JPH0996619A - Catalytic combustion type gas sensor - Google Patents

Catalytic combustion type gas sensor

Info

Publication number
JPH0996619A
JPH0996619A JP25230695A JP25230695A JPH0996619A JP H0996619 A JPH0996619 A JP H0996619A JP 25230695 A JP25230695 A JP 25230695A JP 25230695 A JP25230695 A JP 25230695A JP H0996619 A JPH0996619 A JP H0996619A
Authority
JP
Japan
Prior art keywords
gas
temperature
gas sensor
catalytic combustion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25230695A
Other languages
Japanese (ja)
Inventor
Toshiaki Kato
利明 加藤
Fumihiro Inoue
文宏 井上
Noriyoshi Nagase
徳美 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25230695A priority Critical patent/JPH0996619A/en
Publication of JPH0996619A publication Critical patent/JPH0996619A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catalytic combustion type gas sensor which has a small output at a zero point and can immediately take in gas detection signals to sudden change of ambient temperature, by combining a compensation element of a smaller weight to a gas-detecting element. SOLUTION: A gas-detecting element D and a compensation element C are manufactured beforehand. Weights of the elements D and C are measured. The element C of a smaller weight is combined to the element D to obtain the gas sensor. The temperature rise of the element D is always slow even to sudden rise of ambient temperature and transient zero output during the temperature rise always shifts in the opposite direction to gas detection signal. Accordingly, signals to detect incomplete combustion of a hot water supply system can be taken in earlier than in the prior art. A malfunction is not generated even when the signals are taken in immediately after the hot water supply system was turned on, that is, gas can be detected immediately after the ignition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、可燃性ガスを検
知するための接触燃焼式ガスセンサに関する。
TECHNICAL FIELD The present invention relates to a catalytic combustion type gas sensor for detecting a combustible gas.

【0002】[0002]

【従来の技術】従来より、可燃性ガスを検知するための
ガス検知装置として、触媒を担持した担体で測温抵抗体
を覆った構造のガス検知素子および同じ構造で可燃性ガ
スに対して不活性な補償素子を対とする接触燃焼式ガス
センサを組み込んだブリッジ回路は知られている。
2. Description of the Related Art Conventionally, as a gas detection device for detecting a combustible gas, a gas detection element having a structure in which a resistance temperature detector is covered with a carrier carrying a catalyst and a gas detection device having the same structure and not compatible with the combustible gas are used. Bridge circuits incorporating catalytic combustion gas sensors with active compensating elements are known.

【0003】図5は接触燃焼式ガス検知装置のブリッジ
回路図である。2つの固定抵抗R1、R2の直列接続
と、ガス検知素子D、補償素子Cの直列接続および電源
E(電圧Vc)が並列接続されている。測温抵抗体は白
金コイルなどからなり、担体は酸化アルミニウムや酸化
スズなどの多孔質セラミクスからなり、触媒は、白金や
パラジウムなどの貴金属からなっている。
FIG. 5 is a bridge circuit diagram of a catalytic combustion type gas detector. The two fixed resistors R1 and R2 are connected in series, the gas detection element D and the compensation element C are connected in series, and the power source E (voltage Vc) is connected in parallel. The resistance thermometer is composed of a platinum coil or the like, the carrier is composed of porous ceramics such as aluminum oxide or tin oxide, and the catalyst is composed of a noble metal such as platinum or palladium.

【0004】電圧Vcのブリッジ回路への印加によって
通電、予熱されたガス検知素子Dに可燃性ガスが接触す
ると燃焼が起こり、白金コイルに温度上昇が生じて、ガ
ス濃度に比例した電気抵抗上昇を生じる。補償素子では
燃焼は起こらず可燃性ガスが来てもほとんど温度変化を
生じない。この微小な電気抵抗変化を電圧差として取り
出すために、2つの固定抵抗の接続点の電圧とガス検知
素子、補償素子の接続点の電圧を差動増幅器A1により
減算し、この電圧差をブリッジ出力(電圧をVbとす
る、ガス感度途と言う)とする。ブリッジ出力はガス濃
度に比例して上昇するので、ガス濃度を検知できる。ガ
ス検知素子がガスに接触していないときのブリッジ出力
をゼロ点出力と言う。
When the combustible gas comes into contact with the gas sensing element D that has been energized and preheated by applying the voltage Vc to the bridge circuit, combustion occurs, the temperature of the platinum coil rises, and the electric resistance increases in proportion to the gas concentration. Occurs. Combustion does not occur in the compensating element, and almost no temperature change occurs even if combustible gas comes in. In order to extract this minute change in electrical resistance as a voltage difference, the voltage at the connection point between the two fixed resistors and the voltage at the connection point between the gas detection element and the compensation element are subtracted by the differential amplifier A1, and this voltage difference is output as a bridge output. (It is referred to as a gas sensitivity where the voltage is Vb). Since the bridge output rises in proportion to the gas concentration, the gas concentration can be detected. The bridge output when the gas detection element is not in contact with the gas is called the zero point output.

