is provided according to the optical disk substrate process, the fluctuation amount can be increased to the order of 0.01 μm with high accuracy. Can be realized.
【0010】しかしながら、上記のPERMディスクに
おいてはガードバンドをなす部材が軟質のレジストであ
るために、レジストのみが選択的に摩耗しやすい。この
摩耗を防ぐためにディスク表面を硬質の保護膜で被覆す
る必要があり、狭スペーシング化しにくいことから、総
合的には高精度化技術とは言えない。However, in the above-mentioned PERM disk, since the member forming the guard band is a soft resist, only the resist is apt to be selectively worn. In order to prevent this abrasion, it is necessary to coat the disk surface with a hard protective film, and it is difficult to reduce the spacing.
【0011】特開平2−189715号公報には、基板
上にレジストに代表される有機系の厚膜を設けて、それ
に凹凸状スタンパーを押し当てる等して有機膜上面に物
理的な凹凸を設け、凹部中に磁性体薄膜を埋め込み有機
膜と磁性体膜が実質的に平坦面をなす磁気記録媒体が開
示されている。この磁気記録媒体では磁性体膜の下部は
有機膜が存在するために、磁性体膜下部に界面無効層が
厚く形成され、所定の特性の磁性体膜を得るには磁性体
膜の厚さを厚くせざるをえず、高分解記録が困難である
ことから、やはり高密度化技術とは言えない。さらに、
この従来技術においては記録磁性体膜下部に高透磁率膜
を設けることができないので、将来の高密度記録技術と
して期待されている垂直磁気記録への適用が困難であ
る。In Japanese Patent Laid-Open No. 2-189715, an organic thick film typified by a resist is provided on a substrate, and a concave-convex stamper is pressed against it to form physical unevenness on the upper surface of the organic film. There is disclosed a magnetic recording medium in which a magnetic thin film is embedded in a recess and the organic film and the magnetic film have a substantially flat surface. In this magnetic recording medium, since the organic film exists below the magnetic film, the interface ineffective layer is formed thickly below the magnetic film, and the thickness of the magnetic film must be set to obtain a magnetic film having predetermined characteristics. Since it must be made thicker and high resolution recording is difficult, it cannot be said to be a high density technology. further,
In this conventional technique, since a high magnetic permeability film cannot be provided under the recording magnetic film, it is difficult to apply it to perpendicular magnetic recording, which is expected as a future high density recording technique.
【0012】また、特願平5−205257号公報に
は、磁気記録層の記録トラック間領域にイオン注入もし
くはレーザ照射する等して記録機能を失わせてガードバ
ンドとなす技術が提案されている。しかしながら、この
従来技術ではガードバンドに記録層の変質部を使用して
いるため、均質なガードバンドを形成することが困難で
あり、また、記録トラックとガードバンドとの境界が不
明確になるといった問題点がある。Further, Japanese Patent Application No. 5-205257 proposes a technique in which the recording function is lost by forming a guard band by ion implantation or laser irradiation in a region between recording tracks of a magnetic recording layer. . However, in this conventional technique, since the altered portion of the recording layer is used for the guard band, it is difficult to form a uniform guard band, and the boundary between the recording track and the guard band becomes unclear. There is a problem.
【0013】ところで、「磁気抵抗効果」とは、外部磁
界により電気抵抗が変化する効果であり、(a)再生用
の磁性体薄膜の電気抵抗値が電流の向きと再生磁性体の
磁化の向きの相対的角度に依存して変化する現象(AM
R)、(b)非磁性層を介して積層された磁性層間の磁
化の相対角度で抵抗が変化する現象(GMR)などがあ
る。これは従来の誘導再生に比較すると、再生感度が非
常に高く、再生信号強度がヘッド走行速度に依存しない
という特長がある。By the way, the "magnetoresistance effect" is an effect in which the electric resistance is changed by an external magnetic field, and (a) the electric resistance value of the magnetic thin film for reproduction is the direction of current and the direction of magnetization of the reproducing magnetic body. Phenomenon that changes depending on the relative angle of (AM
R), (b) There is a phenomenon (GMR) in which the resistance changes depending on the relative angle of magnetization between the magnetic layers laminated via the non-magnetic layer. This has a feature that the reproduction sensitivity is very high and the reproduction signal strength does not depend on the head traveling speed as compared with the conventional induction reproduction.
【0014】磁気抵抗ヘッドに用いられる磁性体の構造
としては、異方性磁気抵抗効果を利用する、例えばNi
Fe単層膜、二つの磁性体薄膜で導電性非磁性膜を挟み
込んだスピンバルブ構造、例えばCoFe/Cu/Co
Fe三層膜、導電性非磁性部材中に磁性粒子を分散させ
たグラニュラー構造、例えばNiFe/Ag、多数の磁
性体薄膜と多数の導電性非磁性薄膜を交互に積層した磁
性人工格子構造、例えば(Co/Cu)n膜、の4種類
が上げられる。The structure of the magnetic body used in the magnetoresistive head utilizes the anisotropic magnetoresistive effect, for example, Ni.
Fe single layer film, spin valve structure in which a conductive non-magnetic film is sandwiched between two magnetic thin films, for example, CoFe / Cu / Co
Fe three-layer film, granular structure in which magnetic particles are dispersed in a conductive non-magnetic member, for example, NiFe / Ag, magnetic artificial lattice structure in which a large number of magnetic thin films and a large number of conductive non-magnetic thin films are alternately laminated, for example, There are four types of (Co / Cu) n films.
【0015】これらのうち単層膜構造のものは素子の作
成が比較的簡単なことから実用レベルにあるが、抵抗変
化率が高々2%程度にすぎないので、今後さらに記録磁
区の微細化すなわち再生磁界の微小化が進展する上で
は、再生感度的に不十分とされている。Of these, the one having a single-layer film structure is at a practical level because it is relatively easy to manufacture an element, but the resistance change rate is only about 2% at most, and hence the recording domain is further miniaturized in the future. It is said that the reproduction sensitivity is insufficient for the progress of miniaturization of the reproduction magnetic field.
【0016】また、グラニュラー構造と磁性人工格子構
造は、数10%以上の抵抗変化率を呈し、将来的に極め
て期待度が高いが、大きな抵抗変化を得る上では数kO
e〜数10kOeもの大きな磁界を要するため、微小な
媒体磁界の再生は現状では困難とされている。Further, the granular structure and the magnetic artificial lattice structure exhibit a resistance change rate of several tens of percent or more and are highly expected in the future, but in order to obtain a large resistance change, it is several kO.
Since a magnetic field as large as e to several tens of kOe is required, it is currently difficult to reproduce a minute medium magnetic field.
【0017】そこで、数百Oe未満の比較的小さな磁界
変化で10%程度の実用上十分な抵抗変化率を呈するス
ピンバルブ構造が注目を集め、単層膜構造の次の再生素
子として最もその実用化が期待されている。スピンバル
ブ構造の再生原理は、二つの磁性体薄膜の磁化の相対的
な向きによって電気抵抗率が変化するところにあり、実
際には一つの磁性体薄膜の磁化の向きを固定しておき、
もう一方の磁性体薄膜の磁化の向きを媒体磁界の向きに
追随させて二つの磁性体薄膜の磁化の相対的な向き関係
を変化させて用いる。片側の磁性体薄膜の磁化の固定の
ためには、保磁力の高い磁性体膜を磁化固着膜としてこ
の膜に交換結合し、磁化固定膜とする。もう片側の磁性
体薄膜はその磁化が媒体磁界に追随して回転するので、
以下これを「磁化回転膜」と略記する。媒体磁界の無い
状態でのこの磁化回転膜の磁化の向きは磁化固定膜の磁
化の向きと直交状態とすることが、再生信号の対称性を
確保する上では重要であり、媒体磁界の向きとの関係も
含めると、磁化固定膜の磁化方向は媒体磁界と同じ向
き、すなわち媒体面に垂直な方向に設定され、一方の磁
化回転膜の磁化方向は媒体磁界が無い状態では媒体のト
ラック幅方向に向いていることが好ましい。Therefore, a spin valve structure which exhibits a practically sufficient resistance change rate of about 10% with a comparatively small magnetic field change of less than several hundred Oe has attracted attention and is most practically used as the next reproducing element having a single-layer film structure. Is expected. The principle of reproduction of the spin valve structure is that the electrical resistivity changes depending on the relative directions of the magnetizations of the two magnetic thin films. In reality, the magnetization direction of one magnetic thin film is fixed,
The orientation of the magnetization of the other magnetic thin film is made to follow the orientation of the magnetic field of the medium, and the relative orientation relationship of the magnetizations of the two magnetic thin films is changed and used. In order to fix the magnetization of the magnetic thin film on one side, a magnetic film having a high coercive force is exchange-coupled to this film as a fixed magnetization film to form a fixed magnetization film. Since the magnetization of the magnetic thin film on the other side rotates following the medium magnetic field,
Hereinafter, this is abbreviated as "magnetization rotating film". It is important to ensure the symmetry of the reproduction signal that the magnetization direction of the magnetization rotation film in the state without the medium magnetic field is orthogonal to the magnetization direction of the magnetization fixed film. Including the relationship of, the magnetization direction of the magnetization fixed film is set in the same direction as the medium magnetic field, that is, the direction perpendicular to the medium surface, and the magnetization direction of one magnetization rotation film is the track width direction of the medium in the absence of the medium magnetic field. Is preferred.
【0018】上記した磁化固定膜と磁化回転膜の磁化方
向の設定には、幾つかの方式が採用されている。磁化固
定膜の磁化方向の設定には、磁化固着膜の利用が一般的
であり、一方の磁化回転膜の磁化方向の設定には次の2
つの方法が提案されている。第1にセンス電流によって
発生する磁界を利用する方法があり、第2に磁化回転膜
にも適度なバイアス磁界を印加するためのハード膜を交
換結合もしくは静磁結合する方法がある。Several methods are used to set the magnetization directions of the above-mentioned magnetization fixed film and magnetization rotation film. The magnetization pinned film is generally used to set the magnetization direction of the magnetization pinned film, and the following two steps are used to set the magnetization direction of one of the magnetization rotation films.
Two methods have been proposed. Firstly, there is a method of utilizing a magnetic field generated by a sense current, and secondly there is a method of exchange-coupling or magnetostatic-coupling a hard film for applying an appropriate bias magnetic field to the magnetization rotation film.
【0019】[0019]
【発明が解決しようとする課題】しかしながら、前者の
センス電流を用いる方法では、センス電流値が磁化回転
膜へのバイアス磁界によって規定されるので、大電流化
による大出力化が図れないこと、磁化回転膜へのバイア
ス磁界は磁化固定膜に対してはその磁化方向を逆転させ
る向きに作用するので、動作上の信頼性が確保しにくい
こと等の問題点がある。However, in the former method using the sense current, since the sense current value is defined by the bias magnetic field to the magnetization rotation film, it is impossible to increase the output by increasing the current. The bias magnetic field applied to the rotating film acts on the magnetization fixed film in the direction of reversing the magnetization direction thereof, so that it is difficult to ensure operational reliability.
【0020】一方、後者のハード膜バイアスを用いる方
法では、ヘッドの膜構造が複雑化して製造プロセス工程
数が増加し、安価にヘッドを提供することが困難である
こと等の問題点がある。On the other hand, the latter method using a hard film bias has problems that the film structure of the head is complicated, the number of manufacturing process steps is increased, and it is difficult to provide the head at low cost.
【0021】以上、磁気抵抗効果素子を使用する際のバ
イアスの重要性と具体的な手段について、スピンバルブ
構造の例をとって説明したが、他のいずれの構造の磁気
抵抗効果膜を使用する場合においても、実用上は磁化の
回転を媒体磁界の向きに対して対称にすることが、波形
歪みを防止する上で必要であり、磁気抵抗効果膜に対し
て何等かの手段で磁界をバイアスさせて用いる。The importance of the bias and the specific means in using the magnetoresistive effect element have been described above by taking an example of the spin valve structure, but any other magnetoresistive effect film is used. Even in such a case, it is practically necessary to make the rotation of magnetization symmetrical with respect to the direction of the magnetic field of the medium in order to prevent waveform distortion, and the magnetic field is biased to the magnetoresistive film by some means. Let it be used.
【0022】本発明の目的は、記録磁区のサイドフリン
ジを低減することができ、磁気ヘッドの位置決め精度を
狭スペーシング時にも向上させることができる磁気ディ
スク及びその製造方法を提供することにある。It is an object of the present invention to provide a magnetic disk capable of reducing the side fringe of the recording magnetic domain and improving the positioning accuracy of the magnetic head even during narrow spacing, and a method for manufacturing the same.
【0023】また、本発明の目的は、記録磁性体膜の膜
厚を高分解能記録可能な膜厚に設定することができ、将
来の垂直磁気記録もしくは接触記録にも適用することが
でき、とくに磁気抵抗効果型記録ヘッドに適する高密度
記録可能な磁気ディスク及びその製造方法を提供するこ
とにある。Further, the object of the present invention is to set the film thickness of the recording magnetic film to a film thickness capable of high resolution recording, and to be applicable to future perpendicular magnetic recording or contact recording. It is an object of the present invention to provide a magnetic disk capable of high density recording suitable for a magnetoresistive recording head and a method for manufacturing the same.
【0024】さらに、本発明の目的は、磁気抵抗効果型
記録再生ヘッドに大きなセンス電流を流すことができ、
ヘッドの動作信頼性を確保することができ、かつ安価に
ヘッドを製造できる磁気ディスク及びその製造方法を提
供することにある。Further, an object of the present invention is to allow a large sense current to flow in the magnetoresistive recording / reproducing head,
An object of the present invention is to provide a magnetic disk capable of ensuring the operational reliability of the head and inexpensively manufacturing the head, and a manufacturing method thereof.
【0025】さらに、本発明の目的は、サイドフリンジ
が少なく、かつトラッキングサーボ特性の安定した狭ス
ペーシング記録または接触記録の動作を可能とする磁気
ディスク及びその製造方法を提供することにある。A further object of the present invention is to provide a magnetic disk which has a small side fringe and enables stable narrow spacing recording or contact recording operation with stable tracking servo characteristics, and a method of manufacturing the same.
【0026】さらに、本発明の目的は、大容量で高密度
記録可能な磁気記録装置を提供することにある。A further object of the present invention is to provide a magnetic recording device capable of high density recording with a large capacity.
【0027】本発明に係る磁気ディスクは、基板と、こ
の基板上に設けられ、情報を磁気的に記録再生する磁性
部材でつくられた記録トラック部と、互いに隣接する前
記記録トラック部間にトラック方向に実質的に連続する
ように設けられ、前記磁性部材よりも硬く、かつ非磁性
の材料でつくられたガードバンド部材と、を具備し、上
記ガードバンド部材の下方領域には、上記磁性部材が存
在しないか、又は、上記記録トラック部をなす磁性部材
の厚みとは異なる厚みの磁性部材が設けられていること
を特徴とする。The magnetic disk according to the present invention comprises a substrate, a recording track portion provided on the substrate and made of a magnetic member for magnetically recording and reproducing information, and a track between the recording track portions adjacent to each other. A guard band member which is provided so as to be substantially continuous in a direction, and which is harder than the magnetic member and made of a non-magnetic material, and the magnetic member is provided in a lower region of the guard band member. Is not present, or a magnetic member having a thickness different from that of the magnetic member forming the recording track portion is provided.
【0028】本発明に係る磁気ディスクの製造方法は、
(a)実質的に平坦な表面をもつ基板上に磁性材料から
なる磁性層を形成する工程と、(b)この磁性層の一部
を除去してトラック方向に実質的に連続するように互い
に隣接する記録トラック部を規定するガードバンドスペ
ースをパターン形成する工程と、(c)このガードバン
ドスペースを、前記磁性層をなす磁性材料よりも硬く、
かつ非磁性の材料からなるガードバンド部材で満たす工
程と、(d)このガードバンド部材及び前記磁性層の表
面がそれぞれ実質的に平坦になるように加工する工程
と、を備えることを特徴とする。The method of manufacturing a magnetic disk according to the present invention comprises:
(A) a step of forming a magnetic layer made of a magnetic material on a substrate having a substantially flat surface; and (b) removing a part of the magnetic layer so that they are substantially continuous in the track direction. Patterning a guard band space that defines adjacent recording track portions; and (c) making the guard band space harder than the magnetic material that forms the magnetic layer,
And a step of filling with a guard band member made of a non-magnetic material, and (d) a step of processing so that the surfaces of the guard band member and the magnetic layer are substantially flat. .
【0029】上記ガードバンド部材は、ディスク表面に
あらわれてさえいればよく、その厚みは磁性部材の厚み
と同じであってもよいし、これより厚くてもよいし、こ
れより薄くてもよい。The guard band member has only to appear on the surface of the disk, and its thickness may be the same as, thicker than, or thinner than the thickness of the magnetic member.
【0030】また、ガードバンド部材は、非磁性の硬質
材料でできていることが望ましく、SiO2 ,Al2 O
3 ,TiO2 のような酸化物、Si3 N4 ,AlN,T
iNのような窒化物、TiCのような炭化物、BNのよ
うな硼化物、あるいはC系,CH系,CF系のうちいず
れかの重合化合物でできていることが好ましい。ガード
バンド部材が非磁性であるため、サイドフリンジの問題
はほぼ完全に解決される。また、ガードバンド部材が磁
性部材より硬質であるため、コンタクトスタートストッ
プ(CSS)耐性に優れ、さらには将来の接触記録方式
においても耐久性に優れたものとなる。The guard band member is preferably made of a non-magnetic hard material, such as SiO 2 and Al 2 O.
3 , oxides such as TiO 2 , Si 3 N 4 , AlN, T
It is preferably made of a nitride such as iN, a carbide such as TiC, a boride such as BN, or a polymer compound of any one of C type, CH type, and CF type. Since the guard band member is non-magnetic, the side fringe problem is almost completely solved. Further, since the guard band member is harder than the magnetic member, it has excellent contact start / stop (CSS) resistance, and further has excellent durability in future contact recording systems.
【0031】本発明の磁気ディスクにおいては、磁性部
材そのものは微細な凹凸状の物理的な形状変化をなして
いる。この磁性部材の凹部に、ガードバンド部材が磁性
部材の凸部表面まで埋め込まれ、ディスク表面が実質的
に平坦面をなすことが望ましい。磁性部材の凹凸形状は
重要であり、サイドフリンジングを低減し、かつ高精度
のトラッキングを行なう上では、記録トラック方向に実
質的に連続して設けられることが好ましい。ガードバン
ド部材がこのような形態を採ることで、サイドフリンジ
ングの問題は本質的に解決できると同時に、光ディスク
に類似の高精度トラッキングが可能となる。In the magnetic disk of the present invention, the magnetic member itself has a physical shape change of fine irregularities. It is desirable that the guard band member is embedded in the concave portion of the magnetic member up to the surface of the convex portion of the magnetic member so that the disk surface is substantially flat. The concavo-convex shape of the magnetic member is important, and in order to reduce side fringing and perform highly accurate tracking, it is preferable that the magnetic member is provided substantially continuously in the recording track direction. By adopting such a shape of the guard band member, the problem of side fringing can be essentially solved, and at the same time, high-precision tracking similar to that of an optical disk becomes possible.
【0032】ここで、「実質的に連続」の意味は、ガー
ドバンド部材は必ずしもトラック一周に亘って連続して
いる必要は無いが、記録磁区列形成部分もしくは必要が
あれば設けられる磁気的サーボ情報記録部分に亘ってト
ラック方向に連続してさえいればよい。より好ましい凹
凸形状は、前記したトラック方向に実質的に連続する形
状に加えて、トラック方向に略連続する形状以外に必要
があれば設けられるアドレス信号が記録磁性層の形状変
化として情報記録されている形態である。このような形
態を採れば、従来から実施されているサーボライティン
グの必要性は全く無くなる。Here, the meaning of "substantially continuous" means that the guard band member does not necessarily need to be continuous over the entire circumference of the track, but it is a recording magnetic domain array forming portion or a magnetic servo provided if necessary. It only has to be continuous in the track direction over the information recording portion. In addition to the shape which is substantially continuous in the track direction described above, a more preferable uneven shape is that, in addition to the shape which is substantially continuous in the track direction, an address signal provided if necessary is information recorded as a shape change of the recording magnetic layer. It is in the form of. By adopting such a form, there is no need for servo writing that has been conventionally performed.
【0033】また、高密度記録上重要な本発明の効果と
して、記録分解能の向上すなわち線記録密度の向上もあ
げることができる。これは記録磁性部材を非磁性ガード
バンド部材で記録トラック部ごとに分離することによっ
て、磁性部材の形状磁気異方性が記録トラック方向に付
与され、磁化転移部における再生信号の揺らぎが小さく
なることによっている。Further, as an effect of the present invention which is important for high density recording, improvement of recording resolution, that is, improvement of linear recording density can be mentioned. This is because by separating the recording magnetic member for each recording track portion by the non-magnetic guard band member, the shape magnetic anisotropy of the magnetic member is given in the recording track direction, and the fluctuation of the reproduction signal at the magnetization transition portion is reduced. Depends on.
【0034】記録磁性部材の凹凸部に埋め込まれている
ガードバンド部材と磁性部材面を実質的に平坦面とすれ
ば、記録層の上に耐摩耗性保護層を設けなくてもよくな
る。そのような場合はスペーシング損失を低減する上で
は最も好ましい形態である。磁気ヘッドをディスクの記
録面に接触走行させる場合は、ガードバンド部材は磁気
ヘッドを案内するガイドレールの役割をもつ。なお、接
触記録方式では記録磁性部材が露出していると十分な信
頼性が得られない場合には、保護層を設けてもよい。保
護層はガードバンド部材と同じ材質からなる硬質非磁性
部材であることが望ましい。If the surfaces of the guard band member and the magnetic member embedded in the concave and convex portions of the recording magnetic member are made substantially flat, the abrasion resistant protective layer need not be provided on the recording layer. In such a case, it is the most preferable form in reducing the spacing loss. When the magnetic head is brought into contact with the recording surface of the disk, the guard band member serves as a guide rail for guiding the magnetic head. In the contact recording method, a protective layer may be provided if sufficient reliability cannot be obtained when the recording magnetic member is exposed. The protective layer is preferably a hard non-magnetic member made of the same material as the guard band member.
【0035】さらに、ガードバンド部材の電気抵抗は、
磁性部材の電気抵抗よりも大きいほうが望ましい。磁気
抵抗効果方式の記録再生を考慮する場合に、ガードバン
ド部材は記録磁性部材に比べて電気的に絶縁性を有する
ことが好ましく、比抵抗値として少なくとも記録磁性部
材よりも一桁程度高い値をもつことが好ましい。このよ
うにすれば、横通電方式の磁気抵抗ヘッドを用いて接触
再生させた場合においても、電流が媒体に漏洩して再生
出力を低下させてしまうといった問題をも解決すること
ができる。Further, the electric resistance of the guard band member is
It is desirable that it is larger than the electric resistance of the magnetic member. When considering the recording / reproducing of the magnetoresistive effect method, it is preferable that the guard band member has electrical insulation as compared with the recording magnetic member, and the specific resistance value should be at least about one digit higher than that of the recording magnetic member. It is preferable to have. By doing so, it is possible to solve the problem that the current is leaked to the medium and the reproduction output is lowered even when the contact reproduction is performed using the lateral conduction type magnetoresistive head.
【0036】磁性部材としては、通常の磁気ディスクに
用いられているCo系材料、例えばCoNiPt,Co
Pt,CoPtCr,CoTaCr,CoNiCr,将
来の垂直磁気記録材料として期待されているCoCr,
CoPtO,それ自体が硬質であることから接触記録材
料として研究されているBaフェライト系、Fe系もし
くはCo系粒子を硬質マトリクス中に分散させた材料系
等を用いることができる。As the magnetic member, a Co-based material used for ordinary magnetic disks, such as CoNiPt or Co, is used.
Pt, CoPtCr, CoTaCr, CoNiCr, CoCr expected as a future perpendicular magnetic recording material,
CoPtO, a material system in which Ba ferrite-based, Fe-based, or Co-based particles are dispersed in a hard matrix, which has been studied as a contact recording material because it is hard itself, can be used.
【0037】なお、記録磁性部材の下地には基板が直接
配置されてもよいが、好ましくは面内媒体に対しては配
向制御膜としてNiP,Cr等、垂直媒体に対しては閉
磁路形成膜として高透磁率膜、例えばNiFe膜等が形
成されているのがよい。基板の材料は特に限定されない
が、通常はアルミニウムやガラスを用いる。さらに、耐
薬品性に優れるガラス基板を用いることが好ましい。Although the substrate may be directly disposed on the base of the recording magnetic member, it is preferable to use NiP, Cr or the like as an orientation control film for the in-plane medium and a closed magnetic circuit forming film for the vertical medium. As a high magnetic permeability film, for example, a NiFe film or the like is preferably formed. The material of the substrate is not particularly limited, but usually aluminum or glass is used. Furthermore, it is preferable to use a glass substrate having excellent chemical resistance.
【0038】本発明に係る磁気ディスクは、基板と、こ
の基板上に設けられ情報を磁気的に記録再生する磁性部
材でつくられた記録トラック部と、互いに隣接する前記
記録トラック部間にトラック方向に実質的に連続するよ
うに設けられ、上記記録トラック部をなす磁性部材とは
磁気的に異なる材料でつくられ、外部に直流磁界を供給
する磁石部材と、を備えることを特徴とする。A magnetic disk according to the present invention comprises a substrate, a recording track portion formed of a magnetic member provided on the substrate for magnetically recording and reproducing information, and a track direction between the recording track portions adjacent to each other. And a magnetic member that is provided so as to be substantially continuous with the magnetic member that is magnetically different from the magnetic member that forms the recording track portion and that supplies a DC magnetic field to the outside.
【0039】本発明に係る磁気ディスクの製造方法は、
(A)実質的に平坦な表面をもつ基板上に磁性材料から
なる磁性層を形成する工程と、(B)この磁性層の一部
を除去してトラック方向に実質的に連続するように互い
に隣接する記録トラック部を規定するスペースをパター
ン形成する工程と、(C)このスペースを、前記磁性材
料とは磁気的に異なる材料でつくられ、外部に直流磁界
を供給する磁石部材で満たす工程と、(D)この磁石部
材及び前記磁性層の表面がそれぞれ実質的に平坦になる
ように加工する工程と、を備えることを特徴とする。The method of manufacturing a magnetic disk according to the present invention comprises:
(A) a step of forming a magnetic layer made of a magnetic material on a substrate having a substantially flat surface, and (B) a part of this magnetic layer is removed so that they are substantially continuous in the track direction. Patterning a space defining adjacent recording track portions; and (C) filling the space with a magnet member made of a material magnetically different from the magnetic material and supplying a DC magnetic field to the outside. And (D) processing so that the surfaces of the magnet member and the magnetic layer are substantially flat.
【0040】「トラック方向に実質的に連続する」と
は、少なくとも情報信号の記録/再生部分に磁石部材が
存在していればよいことを意味する。したがって、アド
レス情報領域およびサーボ情報領域には磁石部材は有っ
ても無くてもよく任意のものである。The phrase "substantially continuous in the track direction" means that at least the magnetic member should be present in the recording / reproducing portion of the information signal. Therefore, the address information area and the servo information area may or may not have magnet members and are optional.
【0041】また、アドレス情報やサーボ情報を磁石部
材パターンによって設けてもよく、このような場合はこ
の部分の磁石部材はトラック方向に実質的に連続してい
なくとも構わない。Further, the address information and the servo information may be provided by a magnet member pattern. In such a case, the magnet members in this portion may not be substantially continuous in the track direction.
【0042】磁石部材から外部(ヘッド方向)に発生す
る直流磁界は媒体面に平行な記録トラックに平行な方向
とするのが一般的であるが、縦通電方式の磁気抵抗再生
素子を用いる場合は媒体面に垂直に発生させるのがよ
い。The direct-current magnetic field generated from the magnet member to the outside (head direction) is generally in the direction parallel to the recording track parallel to the medium surface. However, when a longitudinal resistance type magnetoresistive reproducing element is used. It is preferable to generate it perpendicularly to the medium surface.
【0043】さらに、磁気ディスクは、必要に応じて下
地層、保護層、潤滑層等を備えてもよい。Further, the magnetic disk may be provided with an underlayer, a protective layer, a lubricating layer, etc., if necessary.
【0044】磁性部材には、Co−P、Co−Ni−P
メッキ膜、Co−Ni蒸着膜、Baフェライトスパッタ
膜、Co−Pt、Co−Cr、Co−Ni−Cr、Co
−Cr−Ta、Co−Ni−PtのCo系スパッタ膜を
用いることが望ましい。Co-P and Co-Ni-P are used for the magnetic member.
Plating film, Co-Ni vapor deposition film, Ba ferrite sputter film, Co-Pt, Co-Cr, Co-Ni-Cr, Co
It is desirable to use a Co-based sputtered film of —Cr—Ta and Co—Ni—Pt.
【0045】磁石部材は、磁気ヘッドの記録媒体によっ
て磁化方向が変化しない程度に大きな保磁力を持つ材料
であればどのような材質のものであってもよい。発生磁
界の大きさも重要であるが、これは磁石部材の磁化の値
(材料特性と製造方法に依存する値)以外に磁石部材の
サイズ(幅と膜厚)や、磁石部材の下地に軟磁性膜を設
けることによっても調整可能である。例えば、磁石部材
としてフェライト系、SmCo系、NdFeB系等のバ
ルク磁石材料を薄膜化して用いてもよく、Pt/Co多
層膜系、MnBi系、TbCo系、TbFeCo系等の
主に光磁気記録媒体に使用されるような高保磁力薄膜材
料を用いてもよい。The magnet member may be made of any material as long as it has a large coercive force so that the magnetization direction does not change depending on the recording medium of the magnetic head. The magnitude of the generated magnetic field is also important, but this is not only the value of the magnetization of the magnet member (value depending on the material characteristics and manufacturing method) but also the size (width and film thickness) of the magnet member and the soft magnetic underlayer of the magnet member. It can also be adjusted by providing a membrane. For example, ferrite magnets, SmCo magnets, NdFeB magnets, and other bulk magnet materials may be thinned and used as magnet members, and mainly Pt / Co multilayer film magnets, MnBi magnets, TbCo magnets, TbFeCo magnets, and other magneto-optical recording media. High coercive force thin film materials such as those used in.
【0046】本発明に係る磁気記録装置は、基板と、こ
の基板上に設けられ、情報を磁気的に記録再生する磁性
部材でつくられた記録トラック部と、互いに隣接する前
記記録トラック部間にトラック方向に実質的に連続する
ように設けられ、前記磁性部材よりも硬く、かつ非磁性
の材料でつくられたガードバンド部材と、を具備し、上
記ガードバンド部材の下方領域には、上記磁性部材が存
在しないか、又は、上記記録トラック部をなす磁性部材
の厚みとは異なる厚みの磁性部材が設けられている磁気
ディスクに対して、情報を磁気的に読み込み書き込む磁
気ヘッドと、外部装置から送られてくる書き込み情報を
データ処理し、データ処理された情報をリードライト回
路を介して前記磁気ヘッドに送る制御部と、を備え、上
記磁気ヘッドはスピンバルブ型の磁気抵抗素子を具備
し、このスピンバルブ型の磁気抵抗素子は、上記リード
ライト回路に接続され、上記磁気ディスクの面に垂直方
向に磁化が固定された第1の磁性層と、磁化が印加磁界
により変化する第2の磁性層と、この第2の磁性層と上
記第1の磁性層との間に挿入された非磁性導電層と、を
備えていることを特徴とする。A magnetic recording apparatus according to the present invention comprises a substrate, a recording track portion provided on the substrate and made of a magnetic member for magnetically recording and reproducing information, and between the recording track portions adjacent to each other. A guard band member which is provided so as to be substantially continuous in the track direction and which is harder than the magnetic member and made of a non-magnetic material, and the magnetic band is provided in a lower region of the guard band member. A magnetic head that magnetically reads / writes information from / into a magnetic disk provided with no magnetic member or a magnetic member having a thickness different from that of the magnetic member forming the recording track portion, and an external device. And a controller for processing the write information sent thereto and sending the data-processed information to the magnetic head via a read / write circuit. A spin-valve type magnetoresistive element, which is connected to the read / write circuit and has a first magnetic layer whose magnetization is fixed in a direction perpendicular to the surface of the magnetic disk; Is provided with a second magnetic layer that changes depending on the applied magnetic field, and a non-magnetic conductive layer inserted between the second magnetic layer and the first magnetic layer.
【0047】[0047]
【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の実施の形態について説明する。DETAILED DESCRIPTION OF THE INVENTION Various embodiments of the present invention will be described below with reference to the accompanying drawings.
【0048】図1は本発明の実施例に係る磁気ディスク
の一部を示す拡大斜視図である。図中にて符号1aは基
板を、符号2は記録層を表わす。記録層2は、記録トラ
ック方向に長い帯状をなす記録磁性部材2aと、記録磁
性部材2aの間に埋め込まれた記録磁性部材2aとは異
なる材料からなるガードバンド部材4aと、を含んでい
る。このように記録層2においては、磁性部材2aとガ
ードバンド部材4aとがディスク半径方向にトラックピ
ッチを1周期として周期的に交互に配列されている。FIG. 1 is an enlarged perspective view showing a part of a magnetic disk according to an embodiment of the present invention. In the figure, reference numeral 1a represents a substrate and reference numeral 2 represents a recording layer. The recording layer 2 includes a recording magnetic member 2a having a long strip shape in the recording track direction, and a guard band member 4a made of a material different from the recording magnetic member 2a embedded between the recording magnetic members 2a. As described above, in the recording layer 2, the magnetic members 2a and the guard band members 4a are alternately arranged periodically in the disk radial direction with the track pitch as one cycle.
【0049】帯状の記録磁性部材2aの幅すなわち記録
トラック幅をTとし、帯状のガードバンド部材4aの幅
すなわちガードバンド幅をGとし、記録磁区の長さをB
とすると、トラックピッチは(T+G)で与えられ、面
密度の逆数に相当する実効的な記録磁区面積は(T+
G)×Bで与えられる。本実施例においては、ディスク
基板1aとしては2.5インチサイズのものを用い、記
録トラック幅Tを1.8±0.1μm、ガードバンド幅
Gを0.2±0.1μmとした。これらは、記録セルの
アスペクト比(トラックピッチ/最短ビットピッチ)を
現行の磁気記録ディスク同様に10とし、ディスクへの
記録としてゾーンコンタクトアンギュラーヴェロシティ
(ZCAV)方式を採用するとした場合、面記録密度は
1.5Gbpsi程度、ディスク2枚4面のドライブで
は記憶容量が1.5GB、となるトラックピッチに相当
する。The width of the band-shaped recording magnetic member 2a, that is, the recording track width is T, the width of the band-shaped guard band member 4a, that is, the guard band width is G, and the length of the recording magnetic domain is B.
Then, the track pitch is given by (T + G), and the effective recording magnetic domain area corresponding to the reciprocal of the areal density is (T + G).
G) × B. In this embodiment, a disk substrate 1a having a size of 2.5 inches was used, the recording track width T was 1.8 ± 0.1 μm, and the guard band width G was 0.2 ± 0.1 μm. These are surface recording when the aspect ratio (track pitch / shortest bit pitch) of the recording cell is set to 10 as in the current magnetic recording disk and the zone contact angular velocity (ZCAV) method is adopted for recording on the disk. The density is about 1.5 Gbpsi, which corresponds to a track pitch with a storage capacity of 1.5 GB in a drive with two disks and four surfaces.
【0050】次に、図2〜図6を参照しながら磁気ディ
スクの製造方法について説明する。洗浄済みのガラスデ
ィスク基板1aを、多元マグネトロンスパッタ装置の処
理台上に載置し、CoPt(20原子%Pt)ターゲッ
トを約1分間スパッタして膜厚が約20nmの面内磁化
の記録磁気層2aを形成した。さらに連続してSiO2
ターゲットを1分間スパッタして膜厚約10nmのSi
O2 膜を形成して取り出した。Next, a method of manufacturing a magnetic disk will be described with reference to FIGS. The cleaned glass disk substrate 1a is placed on a processing table of a multi-source magnetron sputtering apparatus, and a CoPt (20 atomic% Pt) target is sputtered for about 1 minute to form a recording magnetic layer with in-plane magnetization of about 20 nm. 2a was formed. Further continuously SiO 2
The target is sputtered for 1 minute to form a Si film with a thickness of about 10 nm.
An O 2 film was formed and taken out.
【0051】次に、この着膜後のディスクのSiO2 膜
上にポジ形レジスト3を約50nmスピンコートしてプ
リベークした後に、Krレーザを光源とする光ディスク
用の原盤カッティング装置を用いて、ディスク1を高精
度で回転させながら、トラックピッチ2μm、露光幅
0.2μm(ガードバンド部4aの幅G1 ,G2 ,
G3,…Gn)でレジスト3を露光処理した。なお、デ
ィスク全面の露光に要する時間は約10分間とした。現
像処理に供して記録層2a上に同心円状のレジストパタ
ーンを形成した。FIG2に示すように、記録層2の記
録トラック部2aはSiO2 膜を介してレジスト被覆さ
れ、ガードバンド部4aに相当する部分はSiO2 膜の
みで被覆されレジストは無い状態にあった。Next, a positive resist 3 is spin-coated on the SiO 2 film of the disk after the film deposition by about 50 nm and prebaked, and then the disk is cut using a master cutting device for an optical disk using a Kr laser as a light source. While rotating 1 with high precision, the track pitch is 2 μm, the exposure width is 0.2 μm (widths G 1 , G 2 ,
The resist 3 was exposed to light with G 3 , ... Gn). The time required for exposing the entire surface of the disc was about 10 minutes. By subjecting to development processing, a concentric resist pattern was formed on the recording layer 2a. As shown in FIG. 2, the recording track portion 2a of the recording layer 2 was covered with the resist via the SiO 2 film, and the portion corresponding to the guard band portion 4a was covered with only the SiO 2 film and there was no resist.
【0052】次に、このレジストパターンを有するディ
スク1をRIE装置内に装入し、CHF3 ガスを用いて
SiO2 膜を約30秒間だけ反応性イオンエッチングし
た。ガードバンド部4aの記録層2aを露出させた後
に、ディスクをレジストアッシング装置内に装入し、記
録トラック部2a上のレジストパターンを除去した。Next, the disk 1 having this resist pattern was loaded into the RIE apparatus, and the SiO 2 film was subjected to reactive ion etching for about 30 seconds using CHF 3 gas. After exposing the recording layer 2a of the guard band portion 4a, the disc was loaded into a resist ashing device to remove the resist pattern on the recording track portion 2a.
【0053】次に、SiO2 膜パターンを有するディス
クをRIE装置内に装入し、ディスクを約200℃に加
熱して、塩素と三塩化硼素を主成分とする混合ガスプラ
ズマを用いてCoPt膜を約1分間だけ反応性イオンエ
ッチングした。下地の基板面までエッチング除去するこ
とにより、FIG3に示すように、隣り合うCoPt記
録層2aの相互間に帯状のガードバンドスペースを形成
した。さらに、FIG4に示すように、アッシング装置
によりレジスト3を除去した。Next, a disk having a SiO 2 film pattern was placed in an RIE apparatus, the disk was heated to about 200 ° C., and a CoPt film was formed by using a mixed gas plasma containing chlorine and boron trichloride as main components. Was reactive ion etched for about 1 minute. By removing the underlying substrate surface by etching, a band-shaped guard band space was formed between the adjacent CoPt recording layers 2a as shown in FIG. Further, as shown in FIG. 4, the resist 3 was removed by an ashing device.
【0054】次に、ガードバンドスペースをもつディス
クをスパッタ装置内に装入し、ガードバンドスペースが
完全に埋まるまで約2分間スパッタし、FIG5に示す
ように、ディスク表面をSiO2 膜で覆った。これを取
り出してイオンポリッシング装置内に装入し、記録磁性
部材2aの上面が露出するまで約30秒間ディスク面を
研磨した。これにより同時に記録層上に凹凸面をなして
いたSiO2 膜4を平坦化する。その結果、FIG6に
示すように、帯状の記録磁性部材2a及びガードバンド
部材4aが交互に表面にあらわれたディスク1が得られ
た。Next, a disk having a guard band space was placed in a sputtering apparatus, sputtered for about 2 minutes until the guard band space was completely filled, and the disk surface was covered with a SiO 2 film as shown in FIG. . This was taken out and loaded into an ion polishing apparatus, and the disk surface was polished for about 30 seconds until the upper surface of the recording magnetic member 2a was exposed. As a result, at the same time, the SiO 2 film 4 having an uneven surface on the recording layer is flattened. As a result, as shown in FIG. 6, a disk 1 was obtained in which belt-shaped recording magnetic members 2a and guard band members 4a were alternately exposed.
【0055】得られたディスク1の一部を破壊し、その
断面構造を電子顕微鏡で観察したところ、図1に示すよ
うに、記録磁性部材2aとガードバンド部材4aとは段
差の無い実質的に平滑な表面をもつことが確認された。When a part of the obtained disk 1 was destroyed and the cross-sectional structure was observed by an electron microscope, as shown in FIG. 1, the recording magnetic member 2a and the guard band member 4a were substantially free of steps. It was confirmed to have a smooth surface.
【0056】なお、本実施例におけるトータルプロセス
時間の増分は生産設備増強によって十分に補い得る程度
であり、ディスクコストの上昇は微々たる程度に抑える
ことができる。The increment of the total process time in this embodiment can be sufficiently compensated by increasing the production equipment, and the increase in disk cost can be suppressed to a slight extent.
【0057】また、上記実施例では磁性膜のパターニン
グに反応性イオンエッチングを用いた場合につき説明し
たが、イオンミリング法を用いることもできる。その場
合は磁性膜上にSiO2 を設ける必要はなく、直接レジ
ストをコートしてレーザ露光した後に、磁性膜をイオン
ミリングによりパターニングしてレジストを除去し、S
iO2 を埋め込みイオンポリッシュすればよい。ただ
し、加工精度は反応性イオンエッチングの方が優れてい
た。Further, in the above-mentioned embodiment, the case where the reactive ion etching is used for the patterning of the magnetic film has been described, but the ion milling method can also be used. In that case, it is not necessary to provide SiO 2 on the magnetic film, the resist is directly coated and laser-exposed, and then the magnetic film is patterned by ion milling to remove the resist.
Io 2 may be embedded and ion-polished. However, the processing precision of reactive ion etching was superior.
【0058】磁性膜をパターニングする際のマスクある
いはガードバンドを成す材料にはSiO2 以外に適当に
記録磁性以外の材料を自由に用いることができるが、好
ましくは記録磁性部材よりも硬質で絶縁性の良好な材料
がよい。製造プロセス上は特に材料に限定されず、例え
ば、マスクにCを用いる場合は酸素ベースガスでマスク
パターニングすることができる。As a material for forming a mask or a guard band when patterning the magnetic film, a material other than the recording magnetic property other than SiO 2 can be freely used, but is preferably harder than the recording magnetic member and has an insulating property. Good materials are good. The manufacturing process is not particularly limited to the material. For example, when C is used for the mask, mask patterning can be performed with an oxygen-based gas.
【0059】上記した製造方法によって試作した本発明
の磁気ディスクを用いて以下の手順で本発明の効果を明
らかにする実証試験を実施した。また、以下に記述する
実証試験においては本発明の効果を明確化する目的で従
来技術に従って磁気記録ディスクを作成して同時に評価
した。この従来の磁気記録ディスクは、上記実施例にお
いて、ガラス基板上にCoPt磁性層をスパッタ形成し
た段階で取り出したもの(以降、比較ディスクAと略記
する)と、20nmのCoPt記録層と10nmのSi
O2 層(従来技術においては保護層として機能する)を
スパッタした段階で取り出したもの(以降、比較ディス
クBと略記する)の2種類である。Using the magnetic disk of the present invention prototyped by the manufacturing method described above, a verification test was carried out to clarify the effects of the present invention in the following procedure. In the verification test described below, a magnetic recording disk was prepared according to the prior art and evaluated simultaneously for the purpose of clarifying the effect of the present invention. This conventional magnetic recording disk was taken out at the stage of forming the CoPt magnetic layer on the glass substrate by sputtering in the above-mentioned embodiment (hereinafter abbreviated as comparative disk A), 20 nm CoPt recording layer and 10 nm Si.
There are two types, that is, the O 2 layer (which functions as a protective layer in the prior art) taken out at the stage of sputtering (hereinafter abbreviated as comparative disk B).
【0060】以下、本発明の実施例に係るディスク(以
下、実施例ディスクCという)と、比較ディスクA及び
Bとについて試験した結果について説明する。The results of testing the disc according to the example of the present invention (hereinafter referred to as example disc C) and the comparative discs A and B will be described below.
【0061】先ず、得られたディスクサンプルと各々同
一条件で作成した試料につきバイブレイティングサンプ
ルマグネトメーター(以下、VSMという)を用いて静
的磁気特性を測定した。本発明のディスク試料は記録層
中に記録磁性部材の他に非磁性部材を具備しているの
で、断面電子顕微鏡観察結果に基づき、正味の磁性部材
の体積を求めて磁化の大きさを決定した。First, the static magnetic characteristics of the samples prepared under the same conditions as the obtained disk samples were measured using a vibrating sample magnetometer (hereinafter referred to as VSM). Since the disk sample of the present invention is provided with a non-magnetic member in the recording layer in addition to the recording magnetic member, the magnitude of the magnetization was determined by obtaining the net volume of the magnetic member based on the results of cross-section electron microscope observation. .
【0062】VSM測定を図1に示した膜面内平面の記
録トラックに平行な方向と垂直な方向の二通りで測定し
た結果、比較ディスクA及びBではトラック平行方向と
垂直方向でVSMループに有意差は見られなかったが、
実施例ディスクCでは、記録層の磁性部材の磁化がトラ
ックと平行に容易軸を有しているようであった。これ
は、記録トラックに平行に磁性部材が形状異方性を有し
たためと考えられ、磁気記録上は好ましいことであると
みなせる。As a result of measuring the VSM in two ways, that is, in the direction parallel to the recording tracks on the plane in the film plane and in the direction perpendicular to the recording tracks shown in FIG. No significant difference was seen,
In Example Disk C, the magnetization of the magnetic member of the recording layer seemed to have an easy axis parallel to the track. It is considered that this is because the magnetic member had shape anisotropy parallel to the recording track, and it can be regarded as preferable for magnetic recording.
【0063】飽和磁化の大きさは、実施例ディスクC、
比較ディスクA,Bともに約650emu/ccと有意
差は見られなかった。The magnitude of the saturation magnetization is the same as the disk of the embodiment C,
Comparative discs A and B were about 650 emu / cc, showing no significant difference.
【0064】保磁力は、比較ディスクAとBとの間では
有意差は無く、2kOe程度であったが、実施例ディス
クCでは測定方向で値が異なり、トラック平行方向に磁
界を印加した場合が2.5kOe、トラックと垂直方向
に磁界を印加した場合が1.5kOeと、形状異方性を
反映する値を示した。磁気記録の高密度化上は高保磁力
であることが重要であるが、記録磁区は、記録トラック
方向に配列するので本発明の磁気記録ディスクの構造は
高密度化上、記録波長を短くする上でも静的磁気特性の
観点から効果的であることが判明した。The coercive force was about 2 kOe without any significant difference between the comparative discs A and B, but the value was different in the measuring direction in the disc C of the embodiment, and the magnetic field was applied in the track parallel direction. A value reflecting the shape anisotropy was 2.5 kOe and 1.5 kOe when a magnetic field was applied in the direction perpendicular to the track. It is important to have a high coercive force in order to increase the density of magnetic recording, but since the recording magnetic domains are arranged in the recording track direction, the structure of the magnetic recording disk of the present invention is high in density and the recording wavelength is shortened. However, it was found to be effective from the viewpoint of static magnetic properties.
【0065】次に、実施例と比較用の2.5インチディ
スク(ルブリカントは塗布した)を磁気ディスク試験装
置に設置してトラッキングサーボ精度の比較評価と記録
再生動作を行った。磁気ヘッドは本発明の狭トラック動
作が可能なように特別に試作した横通電磁気抵抗効果再
生型の薄膜ヘッドを用いた。本発明の効果を明確にする
上で、磁気ヘッドのトラック幅は記録再生ともに2μm
とし、定格回転動作における浮上量を実施例ディスクC
と比較ディスクAでは0.04μmとし、比較ディスク
Bでは0.03μmとし、どのディスクでもヘッド−メ
ディアスペーシングが0.04μmになるようにした。
また、ディスク上の任意の半径に磁気ヘッドを位置合わ
せし、適当な信号を記録して機械的なトラックずれに対
して再生信号が最大になるようにトラッキングする制御
系を用いた。Next, a 2.5-inch disk (lubricant was applied) for comparison with the example was installed in a magnetic disk tester to perform comparative evaluation of tracking servo accuracy and recording / reproducing operation. As the magnetic head, a lateral current-carrying magnetoresistive effect reproducing type thin film head specially manufactured for the narrow track operation of the present invention was used. To clarify the effect of the present invention, the track width of the magnetic head is 2 μm for both recording and reproduction.
And the flying height in the rated rotation operation is the disk C of the embodiment.
The comparative disk A had a thickness of 0.04 μm, and the comparative disk B had a thickness of 0.03 μm so that the head-media spacing was 0.04 μm for all disks.
In addition, a control system was used in which the magnetic head was aligned with an arbitrary radius on the disk, an appropriate signal was recorded, and the reproduction signal was tracked so as to maximize the mechanical track deviation.
【0066】先ず、トラッキング性能試験の結果を記述
する。実施例ディスクCと比較ディスクA,Bともに適
当な信号を記録した後のトラッキング特性はほぼ一致し
た。次に隣接するトラックには記録せずにその次のトラ
ックに信号の記録を行い、記録しなかったトラックにヘ
ッドを送ってディスクの回転を継続したところ、磁気記
録信号のみからトラッキング信号を得る比較用のディス
クはスピンドルモータの機械的回転精度が不足すること
に起因して次第にトラックのずれを発生し、隣接トラッ
クの記録信号を次第に再生するようになったのに対し
て、本発明の磁気ディスクは未記録状態のトラックでも
ガードバンド部とは磁気信号出力が全く異なるため、ト
ラッキングずれの発生は皆無であった。従って、本発明
の磁気ディスクでは実際のドライブで駆動する場合にと
くにトラッキングサーボ信号を予め記入する必要は無
く、フォーマット効率が向上してユーザデータ容量が増
加する他、アドレス信号もディスク作成時の磁性膜パタ
ーニング時に記入可能なので、サーボライティングの必
要が無いことが明らかである。First, the results of the tracking performance test will be described. The tracking characteristics after recording an appropriate signal were substantially the same in both Example disk C and Comparative disks A and B. A signal is recorded on the next track without recording on the next adjacent track, and the head is sent to the track that was not recorded to continue the rotation of the disk, and the tracking signal is obtained only from the magnetic recording signal. In the disk for use in the magnetic disk of the present invention, track deviations gradually occur due to insufficient mechanical rotation accuracy of the spindle motor, and the recording signals of the adjacent tracks are gradually reproduced. Since the magnetic signal output was completely different from that of the guard band portion even in the unrecorded track, no tracking deviation occurred. Therefore, in the magnetic disk of the present invention, it is not necessary to write the tracking servo signal in advance when the disk is driven by an actual drive, the format efficiency is improved and the user data capacity is increased, and the address signal is also magnetic when the disk is created. It is clear that there is no need for servo writing because it can be entered during film patterning.
【0067】次に、図1に示すような狭トラックピッチ
の記録を行った場合のサイドフリンジ特性をオフトラッ
ク再生動作とオーバーライト動作とによって評価した。
用いた磁気ヘッドは前記したトラッキング評価に用いた
ものと同一である。先ず、適当な位置のトラックに信号
記録を行った後にトラッキング信号にオフセットをかけ
ながら少しずつオフトラックをかけ、オフトラック量と
再生信号強度の関係を測定した。その結果、比較ディス
クA,Bではヘッドトラック幅の両側にマグネティック
フォースマイクロスコープ(以下、MFMという)で観
察して0.2μm程度ずつのサイドフリンジを発生した
ために、2.2μm程度オフトラックしないと信号出力
が零レベルに定価しなかったのに対して、本発明のディ
スクではMFM観察では全くサイドフリンジの発生は無
く、2μmのオフトラック即ち隣接トラック上では信号
出力は零レベルに低下した。Next, the side fringe characteristics when recording with a narrow track pitch as shown in FIG. 1 was evaluated by an off-track reproducing operation and an overwriting operation.
The magnetic head used is the same as that used for the tracking evaluation. First, after signal recording was performed on a track at an appropriate position, offset was applied to the tracking signal to gradually perform off-track, and the relationship between the off-track amount and the reproduction signal intensity was measured. As a result, in comparative disks A and B, side fringes of about 0.2 μm each occurred on both sides of the head track width as observed by a magnetic force microscope (hereinafter referred to as MFM), and therefore offtrack of about 2.2 μm was required. While the signal output was not fixed at zero level, in the disc of the present invention, side fringes did not occur at all in the MFM observation, and the signal output decreased to zero level on an off track of 2 μm, that is, an adjacent track.
【0068】さらに、隣接し合う3本のトラックに同一
周波数で信号記録を行い、次に真中のトラックに1.5
倍の周波数の信号を記録してオーバライト特性とクロス
トーク特性を調べた結果、比較ディスクA,Bでは隣接
トラックの信号を拾うと共に十分なオーバライト特性が
得にくかったのに対して、本発明のディスクでは隣接ト
ラック信号は全く無く十分なオーバライト特性が得られ
た。従って実施例ディスクCは狭トラック化に対して大
きな効果を有することが実証された。Further, signal recording is performed on three adjacent tracks at the same frequency, and then 1.5 is recorded on the middle track.
As a result of recording a signal having a double frequency and examining the overwrite characteristic and the crosstalk characteristic, it was difficult to obtain a sufficient overwrite characteristic while picking up the signals of the adjacent tracks in the comparative disks A and B. In the disk of No. 3, there was no adjacent track signal and sufficient overwrite characteristics were obtained. Therefore, it was proved that the embodiment disk C has a great effect on the narrowing of the track.
【0069】次に、本発明のさらなる効果の一つを明ら
かにする目的で、実施例ディスクC、比較ディスクA及
びBの三種類のディスクをコンタクトスタートストップ
試験(以下、CSS試験という)に供して、その耐摩耗
性を調べた。CSS試験はディスクの回転起動から定格
回転に至るまでの時間(起動時間)を調べることと、5
万パス試験後のディスク表面状態を遮光観察して調べ
た。平坦な磁性膜上に保護膜を有していないルブリカン
トのみの比較ディスクAでは数百パス程度で起動時間が
数10秒という異常な値を示し、従来構造の保護膜とル
ブリカントの両方を有する比較ディスクBは5万パス後
も起動時間は2.5秒程度と正常値を維持した。これら
に対して本発明の磁性膜上には保護膜を有さないがSi
O2 ガードバンドを有する実施例ディスクCでは比較デ
ィスクBと同様の結果が得られ、遮光観察の結果も特に
摩耗は認められなかった。これにより実施例ディスクC
は保護膜無しでもヘッドが硬質ガードバンド部材によっ
て案内されながら走行するので保護膜有りの場合と同様
の強い耐摩耗性を示すことが実証でき、狭いスペーシン
グ化する上でも有利であることが確認された。Next, for the purpose of clarifying one of the further effects of the present invention, three types of disks, Example disk C and Comparative disks A and B, were subjected to a contact start / stop test (hereinafter referred to as CSS test). The wear resistance was investigated. The CSS test is to check the time (starting time) from the rotation start of the disk to the rated rotation, and 5
The state of the disk surface after the 10,000-pass test was examined by light-shielding observation. Comparison of only lubricator without protective film on flat magnetic film Disk A shows an abnormal value of several tens of seconds in starting time in about several hundred passes. Comparison with both protective film and lubricator of conventional structure Disk B had a normal startup time of about 2.5 seconds even after 50,000 passes. On the other hand, although no protective film is formed on the magnetic film of the present invention, Si
In the example disk C having the O 2 guard band, the same result as that of the comparative disk B was obtained, and no particular abrasion was observed in the result of light-shielding observation. As a result, the embodiment disk C
Shows that the head runs while being guided by a hard guard band member even without a protective film, so it can be demonstrated that it shows the same strong abrasion resistance as with a protective film, and it is also advantageous for narrowing spacing. Was done.
【0070】さらに、磁気抵抗効果再生ヘッド再生での
優位性を実証する目的で再生ヘッドに通電した状態でヘ
ッド荷重を増加させてヘッドを媒体面に接触させて走行
試験を行った。比較ディスクAでは接触させた瞬間に再
生信号強度は半分以下に低下した。これは導電性の記録
層に電流が分流したためである。Further, for the purpose of demonstrating the superiority in reproducing the magnetoresistive effect reproducing head, a running test was conducted by increasing the head load while the reproducing head was energized to bring the head into contact with the medium surface. In the comparative disk A, the reproduction signal strength dropped to less than half at the moment of contact. This is because the current is shunted to the conductive recording layer.
【0071】また、比較用のディスクBでは接触走行さ
せても再生信号の低下は見られなかったが、接触動作を
連続的に行う試験を何回か行ったところ、突然信号が出
なくなる場合があった。信号が出なくなった磁気ヘッド
を調べてみると絶縁破壊に至っていることが明らかとな
った。これはディスクの保護膜が絶縁性であるために回
転動作で静電気が蓄積し、それがヘッドに集中して放電
を起こしたためと考えられる。In the comparative disc B, the reproduction signal was not reduced even when the disc was brought into contact with the disc. However, after several tests in which the contact operation was continuously conducted, the signal suddenly disappeared. there were. Examination of the magnetic head that stopped producing signals revealed that it had reached a dielectric breakdown. It is considered that this is because the protective film of the disk has an insulating property, so that static electricity was accumulated by the rotating operation, and the static electricity was concentrated on the head to cause discharge.
【0072】一方、実施例ディスクCでは接触走行時の
再生信号強度は浮上時よりも10%程度低下したもの
の、連続して接触再生試験を行っても全く絶縁破壊は発
生しなかった。信号の低下が比較ディスクAに比べて僅
かなのは導電性の記録層が絶縁性のガードバンドで隔絶
されているためであり、絶縁破壊が発生しないのはディ
スク面が完全に絶縁性の保護膜で覆われていないためと
考えられる。On the other hand, in Example C, although the reproduction signal strength during contact travel was reduced by about 10% as compared with that during floating, no dielectric breakdown occurred even after continuous contact reproduction tests. The decrease in signal is smaller than that of the comparative disc A because the conductive recording layer is isolated by the insulating guard band, and the dielectric breakdown does not occur because the disc surface is a completely insulating protective film. This is probably because it is not covered.
【0073】上記の実施例では記録磁性材料としてCo
Ptを用い、特に下地層を設けない場合についてのべた
が、本発明は記録材料の種類や下地の有無には特に限定
を受けず、記録材料としてCoNiPt,CoCrP
t,CoTaCr,CoNiCr,垂直磁化のCoCr
等を自由に用いることができる。また、下地にNiPメ
ッキ層やCr配向制御層あるいはNiFe軟磁性層等が
設けられていても実施可能である。In the above embodiment, Co is used as the recording magnetic material.
Although the case where Pt is used and the underlayer is not provided is described above, the present invention is not particularly limited by the kind of the recording material and the presence or absence of the underlayer, and CoNiPt, CoCrP is used as the recording material.
t, CoTaCr, CoNiCr, perpendicularly magnetized CoCr
Etc. can be used freely. Further, it can be carried out even if a NiP plated layer, a Cr orientation control layer, a NiFe soft magnetic layer, or the like is provided on the base.
【0074】さらに、ガードバンド部材は図1及び図6
に示したもののみに限られない。図7に示すように、横
断面V字状のガードバンド部材4bを磁性部材2aの膜
厚の途中まで設けてもよい。このようなガードバンド部
材4bは、磁性部材2aの結晶配向を所定方向に制御す
るとともに、特殊なエッチング法を用いることにより形
成される。なお、ガードバンド部材4bは横断面V字状
の他に横断面長円形状であってもよい。Further, the guard band member is shown in FIGS.
It is not limited to those shown in. As shown in FIG. 7, a guard band member 4b having a V-shaped cross section may be provided up to the middle of the film thickness of the magnetic member 2a. Such a guard band member 4b is formed by controlling the crystal orientation of the magnetic member 2a in a predetermined direction and using a special etching method. The guard band member 4b may have an elliptical cross section instead of the V-shaped cross section.
【0075】また、図8に示すように、横断面矩形状の
ガードバンド部材4cを磁性部材2cの下方の下地層5
と基板1の境界まで設けてもよい。下地層5を有する媒
体に対してもこのようなガードバンド部材4cを形成す
ることができ、高密度の記録再生を実現できる。Further, as shown in FIG. 8, the guard band member 4c having a rectangular cross section is provided on the underlayer 5 below the magnetic member 2c.
May be provided up to the boundary between the substrate 1 and the substrate 1. Such a guard band member 4c can be formed on a medium having the underlayer 5, and high-density recording / reproducing can be realized.
【0076】さらに、図9に示すように、横断面長円形
状のガードバンド部材4dを基板1aの一部に入り込む
ように形成してもよい。下地層の無い媒体1において基
板1aの途中までこのようなガードバンド部材4dを形
成することができ、高密度の記録再生を実現できる。Further, as shown in FIG. 9, a guard band member 4d having an oval cross section may be formed so as to enter a part of the substrate 1a. Such a guard band member 4d can be formed halfway on the substrate 1a in the medium 1 having no underlying layer, and high-density recording / reproducing can be realized.
【0077】本発明によれば、硬質ガードバンド部材に
より記録磁性部材を互いに分離することで、サイドフリ
ンジが大幅に低減化され、狭トラック化が容易となる。
また、保護膜が無くても高耐久性を達成でき、狭スペー
シング化が容易となり、かつ狭ビットピッチ化が容易と
なり、総合的に磁気記録の高密度化に貢献する所多大で
ある。さらに、高価格化を招くことなく、硬質ガードバ
ンド部材の形成が可能な磁気ディスク及びその製造方法
が提供される。According to the present invention, by separating the recording magnetic members from each other by the hard guard band member, the side fringe is greatly reduced and the track narrowing is facilitated.
In addition, even without a protective film, high durability can be achieved, narrow spacing can be facilitated, and narrow bit pitch can be facilitated, which greatly contributes to high density magnetic recording. Furthermore, a magnetic disk capable of forming a hard guard band member and a method of manufacturing the same are provided without increasing the cost.
【0078】また、本発明によれば、記録層下部に配置
する膜に対する自由度が高く、面内媒体の場合は配向制
御膜を配置する等して記録磁性厚を高密度記録対応の薄
さに設定するのが簡単になり、垂直媒体では記録層下部
に高透磁率層を配置する等して記録再生磁界を強めるこ
とが容易になる。また、硬質のガードバンド部材を採用
することによりCSS耐性を大幅に向上することができ
るので、将来的には接触記録方式に対しても十分に応用
できる。さらに、絶縁性のガードバンド部材を採用すれ
ば磁気抵抗効果型ヘッドをディスク面に接触させること
も可能であり、総合的に磁気記録の高密度化に大いに寄
与する。Further, according to the present invention, the degree of freedom with respect to the film arranged under the recording layer is high, and in the case of the in-plane medium, the orientation control film is arranged to reduce the recording magnetic thickness to a thinness suitable for high density recording. In the perpendicular medium, it is easy to strengthen the recording / reproducing magnetic field by disposing a high magnetic permeability layer under the recording layer. Further, since the CSS resistance can be greatly improved by adopting the hard guard band member, it can be sufficiently applied to the contact recording method in the future. Furthermore, if an insulative guard band member is adopted, it is possible to bring the magnetoresistive head into contact with the disk surface, which greatly contributes to higher density magnetic recording as a whole.
【0079】次に、図10〜図13を参照しながら磁気
記録装置及び磁気ヘッドについて説明する。Next, the magnetic recording device and the magnetic head will be described with reference to FIGS.
【0080】図10に示すように、磁気記録装置20の
ターンテーブル上にディスク1が載置され、スピンドル
モータ21によってディスク1がスピン回転されるよう
になっている。磁気ヘッド22はアーム28の先端部に
設けられている。アーム28の基端部はボイスコイルモ
ータ(VCM)29によって支持されている。As shown in FIG. 10, the disk 1 is placed on the turntable of the magnetic recording device 20, and the spindle motor 21 spins the disk 1. The magnetic head 22 is provided at the tip of the arm 28. The base end of the arm 28 is supported by a voice coil motor (VCM) 29.
【0081】図11に示すように、マイクロプロセッサ
35は、スピンドルドライバ31、VCMドライバ3
9、ハードディスクドライブ(HDD)コントローラ3
3のそれぞれに接続され、これらに制御信号を送るよう
になっている。このマイクロプロセサ35はサーボ制御
とデータ処理の両方を実行するものである。例えばマイ
クロプロセサ35は、VCM29の動作を制御するため
に毎秒3000回のサンプリングを行なう一方で、サー
ボ制御のためのディジタル信号を生成する。このディジ
タル信号をD/A変換してVCMドライバ39の制御に
使用する。これによりアーム28のアクチュエータとし
てのVCM29を駆動制御し、磁気ヘッド22をディス
ク1の記録面の所望箇所に近接又は接触させる。また、
マイクロプロセッサ35は、ディスク1が所望速度で回
転するように、モータ21及びスピンドルドライバ31
を制御する。As shown in FIG. 11, the microprocessor 35 includes a spindle driver 31 and a VCM driver 3.
9. Hard disk drive (HDD) controller 3
It is connected to each of the 3 and is adapted to send control signals to them. The microprocessor 35 executes both servo control and data processing. For example, the microprocessor 35 performs sampling 3000 times per second in order to control the operation of the VCM 29, while generating a digital signal for servo control. This digital signal is D / A converted and used for controlling the VCM driver 39. As a result, the VCM 29 as the actuator of the arm 28 is driven and controlled, and the magnetic head 22 is brought close to or in contact with a desired position on the recording surface of the disk 1. Also,
The microprocessor 35 includes a motor 21 and a spindle driver 31 so that the disk 1 rotates at a desired speed.
Control.
【0082】さらに、書き込み/読み出しの処理もマイ
クロプロセッサ35の監視のもとで実行されるようにな
っている。すなわち、マイクロプロセッサ35は、HD
Dコントローラ33と信号をやりとりし、ディスク1に
記録すべきデータを信号化し、これをリードライト回路
32を介して磁気ヘッド22に送る。一方、HDDコン
トローラ33はホストインターフェース34を介して外
部のホストコンピュータ(図示せず)に接続されてい
る。ディスク1に記録すべきデータはホストコンピュー
タからHDDコントローラ33に入力され、この入力デ
ータがマイクロプロセッサ35にいったん送られ、マイ
クロプロセッサ35でデータ処理され、さらにこれがH
DDコントローラ33にもどされる。なお、アーム28
に複数のヘッドが搭載されている場合には、マイクロプ
ロセッサ35はこれらの多重化処理を実行する。Further, the writing / reading process is also executed under the supervision of the microprocessor 35. That is, the microprocessor 35
A signal is exchanged with the D controller 33 to convert the data to be recorded on the disk 1 into a signal, which is sent to the magnetic head 22 via the read / write circuit 32. On the other hand, the HDD controller 33 is connected to an external host computer (not shown) via the host interface 34. The data to be recorded on the disk 1 is input from the host computer to the HDD controller 33, this input data is once sent to the microprocessor 35, and is processed by the microprocessor 35.
It is returned to the DD controller 33. The arm 28
If a plurality of heads are mounted on the microprocessor, the microprocessor 35 executes these multiplexing processing.
【0083】次に、図12,13を参照しながら磁気ヘ
ッドについて説明する。Next, the magnetic head will be described with reference to FIGS.
【0084】図12は磁気ヘッドユニット22の原理的
構成を模式的に示した図である。磁気ヘッドユニット2
2には記録ヘッド23および再生ヘッド24が搭載され
ている。記録ヘッド23は通常用いられているような記
録磁極にコイルが巻回された機構を備える薄膜タイプの
誘導型ヘッドである。この記録ヘッド23は、端子25
を介して記録アンプ(図示せず)からデータ信号に応じ
た記録電流が供給されることによって、磁気ディスク1
上にデータ信号を記録するものである。FIG. 12 is a diagram schematically showing the principle structure of the magnetic head unit 22. Magnetic head unit 2
The recording head 23 and the reproducing head 24 are mounted on the recording medium 2. The recording head 23 is a thin film type induction type head having a mechanism in which a coil is wound around a recording magnetic pole that is normally used. This recording head 23 has a terminal 25
A recording current corresponding to a data signal is supplied from a recording amplifier (not shown) via the
The data signal is recorded on the top.
【0085】再生ヘッド24はスピンバルブ型磁気抵抗
素子(MR素子)を用いた巨大磁気抵抗効果型ヘッド
(GMRヘッド)である。この再生ヘッド24は磁気デ
ィスク1上に記録されたデータ信号や、データ信号の記
録に先立ち予め記録されたサーボ信号の再生を行う。再
生ヘッド24のMR素子には端子26を介してセンス回
路(図示せず)からセンス電流が供給されるようになっ
ている。また、磁気ディスク1上に記録された信号に基
づく磁界によるMR素子の磁気抵抗の変化がセンス電流
による電圧変化、すなわち電圧信号として端子26より
取り出され、この電圧信号が再生アンプ(図示せず)に
供給されるようになっている。The reproducing head 24 is a giant magnetoresistive head (GMR head) using a spin valve magnetoresistive element (MR element). The reproducing head 24 reproduces a data signal recorded on the magnetic disk 1 and a servo signal previously recorded before recording the data signal. A sense circuit (not shown) supplies a sense current to the MR element of the reproducing head 24 via a terminal 26. Further, a change in the magnetic resistance of the MR element due to a magnetic field based on a signal recorded on the magnetic disk 1 is taken out from the terminal 26 as a voltage change due to a sense current, that is, a voltage signal, and this voltage signal is reproduced by an amplifier (not shown). To be supplied to.
【0086】図13に示すように、記録ヘッド23のス
ピンバルブ型MR素子は、ピン層(第1の磁性層)23
a、フリー層(第2の磁性層)23b、非磁性導電層2
3c、並びに1対のリード23dを備えている。ピン層
23aは磁気ディスク1の面に垂直方向に磁化が固定さ
れている。フリー層23bは磁化が印加磁界により変化
する。非磁性導電層23cはピン層23aとフリー層2
3bとの間に挿入されている。1対のリード23dはピ
ン層23aのトラック幅方向両端部に接続されている。
各リード23dには端子25がそれぞれ接続されてい
る。各端子25はリードライト回路32に接続されてい
る。As shown in FIG. 13, the spin valve MR element of the recording head 23 has a pinned layer (first magnetic layer) 23.
a, free layer (second magnetic layer) 23b, non-magnetic conductive layer 2
3c and a pair of leads 23d. The pinned layer 23a has its magnetization fixed in the direction perpendicular to the surface of the magnetic disk 1. The magnetization of the free layer 23b changes depending on the applied magnetic field. The non-magnetic conductive layer 23c includes the pinned layer 23a and the free layer 2.
It is inserted between 3b. The pair of leads 23d are connected to both ends of the pinned layer 23a in the track width direction.
A terminal 25 is connected to each lead 23d. Each terminal 25 is connected to the read / write circuit 32.
【0087】ピン層23aおよびフリー層23bは例え
ばCo−Fe膜からなり、非磁性導電層23cは例えば
Cu膜からなる。ここで、フリー層23aはトラック幅
方向に磁気ディスク面と並行に磁化が揃うように配向さ
れている。信号磁界を記録ヘッド23のMR素子に印加
すると、フリー層23bの磁化方向が決まり、このフリ
ー層23bの磁化方向とピン層23aの磁化方向との関
係で、1対のリード23d間で見たMR素子の電気抵抗
が変化する。この電気抵抗の変化現象が巨大磁気抵抗効
果である。The pinned layer 23a and the free layer 23b are made of, for example, a Co--Fe film, and the nonmagnetic conductive layer 23c is made of, for example, a Cu film. Here, the free layer 23a is oriented in the track width direction so that the magnetization is aligned parallel to the magnetic disk surface. When a signal magnetic field is applied to the MR element of the recording head 23, the magnetization direction of the free layer 23b is determined. The relationship between the magnetization direction of the free layer 23b and the magnetization direction of the pinned layer 23a is observed between the pair of leads 23d. The electric resistance of the MR element changes. This phenomenon of change in electric resistance is the giant magnetoresistive effect.
【0088】次に、図14〜図19を参照しながら本発
明の他の好ましい実施の形態について説明する。Next, another preferred embodiment of the present invention will be described with reference to FIGS.
【0089】図14にて符号1aは基板、符号2は記録
層、符号11は磁石部材、符号12は記録磁性部材をそ
れぞれ示す。本実施形態では記録磁性部材12として2
0nm厚のCoPt膜を、磁石部材11として20nm
厚のTbCo膜を、基板1aとして2.5インチ径のガ
ラス基板を各々用いた。In FIG. 14, reference numeral 1a is a substrate, reference numeral 2 is a recording layer, reference numeral 11 is a magnet member, and reference numeral 12 is a recording magnetic member. In the present embodiment, two recording magnetic members 12 are used.
A CoPt film with a thickness of 0 nm is used as the magnet member 11 with a thickness of 20 nm.
A thick TbCo film was used as the substrate 1a, and a glass substrate having a diameter of 2.5 inches was used.
【0090】記録層2は磁石部材11と記録磁性部材1
2とをディスク半径方向に交互に備えている。記録磁性
部材12は記録トラックT1,T2,…Tnをそれぞれ
形成し、磁石部材11は直流磁界を発生する記録トラッ
ク間領域M1,M2,…Mnをそれぞれ形成している。
記録磁性部材12の磁化の向きは、長手記録媒体の場合
は記録トラックに平行であり、垂直記録媒体の場合は膜
面に垂直である。The recording layer 2 is composed of the magnet member 11 and the recording magnetic member 1.
2 and 2 are alternately provided in the disk radial direction. The recording magnetic member 12 forms recording tracks T1, T2, ... Tn, respectively, and the magnet member 11 forms recording track regions M1, M2 ,.
The magnetization direction of the recording magnetic member 12 is parallel to the recording track in the case of the longitudinal recording medium, and perpendicular to the film surface in the case of the perpendicular recording medium.
【0091】一方、磁石部材11の磁化の向きは、横通
電方式の磁気抵抗ヘッドで動作させる場合は膜面に垂直
であり、縦通電方式の磁気抵抗ヘッドで動作させる場合
は膜面内で記録トラックT1,T2,…Tnに垂直であ
る。なお、横通電方式であっても縦通電方式であっても
磁石部材11の磁化の向きは1トラック毎に逆向きに設
定するのがよい。On the other hand, the direction of magnetization of the magnet member 11 is perpendicular to the film surface when operated by the lateral energization type magnetoresistive head, and recorded in the film surface when operated by the longitudinal energized type magnetoresistive head. It is perpendicular to the tracks T1, T2, ... Tn. It should be noted that the magnetizing direction of the magnet member 11 is preferably set to the opposite direction for each track regardless of the lateral energizing method or the longitudinal energizing method.
【0092】図14に示す磁気ディスク1Dは、例えば
以下の方法で製造することができる。 平坦面を成すガ
ラス基板1a上に先ず平坦なCoPt膜をスパッタリン
グによって形成し、連続してSiO2 膜を10nmの膜
厚まで形成する。次いで、SiO2 膜上にレジストをス
ピンコートし、光ディスクの原盤カッティングに使用さ
れるレーザ露光装置を使用してコンセントリックにレジ
ストの露光を行い、現像処理してレジストのパターニン
グを行う。The magnetic disk 1D shown in FIG. 14 can be manufactured, for example, by the following method. First, a flat CoPt film is formed on the glass substrate 1a forming a flat surface by sputtering, and a SiO 2 film is continuously formed to a film thickness of 10 nm. Next, a resist is spin-coated on the SiO 2 film, the resist is concentrically exposed using a laser exposure device used for cutting the master of the optical disc, and the resist is patterned by developing.
【0093】次に、RIE装置内に基板1を装入し、例
えばCHF3 ガスを用いてSiO2膜をエッチングす
る。さらに、アッシングによりレジストパターンを除去
し、CoPt膜上にSiO2 パターンを形成する。次い
でRIE装置により例えば塩素を三塩化硼素の混合ガス
を用いてCoPt磁性膜を基板面に至るまでエッチング
する。Next, the substrate 1 is loaded into the RIE apparatus, and the SiO 2 film is etched by using CHF 3 gas, for example. Further, the resist pattern is removed by ashing to form a SiO 2 pattern on the CoPt film. Next, the CoPt magnetic film is etched by the RIE apparatus using a mixed gas of chlorine and boron trichloride, for example, to reach the substrate surface.
【0094】さらに、スパッタ装置を用いて磁気的に補
償組成(Tb;22原子%程度)付近の高保磁力(10
kOe程度)のTbCo垂直磁化膜を20nmの膜厚ま
で形成し、その後イオンポリッシング装置を用いて記録
磁性部材12上に形成された余分なTbCo膜を除去
し、磁気ディスク1Dを得た。Further, a high coercive force (10
A TbCo perpendicularly magnetized film of about kOe) was formed up to a film thickness of 20 nm, and then an excess TbCo film formed on the recording magnetic member 12 was removed by using an ion polishing apparatus to obtain a magnetic disk 1D.
【0095】磁石部材11として用いたTbCo膜は非
晶質合金で記録磁性部材12に用いたCoPt膜よりも
高硬度であるので、このまま保護膜を特に形成すること
なくディスク評価に供した。Since the TbCo film used as the magnet member 11 is an amorphous alloy and has a higher hardness than the CoPt film used for the recording magnetic member 12, the TbCo film was subjected to disk evaluation as it was without forming a protective film.
【0096】ところで、得られたディスクを評価に供す
る前に磁石部材(磁石層)11の初期磁化方向を設定す
る必要がある。これはエアースピンドルモータを備えた
高精度位置決め可能な光磁気記録装置を用いて行なっ
た。先ず、光磁気記録装置にディスク1Dを設置する。
そして、膜面に対して垂直に記録磁界を印加して1トラ
ック毎に記録磁界の向きを上下反転させながら、TbC
o膜11に半導体レーザ光を集光照射して膜の磁化を上
向きもしくは下向きに1トラックに亘り一様に整え、2
μmのトラックピッチで光ヘッドをディスク半径方向に
コンセントリックに送った。このようにして磁石層11
の磁化方向が設定されたディスク1Dを磁気記録再生試
験装置内に設置して評価した。By the way, it is necessary to set the initial magnetization direction of the magnet member (magnet layer) 11 before using the obtained disk for evaluation. This was performed using a magneto-optical recording device equipped with an air spindle motor and capable of highly accurate positioning. First, the disk 1D is installed in the magneto-optical recording device.
Then, the recording magnetic field is applied perpendicularly to the film surface to vertically reverse the direction of the recording magnetic field for each track, and TbC
The film 11 is focused and irradiated with a semiconductor laser beam to uniformly orient the magnetization of the film upward or downward over one track.
The optical head was sent concentrically in the radial direction of the disk at a track pitch of μm. In this way, the magnet layer 11
The disk 1D in which the magnetization direction of 1 was set was installed in a magnetic recording / reproducing test device and evaluated.
【0097】図15は磁気ディスク1Dの評価試験に用
いた磁気抵抗再生型磁気ヘッドを再生部のABS面から
見込んで示す模式図である。図15に示す磁気ヘッドは
本実施形態の磁気ディスク1Dを評価するために特別に
試作したものである。図中にて符号41は磁化回転膜、
符号42は磁化固定膜、符号7は導電性非磁性膜、符号
8は磁化固着膜、符号6は電極膜をそれぞれ表わす。FIG. 15 is a schematic diagram showing the magnetoresistive reproducing magnetic head used in the evaluation test of the magnetic disk 1D as viewed from the ABS surface of the reproducing portion. The magnetic head shown in FIG. 15 is specially manufactured in order to evaluate the magnetic disk 1D of this embodiment. In the figure, reference numeral 41 is a magnetization rotation film,
Reference numeral 42 represents a magnetization fixed film, reference numeral 7 represents a conductive non-magnetic film, reference numeral 8 represents a magnetization fixed film, and reference numeral 6 represents an electrode film.
【0098】磁化回転膜41および磁化固定膜42には
CoFe膜を、導電性非磁性膜7にはCuを、磁化固着
膜8にはFeMnを、電極膜6にはCuを各々用いた。
ヘッド試作の最終工程で真空中磁界中熱処理に供して磁
化固着膜8とそれに交換結合される磁化固定膜42の磁
化の向きを図15の紙面表側から裏側へ向かう向き(す
なわち媒体面に垂直な方向)に設定した。A CoFe film was used for the magnetization rotation film 41 and the magnetization fixed film 42, Cu was used for the conductive non-magnetic film 7, FeMn was used for the magnetization fixed film 8, and Cu was used for the electrode film 6.
In the final process of trial manufacture of the head, the magnetization direction of the magnetization pinned film 8 and the magnetization pinned film 42 exchange-coupled to the magnetization pinned film 8 subjected to heat treatment in a vacuum is changed from the front side to the back side in FIG. 15 (that is, perpendicular to the medium surface). Direction).
【0099】実際に用いたヘッドは上部に絶縁膜と磁気
シールドと記録下磁極を兼ねたCoZrNb膜、記録ギ
ャップを介してNiFe上部磁極を形成したものであ
り、記録・再生トラック幅は2μmとした。本実施例の
磁気ディスクを回転させて磁気ヘッドを浮上量0.04
μmで浮上させ、記録再生試験を実施した。その結果、
本実施例の磁気ディスクでは未記録状態においても記録
磁性部材12からの磁気信号と磁石部材11からの磁気
信号とは異なるので、とくにサーボライトしない場合で
あっても安定してトラッキング動作を実現することがで
きた。これによって本発明の効果の一つが実証された。The head actually used had an insulating film, a magnetic shield, and a CoZrNb film also serving as a lower magnetic pole for recording, and a NiFe upper magnetic pole formed through a recording gap, and had a recording / reproducing track width of 2 μm. . By rotating the magnetic disk of this embodiment, the flying height of the magnetic head is 0.04.
The recording / reproducing test was carried out by floating at μm. as a result,
In the magnetic disk of the present embodiment, the magnetic signal from the recording magnetic member 12 and the magnetic signal from the magnet member 11 are different even in the unrecorded state, so that a stable tracking operation can be realized even when no servo write is performed. I was able to. This proves one of the effects of the present invention.
【0100】次に、図16に示すように、上記の磁気抵
抗再生型磁気ヘッドを用いて本実施形態の磁気ディスク
1Dに情報の記録再生を行った。図16は動作中の未記
録状態の記録トラック上を走行するヘッドの磁化回転膜
41と記録媒体の様子を示す断面模式図である。Next, as shown in FIG. 16, information was recorded / reproduced on / from the magnetic disk 1D of the present embodiment by using the magnetoresistive reproducing magnetic head described above. FIG. 16 is a schematic cross-sectional view showing a state of the magnetization rotation film 41 of the head and the recording medium which travel on the recording track in the unrecorded state during operation.
【0101】記録磁極への記録信号の印加と再生ヘッド
電極6への横通電(図15のなかで磁化回転膜41中に
図示した矢印に対して反対の向きに通電)とによって記
録再生動作を行った。トラックT2上の磁化回転膜41
の磁化の向きは磁石部材M2及びM3からの漏洩磁界の
向きに揃い、これは前述のように対称波形再生可能な磁
化方向である。Recording / reproducing operation is performed by applying a recording signal to the recording magnetic pole and laterally energizing the reproducing head electrode 6 (energizing in the direction opposite to the arrow shown in the magnetization rotation film 41 in FIG. 15). went. Magnetization rotation film 41 on the track T2
The direction of the magnetization is aligned with the direction of the leakage magnetic field from the magnet members M2 and M3, which is the direction of magnetization capable of reproducing the symmetrical waveform as described above.
【0102】次に、記録動作を行うと磁化反転部からの
漏洩磁界(媒体面に垂直で上向きもしくは下向き)に従
って磁化回転膜41の磁化が回転し、抵抗が変化して対
称波形の再生信号が得られた。センス電流を増加させる
とほぼ線形に再生信号強度は増加し、センス電流磁界と
磁化固着膜8の磁化の向きが一致しているために磁化固
着膜8の磁化方向の変化は見られなかった。Next, when the recording operation is performed, the magnetization of the magnetization rotation film 41 rotates in accordance with the leakage magnetic field from the magnetization reversal portion (upward or downward perpendicular to the medium surface), the resistance changes, and a reproduction signal having a symmetrical waveform is generated. Was obtained. When the sense current was increased, the reproduction signal intensity increased almost linearly, and the magnetization direction of the magnetization pinned film 8 was not changed because the sense current magnetic field and the magnetization direction of the magnetization pinned film 8 coincided with each other.
【0103】トラックT2に隣接するトラックT3で動
作させた場合には、磁化回転膜41の磁化の向きはトラ
ックT2のときとは逆向きになるが、再生動作上はトラ
ックT2とT3とは等価なのでまったく問題無く記録再
生動作させることができた。When the track T3 adjacent to the track T2 is operated, the magnetization direction of the magnetization rotation film 41 is opposite to that of the track T2, but the tracks T2 and T3 are equivalent in the reproducing operation. So I was able to record and play back without any problems.
【0104】次に、再生ヘッドを記録済みのトラックか
ら未記録のトラックへ少しずつディスク半径方向に送っ
てオフトラック特性を調べた結果、トラックピッチの2
μmの送りで全く信号は無くなり、本実施形態のディス
ク1Dがサイドフリンジを低下させる上でも効果的であ
ることが明らかとなった。また、CSS試験を繰り返し
5千回行ったが、とくに媒体面の摩耗は認められなかっ
た。ただし、媒体面にルブリカントを塗布してCSS試
験した。これから明らかなように、磁石部材11が記録
磁性部材12よりも硬質であれば、磁石部材11がガイ
ドレール的に作用してCSS耐性を向上させる効果を有
することが判明した。Next, the reproducing head was gradually moved from the recorded track to the unrecorded track in the radial direction of the disk to examine the off-track characteristics.
It was found that the signal disappears at the feed of μm, and the disc 1D of the present embodiment is also effective in reducing the side fringe. Further, the CSS test was repeated 5,000 times, but no particular wear of the medium surface was observed. However, a CSS test was conducted by applying lubricant to the medium surface. As is clear from this, it has been found that if the magnet member 11 is harder than the recording magnetic member 12, the magnet member 11 acts as a guide rail and has an effect of improving CSS resistance.
【0105】さらに、CSS耐性を向上する上では磁石
部材11としてTbCoの代わりにフェライト系の磁石
部材を用いることが効果的であり、そのような場合は保
護膜無しでも5万パス程度の実用的なCSS耐性が期待
でき、狭スペーシング化上も効果的である。なお、上記
実施例に用いたTbCo磁石層の場合は、媒体面上に1
0nm程度のSiO2 保護膜を設けるのが実用上は好ま
しい。Further, in order to improve the CSS resistance, it is effective to use a ferrite type magnet member instead of TbCo as the magnet member 11. In such a case, a practical use of about 50,000 paths without a protective film is practical. It can be expected to have excellent CSS resistance and is effective in narrowing the spacing. Incidentally, in the case of the TbCo magnet layer used in the above-mentioned examples, 1 is formed on the medium surface.
It is practically preferable to provide a SiO 2 protective film having a thickness of about 0 nm.
【0106】(比較例)以上、本発明の効果を明確にし
た実験の結果を記述したが、比較例として従来の方法を
用いて磁石部材を持たない磁気ディスクを作成し、これ
を上記実施形態のディスク1Dと同様に評価した。比較
例ディスクの構成は、ガラス基板上に20nmのCoP
t記録層と10nmのSi02 保護層をスパッタ形成
し、その上にディスク1Dに用いたのと同様のルブリカ
ントを塗布したものである。ディスク動作試験の条件
は、ヘッド浮上量を0.03μmとしてヘッド/メディ
ア間のスペーシングを変えたことを除き、ディスク1D
の条件と同じにした。(Comparative Example) The result of the experiment clarifying the effect of the present invention has been described above. As a comparative example, a conventional method was used to prepare a magnetic disk having no magnet member, which was used in the above embodiment. Evaluation was made in the same manner as in Disc 1D. The structure of the comparative disk is 20 nm CoP on a glass substrate.
A t recording layer and a 10 nm SiO 2 protective layer are formed by sputtering, and the same lubricant as used in the disk 1D is applied thereon. The conditions for the disk operation test were that the head flying height was 0.03 μm and the spacing between the head and the medium was changed, and the disk 1D was tested.
The conditions are the same.
【0107】比較例ディスクからヘッドの磁化回転膜4
1へ漏洩する磁界は未記録状態ではランダムなので、磁
化回転膜41の磁化方向は平均的に見て磁化固着膜8と
磁化固定膜42の漏洩磁界の向き、すなわち図15で紙
面に垂直な(裏から表)に向く。これに起因して記録磁
区列を再生する際に、比較例ディスク媒体からの磁界が
図15中にて紙面の表から裏に向かう場合は磁化回転膜
41の磁化が回転して再生信号が得られたが、裏から表
に向かう場合は磁化回転膜41の磁化は回転せず信号が
得られなかった。すなわち、比較例ディスクでは再生信
号出力は得られたものの磁化転移の半分に相当する出力
しか得られなかった。Comparative Example Disk to Head Magnetization Rotating Film 4
Since the magnetic field leaking to 1 is random in the unrecorded state, the magnetization direction of the magnetization rotation film 41 is, on average, the direction of the leakage magnetic field of the magnetization fixed film 8 and the magnetization fixed film 42, that is, perpendicular to the paper surface in FIG. Facing from the back). Due to this, when the magnetic field from the comparative example disk medium is directed from the front side to the back side of the paper in FIG. 15 when reproducing the recording magnetic domain sequence, the magnetization of the magnetization rotation film 41 rotates to obtain a reproduction signal. However, when going from the back to the front, the magnetization of the magnetization rotation film 41 did not rotate and no signal was obtained. That is, although the reproduction signal output was obtained with the comparative example disk, only an output corresponding to half of the magnetic transition was obtained.
【0108】また、比較例ディスクにおいてはサーボラ
イト無しでは未記録状態のトラックからは何等トラッキ
ング情報が得られないので、次第にトラックずれを生じ
るとともに、サイドフリンジが大きくなって隣接トラッ
クからの余分なノイズ信号の混入が大きくなるという不
都合を生じた。Further, in the comparative disk, no tracking information can be obtained from the unrecorded track without servo write, so that track deviation gradually occurs and side fringes become large, resulting in extra noise from adjacent tracks. This causes the inconvenience of large signal mixing.
【0109】上記の実施例と比較例では、基板としてガ
ラス、記録磁性層としてCoPt膜、磁石層としてTb
Co膜、保護膜としてSiO2 を使用した例を述べた
が、本発明はとくにこれらの材料のみに限定されず、基
板にAl等の金属を、記録磁性部材12にCoCrT
a、CoNiPt、CoCr、Baフェライト等を、磁
石部材11にフェライト、SmCo、NdFe、MnB
i等を、また保護膜としてC等の様々な材料を用いるこ
とができる。さらに、記録磁性部材11の下地にCr等
の配向制御層、NiFe等の高透磁率層等が配置されて
いてもよい。In the above examples and comparative examples, glass is used as the substrate, CoPt film is used as the recording magnetic layer, and Tb is used as the magnet layer.
Although an example in which SiO 2 is used as the Co film and the protective film has been described, the present invention is not particularly limited to these materials, a metal such as Al is used for the substrate, and CoCrT is used for the recording magnetic member 12.
a, CoNiPt, CoCr, Ba ferrite, etc., for the magnet member 11 ferrite, SmCo, NdFe, MnB
Various materials such as i can be used as the protective film and C as the protective film. Furthermore, an orientation control layer of Cr or the like, a high magnetic permeability layer of NiFe, or the like may be disposed under the recording magnetic member 11.
【0110】また、磁石部材の横断面形状も多用な変形
例があげられ、矩形状以外にV字状、半円状でもよい。Further, there are various modified examples of the cross-sectional shape of the magnet member, and it may be V-shaped or semi-circular in addition to the rectangular shape.
【0111】また、上記実施形態の磁気ディスク1Dで
は磁石部材11を設ける領域の深さを記録磁性層12の
膜厚と同じにしたが、磁石部材11の深さ(厚さ)は必
ずしも記録磁性層12の膜厚と同じであることを要しな
い。例えば図17に示すディスク1Eでは、磁石部材1
1aの深さを記録磁性部材12aの膜厚より小さくして
いる。また、図18に示すように、中間層(下地層)5
を基板1aと記録層2との間に有するディスク1Fで
は、磁石部材11bの深さを中間層3の膜厚と記録磁性
部材12bの膜厚とを合計したものとしてもよい。さら
に、図19に示すディスク1Gでは、磁石部材11cの
深さを記録磁性部材12cの膜厚より大きくしている。Further, in the magnetic disk 1D of the above-described embodiment, the depth of the region where the magnet member 11 is provided is set to be the same as the film thickness of the recording magnetic layer 12, but the depth (thickness) of the magnet member 11 is not necessarily the recording magnetic layer. It need not be the same as the thickness of layer 12. For example, in the disk 1E shown in FIG. 17, the magnet member 1
The depth of 1a is smaller than the film thickness of the recording magnetic member 12a. Further, as shown in FIG. 18, the intermediate layer (base layer) 5
In the disc 1F having the substrate 1a and the recording layer 2, the depth of the magnet member 11b may be the sum of the film thickness of the intermediate layer 3 and the film thickness of the recording magnetic member 12b. Further, in the disc 1G shown in FIG. 19, the depth of the magnet member 11c is made larger than the film thickness of the recording magnetic member 12c.
【0112】また、スピンバルブ構造以外の磁気抵抗効
果形再生素子、例えば異方性磁気抵抗膜や、人工格子的
な多層構造膜や、グラニュラー膜等に対しても同様の効
果を得ることができる。すなわち、再生信号の対称性を
得る上で何等かの動作点バイアスを必要とする磁気抵抗
効果素子全般に対して同様の効果を奏する。The same effect can be obtained for a magnetoresistive effect reproducing element other than the spin valve structure, for example, an anisotropic magnetoresistive film, an artificial lattice multi-layered film, a granular film, or the like. . That is, the same effect is obtained for all magnetoresistive elements that require some operating point bias to obtain the symmetry of the reproduced signal.
【0113】本実施形態の磁気ディスクを用いれば、磁
気抵抗効果型再生ヘッドを有する磁気記録再生装置にお
いて、大きなセンス電流を通電できるので高い再生信号
強度を得ることができ、良好な再生信号波形の対称性が
得られるのでエラーレートの少ない再生動作が安定して
でき、再生ヘッド構造が簡略化されるので安価にヘッド
を製造できる。さらに付随的効果として、サイドフリン
ジの少ない記録が可能となり、かつ安定したトラッキン
グ動作が可能となって狭トラック化が容易になり、かつ
狭スペーシング動作をも可能たらしめる。When the magnetic disk of this embodiment is used, in a magnetic recording / reproducing apparatus having a magnetoresistive effect reproducing head, a large sense current can be passed, so that a high reproducing signal strength can be obtained and a good reproducing signal waveform can be obtained. Since the symmetry is obtained, the reproducing operation with a small error rate can be stably performed, and the reproducing head structure is simplified, so that the head can be manufactured at low cost. Further, as an additional effect, recording with less side fringes is possible, stable tracking operation is possible, narrowing of track is facilitated, and narrow spacing operation is also possible.
【0114】[0114]
【発明の効果】本発明によれば、硬質ガードバンド部材
により記録磁性部材を互いに分離することで、サイドフ
リンジが大幅に低減化され、狭トラック化が容易とな
る。また、保護膜が無くても高耐久性を達成でき、狭ス
ペーシング化が容易となり、かつ狭ビットピッチ化が容
易となり、総合的に磁気記録の高密度化に貢献する所多
大である。さらに、高価格化を招くことなく、硬質ガー
ドバンド部材の形成が可能な磁気ディスク及びその製造
方法が提供される。According to the present invention, by separating the recording magnetic members from each other by the hard guard band member, the side fringe is greatly reduced and the track narrowing is facilitated. In addition, even without a protective film, high durability can be achieved, narrow spacing can be facilitated, and narrow bit pitch can be facilitated, which greatly contributes to high density magnetic recording. Furthermore, a magnetic disk capable of forming a hard guard band member and a method of manufacturing the same are provided without increasing the cost.
【0115】また、本発明によれば、記録層下部に配置
する膜に対する自由度が高く、面内媒体の場合は配向制
御膜を配置する等して記録磁性厚を高密度記録対応の薄
さに設定するのが簡単になり、垂直媒体では記録層下部
に高透磁率層を配置する等して記録再生磁界を強めるこ
とが容易になる。また、硬質のガードバンド部材を採用
することによりCSS耐性を大幅に向上することができ
るので、将来的には接触記録方式に対しても十分に応用
できる。さらに、絶縁性のガードバンド部材を採用すれ
ば磁気抵抗効果型ヘッドをディスク面に接触させること
も可能であり、総合的に磁気記録の高密度化に大いに寄
与する。Further, according to the present invention, the degree of freedom with respect to the film disposed under the recording layer is high, and in the case of an in-plane medium, the orientation control film is disposed to reduce the recording magnetic thickness to a thinness suitable for high density recording. In the perpendicular medium, it is easy to strengthen the recording / reproducing magnetic field by disposing a high magnetic permeability layer under the recording layer. Further, since the CSS resistance can be greatly improved by adopting the hard guard band member, it can be sufficiently applied to the contact recording method in the future. Furthermore, if an insulative guard band member is adopted, it is possible to bring the magnetoresistive head into contact with the disk surface, which greatly contributes to higher density magnetic recording as a whole.
【0116】本発明の磁気ディスクによれば、媒体磁界
によって磁気抵抗効果形ヘッドに適当な動作点バイアス
を印加するので、簡単な再生素子構造を用いても対称波
型の安定した再生動作が可能となり、再生素子の製造が
簡便になる。According to the magnetic disk of the present invention, since an appropriate operating point bias is applied to the magnetoresistive head by the magnetic field of the medium, a symmetric wave type stable reproducing operation is possible even with a simple reproducing element structure. Therefore, the manufacturing of the reproducing element is simplified.
【0117】とくにサーボライトしない場合であっても
安定して高精度のトラッキング動作をすることが可能と
なり、サイドフリンジの少ない記録が実現でき、かつ狭
スペーシング動作がしやすくなるので、総合的に磁気記
録の高密度化と高性能化に寄与するところが大である。In particular, even if the servo write is not performed, stable high-precision tracking operation can be performed, recording with less side fringes can be realized, and narrow spacing operation can be easily performed. It greatly contributes to high density and high performance of magnetic recording.
【図1】図1は、本発明の第1実施形態に係る磁気ディ
スクの一部を切り欠いて記録トラック部分を拡大して示
す拡大斜視図。FIG. 1 is an enlarged perspective view showing an enlarged recording track portion by cutting out a part of a magnetic disk according to a first embodiment of the present invention.
【図2】図2は、磁気ディスクの製造方法を説明するた
めに製造プロセスの一工程にあるディスクを示す縦断面
図。FIG. 2 is a vertical cross-sectional view showing a disk in one step of a manufacturing process for explaining a magnetic disk manufacturing method.
【図3】図3は、磁気ディスクの製造方法を説明するた
めに製造プロセスの一工程にあるディスクを示す縦断面
図。FIG. 3 is a vertical cross-sectional view showing the disk in one step of the manufacturing process for explaining the method of manufacturing the magnetic disk.
【図4】図4は、磁気ディスクの製造方法を説明するた
めに製造プロセスの一工程にあるディスクを示す縦断面
図。FIG. 4 is a vertical cross-sectional view showing the disk in one step of the manufacturing process for explaining the method of manufacturing the magnetic disk.
【図5】図5は、磁気ディスクの製造方法を説明するた
めに製造プロセスの一工程にあるディスクを示す縦断面
図。FIG. 5 is a vertical cross-sectional view showing the disk in one step of the manufacturing process for explaining the method of manufacturing the magnetic disk.
【図6】図6は、磁気ディスクを示す縦断面図。FIG. 6 is a vertical cross-sectional view showing a magnetic disk.
【図7】図7は、他の実施形態の磁気ディスクを示す縦
断面図。FIG. 7 is a vertical cross-sectional view showing a magnetic disk of another embodiment.
【図8】図8は、他の実施形態の磁気ディスクを示す縦
断面図。FIG. 8 is a vertical cross-sectional view showing a magnetic disk of another embodiment.
【図9】図9は、他の実施形態の磁気ディスクを示す縦
断面図。FIG. 9 is a vertical cross-sectional view showing a magnetic disk of another embodiment.
【図10】図10は、磁気記録装置の全体概要斜視図。FIG. 10 is an overall schematic perspective view of a magnetic recording device.
【図11】図11は、磁気記録装置の制御系を示す構成
ブロック図。FIG. 11 is a configuration block diagram showing a control system of the magnetic recording apparatus.
【図12】図12は、磁気ヘッドユニット及び磁気ディ
スクを模式的に示す部分拡大概要図。FIG. 12 is a partially enlarged schematic view schematically showing a magnetic head unit and a magnetic disk.
【図13】図13は、GMR型記録ヘッドの主要部を模
式的に示す斜視図。FIG. 13 is a perspective view schematically showing a main part of a GMR type recording head.
【図14】図14は、本発明の第2実施形態に係る磁気
ディスクの一部を切り欠いて記録トラック部分を拡大し
て示す拡大斜視図。FIG. 14 is an enlarged perspective view showing an enlarged recording track portion by cutting out a part of a magnetic disk according to a second embodiment of the present invention.
【図15】図15は、本発明の効果を実証するための動
作試験に用いた磁気抵抗効果型再生素子を示す縦断面
図。FIG. 15 is a longitudinal sectional view showing a magnetoresistive effect reproducing element used in an operation test for demonstrating the effect of the present invention.
【図16】図16は、第2実施形態に係る磁気ディスク
と動作中のヘッドとの磁化の向きの関係を示す模式図。FIG. 16 is a schematic diagram showing the relationship between the magnetization directions of the magnetic disk according to the second embodiment and the head in operation.
【図17】図17は、本発明の他の実施形態に係る磁気
ディスクの記録トラック部分を示す縦断面図。FIG. 17 is a vertical cross-sectional view showing a recording track portion of a magnetic disk according to another embodiment of the present invention.
【図18】図18は、本発明の他の実施形態に係る磁気
ディスクの記録トラック部分を示す縦断面図。FIG. 18 is a vertical cross-sectional view showing a recording track portion of a magnetic disk according to another embodiment of the present invention.
【図19】図19は、本発明の他の実施形態に係る磁気
ディスクの記録トラック部分を示す縦断面図である。FIG. 19 is a longitudinal sectional view showing a recording track portion of a magnetic disk according to another embodiment of the present invention.
1a…基板、2…記録層、2a…記録磁性部材、3…レ
ジスト層、4a…ガードバンド部材、5…下地層、6…
再生ヘッド電極(Cu電極膜)、7…導電性非磁性膜
(Cu膜)、8…磁化固着膜、11,M2,M3,M
4,M5…磁石部材(TbCo膜)、12…記録磁性部
材(CoPt膜)、41…磁化回転膜、42…磁化固定
膜。1a ... Substrate, 2 ... Recording layer, 2a ... Recording magnetic member, 3 ... Resist layer, 4a ... Guard band member, 5 ... Underlayer, 6 ...
Reproducing head electrode (Cu electrode film), 7 ... Conductive non-magnetic film (Cu film), 8 ... Magnetization fixed film, 11, M2, M3, M
4, M5 ... Magnet member (TbCo film), 12 ... Recording magnetic member (CoPt film), 41 ... Magnetization rotating film, 42 ... Magnetization fixed film.
Claims (17)
磁気的に記録再生する磁性部材でつくられた記録トラッ
ク部と、互いに隣接する前記記録トラック部間にトラッ
ク方向に実質的に連続するように設けられ、前記磁性部
材よりも硬く、かつ非磁性の材料でつくられたガードバ
ンド部材と、を具備し、 上記ガードバンド部材の下方領域には、上記磁性部材が
存在しないか、又は、上記記録トラック部をなす磁性部
材の厚みとは異なる厚みの磁性部材が設けられているこ
とを特徴とする磁気ディスク。1. A substrate, a recording track portion formed on the substrate and made of a magnetic member for magnetically recording and reproducing information, and a substantially continuous track direction between the recording track portions adjacent to each other. And a guard band member that is harder than the magnetic member and is made of a non-magnetic material, and the magnetic member does not exist in the lower region of the guard band member, or A magnetic member having a thickness different from that of the magnetic member forming the recording track portion.
が、上記記録トラック部をなす磁性部材の電気抵抗より
も大きいことを特徴とする請求項1記載の磁気ディス
ク。2. The magnetic disk according to claim 1, wherein an electric resistance of the guard band member is larger than an electric resistance of a magnetic member forming the recording track portion.
で形成されるディスク表面が実質的に平坦であることを
特徴とする請求項1又は2のいずれかに記載の磁気ディ
スク。3. The magnetic disk according to claim 1, wherein a disk surface formed by the magnetic member and the guard band member is substantially flat.
録トラック部をなす磁性部材の厚みと実質的に同じであ
ることを特徴とする請求項1記載の磁気ディスク。4. The magnetic disk according to claim 1, wherein the thickness of the guard band member is substantially the same as the thickness of the magnetic member forming the recording track portion.
録トラック部をなす磁性部材の厚みより小さいことを特
徴とする請求項1記載の磁気ディスク。5. The magnetic disk according to claim 1, wherein the thickness of the guard band member is smaller than the thickness of the magnetic member forming the recording track portion.
トラック部をなす磁性部材の厚みより大きく、上記ガー
ドバンド部材の一部が基板のなかに埋設されていること
を特徴とする請求項1記載の磁気ディスク。6. The guard band member is thicker than the magnetic member forming the recording track portion, and a part of the guard band member is embedded in the substrate. Magnetic disk.
iPメッキ層、Cr配向制御層、NiFe軟磁性層のう
ちのいずれかからなる下地層を有し、 上記ガードバンド部材の厚みは、この下地層の厚みと上
記磁性部材の厚みとを合計した厚みと実質的に同じであ
ることを特徴とする請求項1記載の磁気ディスク。7. Further, N is provided between the magnetic member and the substrate.
An underlayer made of any one of an iP plated layer, a Cr orientation control layer and a NiFe soft magnetic layer is provided, and the thickness of the guard band member is the sum of the thickness of the underlayer and the thickness of the magnetic member. 2. The magnetic disk according to claim 1, which is substantially the same as
気的に記録再生する磁性部材でつくられた記録トラック
部と、互いに隣接する前記記録トラック部間にトラック
方向に実質的に連続するように設けられ、上記記録トラ
ック部をなす磁性部材とは磁気的に異なる材料でつくら
れ、外部に直流磁界を供給する磁石部材と、を備えるこ
とを特徴とする磁気ディスク。8. A substrate, a recording track portion made of a magnetic member for magnetically recording and reproducing information provided on the substrate, and the recording track portions which are adjacent to each other are substantially continuous in the track direction. And a magnetic member that is made of a material that is magnetically different from the magnetic member that forms the recording track portion and that supplies a DC magnetic field to the outside.
れるディスク表面が実質的に平坦であることを特徴とす
る請求項8記載の磁気ディスク。9. The magnetic disk according to claim 8, wherein the disk surface formed by the magnetic member and the magnet member is substantially flat.
ック部をなす磁性部材の厚みと実質的に同じであること
を特徴とする請求項8記載の磁気ディスク。10. The magnetic disk according to claim 8, wherein the thickness of the magnet member is substantially the same as the thickness of the magnetic member forming the recording track portion.
ック部をなす磁性部材の厚みより小さいことを特徴とす
る請求項8記載の磁気ディスク。11. The magnetic disk according to claim 8, wherein the thickness of the magnet member is smaller than the thickness of the magnetic member forming the recording track portion.
ク部をなす磁性部材の厚みより大きく、上記磁石部材の
一部が基板のなかに埋設されていることを特徴とする請
求項8記載の磁気ディスク。12. The magnetic material according to claim 8, wherein the thickness of the magnet member is larger than the thickness of the magnetic member forming the recording track portion, and a part of the magnet member is embedded in the substrate. disk.
NiPメッキ層、Cr配向制御層、NiFe軟磁性層の
うちのいずれかからなる下地層を有し、 上記磁石部材の厚みは、この下地層の厚みと上記磁性部
材の厚みとを合計した厚みと実質的に同じであることを
特徴とする請求項8記載の磁気ディスク。13. An underlayer made of any one of a NiP plating layer, a Cr orientation control layer and a NiFe soft magnetic layer is further provided between the magnetic member and the substrate, and the magnet member has a thickness of 9. The magnetic disk according to claim 8, wherein the total thickness of the underlayer and the magnetic member is substantially the same.
よって磁化方向が変化しないような大きさの保磁力を有
する材料でできていることを特徴とする請求項8記載の
磁気ディスク。14. The magnetic disk according to claim 8, wherein the magnet member is made of a material having a coercive force of such a magnitude that the magnetization direction is not changed by the recording magnetic head.
上に磁性材料からなる磁性層を形成する工程と、 (b)この磁性層の一部を除去してトラック方向に実質
的に連続するように互いに隣接する記録トラック部を規
定するガードバンドスペースをパターン形成する工程
と、 (c)このガードバンドスペースを、前記磁性層をなす
磁性材料よりも硬く、かつ非磁性の材料からなるガード
バンド部材で満たす工程と、 (d)このガードバンド部材及び前記磁性層の表面がそ
れぞれ実質的に平坦になるように加工する工程と、を備
えることを特徴とする磁気ディスクの製造方法。15. A step of: (a) forming a magnetic layer made of a magnetic material on a substrate having a substantially flat surface; Patterning guard band spaces that define recording track portions adjacent to each other so as to be continuous; (c) this guard band space is made of a material that is harder than the magnetic material that forms the magnetic layer and is non-magnetic A method of manufacturing a magnetic disk, comprising: a step of filling with a guard band member; and (d) a step of processing so that the surfaces of the guard band member and the magnetic layer are substantially flat.
上に磁性材料からなる磁性層を形成する工程と、 (B)この磁性層の一部を除去してトラック方向に実質
的に連続するように互いに隣接する記録トラック部を規
定するスペースをパターン形成する工程と、 (C)このスペースを、前記磁性材料とは磁気的に異な
る材料でつくられ、外部に直流磁界を供給する磁石部材
で満たす工程と、 (D)この磁石部材及び前記磁性層の表面がそれぞれ実
質的に平坦になるように加工する工程と、を備えること
を特徴とする磁気ディスクの製造方法。16. (A) A step of forming a magnetic layer made of a magnetic material on a substrate having a substantially flat surface, and (B) a part of this magnetic layer is removed so as to be substantially in the track direction. Patterning a space that defines adjacent recording track portions so as to be continuous with each other, and (C) a magnet that is made of a material that is magnetically different from the magnetic material and that supplies a DC magnetic field to the outside. A method of manufacturing a magnetic disk comprising: a step of filling with a member; and a step (D) of processing so that the surfaces of the magnet member and the magnetic layer are substantially flat.
を磁気的に記録再生する磁性部材でつくられた記録トラ
ック部と、互いに隣接する前記記録トラック部間にトラ
ック方向に実質的に連続するように設けられ、前記磁性
部材よりも硬く、かつ非磁性の材料でつくられたガード
バンド部材と、を具備し、上記ガードバンド部材の下方
領域には、上記磁性部材が存在しないか、又は、上記記
録トラック部をなす磁性部材の厚みとは異なる厚みの磁
性部材が設けられている磁気ディスクに対して、情報を
磁気的に読み込み書き込む磁気ヘッドと、外部装置から
送られてくる書き込み情報をデータ処理し、データ処理
された情報をリードライト回路を介して前記磁気ヘッド
に送る制御部と、を備え、 上記磁気ヘッドはスピンバルブ型の磁気抵抗素子を具備
し、 このスピンバルブ型の磁気抵抗素子は、 上記リードライト回路に接続され、上記磁気ディスクの
面に垂直方向に磁化が固定された第1の磁性層と、 磁化が印加磁界により変化する第2の磁性層と、 この第2の磁性層と上記第1の磁性層との間に挿入され
た非磁性導電層と、 を備えていることを特徴とする磁気記録装置。17. A substrate, a recording track portion provided on the substrate and made of a magnetic member for magnetically recording and reproducing information, and a substantially continuous track direction between the recording track portions adjacent to each other. And a guard band member that is harder than the magnetic member and is made of a non-magnetic material, and the magnetic member does not exist in the lower region of the guard band member, or , A magnetic head magnetically reading and writing information on a magnetic disk provided with a magnetic member having a thickness different from that of the magnetic member forming the recording track portion, and writing information sent from an external device. A controller for processing the data and sending the data-processed information to the magnetic head through a read / write circuit, wherein the magnetic head is a spin valve type magnetoresistive element. This spin-valve magnetoresistive element is connected to the read / write circuit and has a first magnetic layer whose magnetization is fixed in a direction perpendicular to the surface of the magnetic disk, and the magnetization is changed by an applied magnetic field. A magnetic recording device comprising: a second magnetic layer; and a non-magnetic conductive layer inserted between the second magnetic layer and the first magnetic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19184696A JPH0997419A (en) | 1995-07-24 | 1996-07-22 | Magnetic disk, production of magnetic disk and magnetic recorder |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18731395 | 1995-07-24 | ||
JP7-187313 | 1995-07-27 | ||
JP7-192015 | 1995-07-27 | ||
JP19201595 | 1995-07-27 | ||
JP19184696A JPH0997419A (en) | 1995-07-24 | 1996-07-22 | Magnetic disk, production of magnetic disk and magnetic recorder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0997419A true JPH0997419A (en) | 1997-04-08 |
Family
ID=27325866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19184696A Pending JPH0997419A (en) | 1995-07-24 | 1996-07-22 | Magnetic disk, production of magnetic disk and magnetic recorder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0997419A (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002074654A (en) * | 2000-08-23 | 2002-03-15 | Tdk Corp | Method for manufacturing functional element and functional element |
WO2004079725A1 (en) | 2003-03-05 | 2004-09-16 | Tdk Corporation | Production method for magnetic recording medium and production device therefor |
WO2005013264A1 (en) * | 2003-07-31 | 2005-02-10 | Tdk Corporation | Production process and production system of magnetic recording medium |
WO2005015549A1 (en) * | 2003-08-07 | 2005-02-17 | Tdk Corporation | Production process and production system of magnetic recording medium |
WO2005029471A1 (en) * | 2003-09-22 | 2005-03-31 | Tdk Corporation | Process for producing magnetic recording medium and magnetic recording medium |
WO2005064598A1 (en) * | 2003-12-25 | 2005-07-14 | Tdk Corporation | Method for filling concave portions in concave/convex pattern and magnetic recording medium manufacturing method |
JP2006252772A (en) * | 2006-06-23 | 2006-09-21 | Tdk Corp | Manufacturing method of magnetic recording medium |
CN1305035C (en) * | 2003-10-28 | 2007-03-14 | Tdk股份有限公司 | Method for manufacturing magnetic recording medium |
US7223439B2 (en) | 2003-03-26 | 2007-05-29 | Tdk Corporation | Method for manufacturing magnetic recording medium and magnetic recording medium |
US7247251B2 (en) | 2004-02-23 | 2007-07-24 | Tdk Corporation | Method for manufacturing a magnetic recording medium |
US7247343B2 (en) | 2003-08-27 | 2007-07-24 | Tdk Corporation | Method for manufacturing magnetic recording medium |
CN1328712C (en) * | 2003-03-05 | 2007-07-25 | Tdk股份有限公司 | Production method for magnetic recording medium and production device therefor |
JP2007280609A (en) * | 2007-07-27 | 2007-10-25 | Tdk Corp | Manufacturing method of magnetic recording medium |
CN100346397C (en) * | 2004-03-03 | 2007-10-31 | Tdk株式会社 | Magnetic recording medium |
CN100350462C (en) * | 2004-02-26 | 2007-11-21 | Tdk株式会社 | Magnetic recording medium and magnetic recording and reproducing device |
CN100354936C (en) * | 2004-09-24 | 2007-12-12 | Tdk股份有限公司 | Information recording medium, recording/reproducing apparatus, and stamper |
CN100362573C (en) * | 2004-08-03 | 2008-01-16 | Tdk股份有限公司 | Magnetic recording medium and magnetic recording and reproducing apparatus |
JP2008016172A (en) * | 2006-07-07 | 2008-01-24 | Marvell World Trade Ltd | Disk apparatus and reproducing head |
US7345838B2 (en) | 2004-08-06 | 2008-03-18 | Kabushiki Kaisha Toshiba | Magnetic recording media and magnetic recording and reproducing apparatus |
CN100380453C (en) * | 2004-03-25 | 2008-04-09 | Tdk股份有限公司 | Information recording medium |
US7368184B2 (en) | 2003-09-26 | 2008-05-06 | Tdk Corporation | Magnetic recording medium and magnetic recording device |
US7378029B2 (en) | 2004-02-23 | 2008-05-27 | Tdk Corporation | Method for manufacturing magnetic recording medium |
US7385785B2 (en) | 2004-11-10 | 2008-06-10 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproduction apparatus |
US7403355B2 (en) | 2004-09-01 | 2008-07-22 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
US7413819B2 (en) | 2004-02-23 | 2008-08-19 | Tdk Corporation | Magnetic recording medium |
US7423842B2 (en) | 2004-02-26 | 2008-09-09 | Tdk Corporation | Magnetic recording medium having servo and data track regions with different arithmetical mean deviations |
EP2009624A1 (en) | 2007-06-29 | 2008-12-31 | Fujifilm Corporation | Method for producing magnetic recording medium, magnetic recording medium produced by the production method, and mold structure for use in the production method |
US7474506B2 (en) | 2005-02-28 | 2009-01-06 | Tdk Corporation | Magnetic recording medium, recording/reproducing apparatus, and stamper |
US7477485B2 (en) | 2004-09-24 | 2009-01-13 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
US7482070B2 (en) | 2004-04-30 | 2009-01-27 | Tdk Corporation | Magnetic recording medium |
US7488429B2 (en) | 2004-06-28 | 2009-02-10 | Tdk Corporation | Method of dry etching, method of manufacturing magnetic recording medium, and magnetic recording medium |
EP2026338A1 (en) | 2007-08-07 | 2009-02-18 | Fujifilm Corporation | Apparatus and method for manufacturing magnetic recording medium |
US7505220B2 (en) | 2005-03-02 | 2009-03-17 | Tdk Corporation | Magnetic recording medium, recording/reproducing apparatus, and stamper |
US7538041B2 (en) | 2004-09-22 | 2009-05-26 | Tdk Corporation | Magnetic recording medium, method of manufacturing the same, and intermediate for magnetic recording medium |
US7541106B2 (en) | 2005-02-24 | 2009-06-02 | Tdk Corporation | Magnetic recording medium and magnetic recording/reproducing device |
US7554768B2 (en) | 2004-09-01 | 2009-06-30 | Tdk Corporation | Information recording medium with concave/convex servo pattern having decreasing unit convex part length ratio |
US7597972B2 (en) | 2004-06-25 | 2009-10-06 | Tdk Corporation | Magnetic recording medium including a patterned intermediate layer and a non-patterned soft magnetic layer and manufacturing method thereof |
EP2107560A1 (en) | 2008-03-31 | 2009-10-07 | Fujifilm Corporation | Magnetic transfer master carrier and magnetic recording medium |
US7615292B2 (en) | 2004-03-23 | 2009-11-10 | Tdk Corporation | Magnetic recording medium |
US7616404B2 (en) | 2006-12-25 | 2009-11-10 | Tdk Corporation | Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium |
US7662264B2 (en) | 2005-04-19 | 2010-02-16 | Kabushiki Kaisha Toshiba | Method for producing magnetic recording medium |
US7682713B2 (en) | 2005-02-01 | 2010-03-23 | Tdk Corporation | Magnetic recording medium with recording layer having a predetermined concavo-convex pattern and magnetic recording and reproducing apparatus |
US7732005B2 (en) | 2004-05-25 | 2010-06-08 | Hitachi, Ltd. | Method for producing recording medium, recording medium employing said method, and information recording and reproducing apparatus |
US7740903B2 (en) | 2006-02-22 | 2010-06-22 | Tdk Corporation | Method for manufacturing magnetic recording medium |
US7746598B2 (en) | 2004-09-16 | 2010-06-29 | Tdk Corporation | Information recording medium and recording/reproducing apparatus |
US7829267B2 (en) | 2006-01-18 | 2010-11-09 | Tdk Corporation | Stamper, method of forming a concave/convex pattern, and method of manufacturing an information recording medium |
US7864469B2 (en) | 2007-12-28 | 2011-01-04 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
JP2011023082A (en) * | 2009-07-17 | 2011-02-03 | Showa Denko Kk | Method for manufacturing magnetic recording medium and magnetic recording and reproducing device |
US7923135B2 (en) | 2008-03-21 | 2011-04-12 | Fuji Electric Device Technology Co., Ltd. | Magnetic recording medium having a patterned exchange-coupling control layer and method of manufacturing same |
WO2011048746A1 (en) * | 2009-10-23 | 2011-04-28 | 株式会社アルバック | Method for manufacturing master disk for magnetic transfer |
US7940494B2 (en) | 2007-01-16 | 2011-05-10 | Tdk Corporation | Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium |
US8007860B2 (en) | 2008-10-08 | 2011-08-30 | Showa Denko K.K. | Method for manufacturing magnetic recording medium, and magnetic recording and reproducing apparatus |
US8023213B2 (en) | 2008-03-25 | 2011-09-20 | Fuji Electric Device Technology Co., Ltd | Patterned medium inspection method and inspection device |
US8124255B2 (en) | 2008-06-17 | 2012-02-28 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing apparatus |
US8233359B2 (en) | 2006-11-09 | 2012-07-31 | Sharp Kabushiki Kaisha | Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method |
US8298691B2 (en) | 2009-03-18 | 2012-10-30 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing apparatus |
US8419951B2 (en) | 2010-04-27 | 2013-04-16 | Showa Denko K.K. | Method of manufacturing magnetic recording medium, and magnetic recording/reproducing device |
US8599509B2 (en) | 2009-12-02 | 2013-12-03 | HGST Netherlands B.V. | Magnetic recording medium having non-magnetic separating regions and methods of manufacturing the same |
US8637225B2 (en) | 2008-03-18 | 2014-01-28 | Showa Denko K.K. | Magnetic recording medium and magnetic recording/reproducing apparatus |
US8840955B2 (en) | 2008-10-23 | 2014-09-23 | Fuji Electric Co., Ltd. | Magnetic recording medium and method of manufacturing same |
-
1996
- 1996-07-22 JP JP19184696A patent/JPH0997419A/en active Pending
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002074654A (en) * | 2000-08-23 | 2002-03-15 | Tdk Corp | Method for manufacturing functional element and functional element |
WO2004079725A1 (en) | 2003-03-05 | 2004-09-16 | Tdk Corporation | Production method for magnetic recording medium and production device therefor |
US7166318B2 (en) | 2003-03-05 | 2007-01-23 | Tdk Corporation | Production method and production apparatus for magnetic recording medium |
CN1328712C (en) * | 2003-03-05 | 2007-07-25 | Tdk股份有限公司 | Production method for magnetic recording medium and production device therefor |
US7223439B2 (en) | 2003-03-26 | 2007-05-29 | Tdk Corporation | Method for manufacturing magnetic recording medium and magnetic recording medium |
WO2005013264A1 (en) * | 2003-07-31 | 2005-02-10 | Tdk Corporation | Production process and production system of magnetic recording medium |
US7470374B2 (en) | 2003-07-31 | 2008-12-30 | Tdk Corporation | Manufacturing method and manufacturing apparatus of magnetic recording medium |
WO2005015549A1 (en) * | 2003-08-07 | 2005-02-17 | Tdk Corporation | Production process and production system of magnetic recording medium |
US7247343B2 (en) | 2003-08-27 | 2007-07-24 | Tdk Corporation | Method for manufacturing magnetic recording medium |
WO2005029471A1 (en) * | 2003-09-22 | 2005-03-31 | Tdk Corporation | Process for producing magnetic recording medium and magnetic recording medium |
US7368184B2 (en) | 2003-09-26 | 2008-05-06 | Tdk Corporation | Magnetic recording medium and magnetic recording device |
US7225528B2 (en) | 2003-10-28 | 2007-06-05 | Tdk Corporation | Method for manufacturing magnetic recording medium |
CN1305035C (en) * | 2003-10-28 | 2007-03-14 | Tdk股份有限公司 | Method for manufacturing magnetic recording medium |
WO2005064598A1 (en) * | 2003-12-25 | 2005-07-14 | Tdk Corporation | Method for filling concave portions in concave/convex pattern and magnetic recording medium manufacturing method |
US7300595B2 (en) | 2003-12-25 | 2007-11-27 | Tdk Corporation | Method for filling concave portions of concavo-convex pattern and method for manufacturing magnetic recording medium |
US7247251B2 (en) | 2004-02-23 | 2007-07-24 | Tdk Corporation | Method for manufacturing a magnetic recording medium |
US7413819B2 (en) | 2004-02-23 | 2008-08-19 | Tdk Corporation | Magnetic recording medium |
US7378029B2 (en) | 2004-02-23 | 2008-05-27 | Tdk Corporation | Method for manufacturing magnetic recording medium |
CN100350462C (en) * | 2004-02-26 | 2007-11-21 | Tdk株式会社 | Magnetic recording medium and magnetic recording and reproducing device |
US7423842B2 (en) | 2004-02-26 | 2008-09-09 | Tdk Corporation | Magnetic recording medium having servo and data track regions with different arithmetical mean deviations |
US7352529B2 (en) | 2004-02-26 | 2008-04-01 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing device using a magnetic recording layer formed with a predetermined concavo-convex pattern |
CN100346397C (en) * | 2004-03-03 | 2007-10-31 | Tdk株式会社 | Magnetic recording medium |
US7438982B2 (en) | 2004-03-03 | 2008-10-21 | Tdk Corporation | Magnetic recording medium including disk substrate, magnetic layer, and non-magnetic layer |
US7615292B2 (en) | 2004-03-23 | 2009-11-10 | Tdk Corporation | Magnetic recording medium |
CN100380453C (en) * | 2004-03-25 | 2008-04-09 | Tdk股份有限公司 | Information recording medium |
US7604880B2 (en) | 2004-03-25 | 2009-10-20 | Tdk Corporation | Information recording medium |
US7482070B2 (en) | 2004-04-30 | 2009-01-27 | Tdk Corporation | Magnetic recording medium |
US7732005B2 (en) | 2004-05-25 | 2010-06-08 | Hitachi, Ltd. | Method for producing recording medium, recording medium employing said method, and information recording and reproducing apparatus |
US7597972B2 (en) | 2004-06-25 | 2009-10-06 | Tdk Corporation | Magnetic recording medium including a patterned intermediate layer and a non-patterned soft magnetic layer and manufacturing method thereof |
US7488429B2 (en) | 2004-06-28 | 2009-02-10 | Tdk Corporation | Method of dry etching, method of manufacturing magnetic recording medium, and magnetic recording medium |
CN100362573C (en) * | 2004-08-03 | 2008-01-16 | Tdk股份有限公司 | Magnetic recording medium and magnetic recording and reproducing apparatus |
US7494727B2 (en) | 2004-08-03 | 2009-02-24 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing apparatus |
CN100411018C (en) * | 2004-08-06 | 2008-08-13 | 株式会社东芝 | Magnetic recording media and magnetic recording and reproducing apparatus |
US7345838B2 (en) | 2004-08-06 | 2008-03-18 | Kabushiki Kaisha Toshiba | Magnetic recording media and magnetic recording and reproducing apparatus |
US7403355B2 (en) | 2004-09-01 | 2008-07-22 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
US7554768B2 (en) | 2004-09-01 | 2009-06-30 | Tdk Corporation | Information recording medium with concave/convex servo pattern having decreasing unit convex part length ratio |
US7746598B2 (en) | 2004-09-16 | 2010-06-29 | Tdk Corporation | Information recording medium and recording/reproducing apparatus |
US7538041B2 (en) | 2004-09-22 | 2009-05-26 | Tdk Corporation | Magnetic recording medium, method of manufacturing the same, and intermediate for magnetic recording medium |
US7477485B2 (en) | 2004-09-24 | 2009-01-13 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
CN100354936C (en) * | 2004-09-24 | 2007-12-12 | Tdk股份有限公司 | Information recording medium, recording/reproducing apparatus, and stamper |
US7385785B2 (en) | 2004-11-10 | 2008-06-10 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproduction apparatus |
US7682713B2 (en) | 2005-02-01 | 2010-03-23 | Tdk Corporation | Magnetic recording medium with recording layer having a predetermined concavo-convex pattern and magnetic recording and reproducing apparatus |
US7541106B2 (en) | 2005-02-24 | 2009-06-02 | Tdk Corporation | Magnetic recording medium and magnetic recording/reproducing device |
US7474506B2 (en) | 2005-02-28 | 2009-01-06 | Tdk Corporation | Magnetic recording medium, recording/reproducing apparatus, and stamper |
US7505220B2 (en) | 2005-03-02 | 2009-03-17 | Tdk Corporation | Magnetic recording medium, recording/reproducing apparatus, and stamper |
US7662264B2 (en) | 2005-04-19 | 2010-02-16 | Kabushiki Kaisha Toshiba | Method for producing magnetic recording medium |
US7829267B2 (en) | 2006-01-18 | 2010-11-09 | Tdk Corporation | Stamper, method of forming a concave/convex pattern, and method of manufacturing an information recording medium |
US7740903B2 (en) | 2006-02-22 | 2010-06-22 | Tdk Corporation | Method for manufacturing magnetic recording medium |
JP2006252772A (en) * | 2006-06-23 | 2006-09-21 | Tdk Corp | Manufacturing method of magnetic recording medium |
JP2008016172A (en) * | 2006-07-07 | 2008-01-24 | Marvell World Trade Ltd | Disk apparatus and reproducing head |
US8233359B2 (en) | 2006-11-09 | 2012-07-31 | Sharp Kabushiki Kaisha | Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method |
US7616404B2 (en) | 2006-12-25 | 2009-11-10 | Tdk Corporation | Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium |
US7940494B2 (en) | 2007-01-16 | 2011-05-10 | Tdk Corporation | Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium |
EP2009624A1 (en) | 2007-06-29 | 2008-12-31 | Fujifilm Corporation | Method for producing magnetic recording medium, magnetic recording medium produced by the production method, and mold structure for use in the production method |
JP2007280609A (en) * | 2007-07-27 | 2007-10-25 | Tdk Corp | Manufacturing method of magnetic recording medium |
EP2026338A1 (en) | 2007-08-07 | 2009-02-18 | Fujifilm Corporation | Apparatus and method for manufacturing magnetic recording medium |
US7864469B2 (en) | 2007-12-28 | 2011-01-04 | Tdk Corporation | Information recording medium, recording/reproducing apparatus, and stamper |
US8637225B2 (en) | 2008-03-18 | 2014-01-28 | Showa Denko K.K. | Magnetic recording medium and magnetic recording/reproducing apparatus |
US7923135B2 (en) | 2008-03-21 | 2011-04-12 | Fuji Electric Device Technology Co., Ltd. | Magnetic recording medium having a patterned exchange-coupling control layer and method of manufacturing same |
US8023213B2 (en) | 2008-03-25 | 2011-09-20 | Fuji Electric Device Technology Co., Ltd | Patterned medium inspection method and inspection device |
EP2107560A1 (en) | 2008-03-31 | 2009-10-07 | Fujifilm Corporation | Magnetic transfer master carrier and magnetic recording medium |
US8124255B2 (en) | 2008-06-17 | 2012-02-28 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing apparatus |
US8007860B2 (en) | 2008-10-08 | 2011-08-30 | Showa Denko K.K. | Method for manufacturing magnetic recording medium, and magnetic recording and reproducing apparatus |
US8840955B2 (en) | 2008-10-23 | 2014-09-23 | Fuji Electric Co., Ltd. | Magnetic recording medium and method of manufacturing same |
US8298691B2 (en) | 2009-03-18 | 2012-10-30 | Tdk Corporation | Magnetic recording medium and magnetic recording and reproducing apparatus |
JP2011023082A (en) * | 2009-07-17 | 2011-02-03 | Showa Denko Kk | Method for manufacturing magnetic recording medium and magnetic recording and reproducing device |
JPWO2011048746A1 (en) * | 2009-10-23 | 2013-03-07 | 株式会社アルバック | Manufacturing method of master for magnetic transfer |
WO2011048746A1 (en) * | 2009-10-23 | 2011-04-28 | 株式会社アルバック | Method for manufacturing master disk for magnetic transfer |
US8599509B2 (en) | 2009-12-02 | 2013-12-03 | HGST Netherlands B.V. | Magnetic recording medium having non-magnetic separating regions and methods of manufacturing the same |
US8419951B2 (en) | 2010-04-27 | 2013-04-16 | Showa Denko K.K. | Method of manufacturing magnetic recording medium, and magnetic recording/reproducing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6014296A (en) | Magnetic disk, method of manufacturing magnetic disk and magnetic recording apparatus | |
JPH0997419A (en) | Magnetic disk, production of magnetic disk and magnetic recorder | |
US6703099B2 (en) | Perpendicular magnetic recording media with patterned soft magnetic underlayer | |
US6650598B2 (en) | Magnetic head having magnetoresistance device and recording/reproducing apparatus incorporating the same | |
JP3172000B2 (en) | Magnetic recording / reproducing device | |
JP3884394B2 (en) | Recording medium, recording / reproducing apparatus, recording medium manufacturing apparatus, and recording medium manufacturing method | |
JP2006127681A (en) | Magnetic recording medium and its manufacturing method, and magnetic recording and reproducing device | |
JP5422912B2 (en) | Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus | |
JP4185230B2 (en) | Magnetic recording medium | |
EP2037454A1 (en) | Master carrier for magnetic transfer, magnetic transfer method and magnetic recording medium | |
JP2000298822A (en) | Magnetic recording medium | |
JP4517329B2 (en) | Perpendicular magnetic recording medium | |
US6963461B2 (en) | Method for magnetic recording on laminated media with improved media signal-to-noise ratio | |
US6989952B2 (en) | Magnetic recording disk drive with laminated media and improved media signal-to-noise ratio | |
JP3443971B2 (en) | Magnetic recording signal reproduction method | |
JP3394108B2 (en) | Magnetic storage device and multilayer magnetic layer magnetic recording medium | |
JP2001060313A (en) | Magnetic recording medium | |
JP2004355729A (en) | Magnetic recording medium and magnetic recorder device | |
JP2003296917A (en) | Magnetic recording medium | |
Yogi | High density magnetic recording for rigid disk systems | |
JPH09231525A (en) | Magnetic laminate and magnetic sensor and magnetic recording reproducing device using the same | |
JP2010129131A (en) | Magnetic recording medium, magnetic recording device, and method for manufacturing magnetic recording medium | |
JPH07182633A (en) | Magnetic head and magnetic recorder using it | |
JP2000331340A (en) | Magnetic recording medium | |
JP2004111047A (en) | Recording and reproducing head and recording and reproducing device provided therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
A02 | Decision of refusal |
Effective date: 20040615 Free format text: JAPANESE INTERMEDIATE CODE: A02 |