【0005】この種のガスセンサを燃焼装置の排気ガス
の不完全燃焼検知に用いる場合、排気ガス温度の変化に
伴い、ガス検知素子の抵抗値が上昇するが、補償素子も
同じように上昇するため、ゼロ点出力は変化しないこと
を基本原理としている。しかし、適用温度範囲がかなり
広い場合や、検出ガス濃度レベルが数百ppmオーダー
の低い領域になってくると、抵抗変化の温度係数の僅か
な差がガス感度に対して無視出来ないレベルとなってく
る。
When this type of gas sensor is used for incomplete combustion detection of exhaust gas from a combustion device, the resistance value of the gas detection element increases with a change in exhaust gas temperature, but the compensation element also increases in the same manner. , The basic principle is that the zero point output does not change. However, when the applicable temperature range is quite wide, or when the detected gas concentration level is in the low range of several hundreds ppm, a slight difference in temperature coefficient of resistance change becomes a level that cannot be ignored for gas sensitivity. Come on.

【0006】ガス感度が雰囲気温度の影響を受けないよ
うにするため、温度センサを用い雰囲気温度を検知し、
同一ガス濃度に対するブリッジ出力の温度補正を行う。
温度センサと2つの素子は、同一温度の雰囲気に接する
ように、同一のキャップ内に納められている。ゼロ点出
力やガス感度の温度に対する変化は、ほぼ直線関係にあ
るため、補正はブリッジ回路に付加した温度補正回路に
て容易に行うことが出来る。図6は温度補正回路付きの
ブリッジ回路の1例の結線図である。一般のブリッジ回
路(図5)に温度センサSと抵抗R3の直列接続が並列
接続されており、抵抗R1、R2の直列接続を共有する
ブリッジ回路をなしている。差動増幅器A1 を経たガ
スセンサの出力と、差動増幅器A2を経て適度に増幅さ
れた温度対応の出力とを差動増幅器A3により減算し
て、温度補正されたガスセンサ出力が得られる。雰囲気
温度と全素子が定常状態にあるとき、このブリッジの出
力を温度補正出力とし、ゼロ点出力との差が0となるよ
う差動増幅器A2の増幅率を調整する。
In order to prevent the gas sensitivity from being affected by the ambient temperature, the ambient temperature is detected using a temperature sensor,
The temperature of the bridge output is corrected for the same gas concentration.
The temperature sensor and the two elements are housed in the same cap so as to be in contact with the atmosphere of the same temperature. Since the zero-point output and the change in the gas sensitivity with respect to temperature have a substantially linear relationship, the correction can be easily performed by the temperature correction circuit added to the bridge circuit. FIG. 6 is a connection diagram of an example of a bridge circuit with a temperature correction circuit. A temperature sensor S and a resistor R3 are serially connected in parallel to a general bridge circuit (FIG. 5) to form a bridge circuit that shares the series connection of the resistors R1 and R2. The output of the gas sensor that has passed through the differential amplifier A1 and the output corresponding to the temperature that has been appropriately amplified through the differential amplifier A2 are subtracted by the differential amplifier A3, and the temperature-corrected gas sensor output is obtained. When the ambient temperature and all elements are in a steady state, the output of this bridge is used as a temperature correction output, and the amplification factor of the differential amplifier A2 is adjusted so that the difference from the zero point output becomes zero.

【0007】ところが、実際に用いる場合、急激な温度
変化に晒される場合があり、その際過渡的に出力がバラ
ンスを崩して、通常温度に対して直線的に変動するゼロ
点出力がこの直線から逸脱する場合がある。特にプラス
方向に大きく振れるような特性を示す場合、ガスセンサ
からの信号の取り込み時期が早いと誤動作の原因となる
ため、安定するまで検知を開始することが出来ないとい
う欠点があった。
However, in actual use, it may be exposed to a sudden temperature change. At that time, the output is transiently unbalanced, and the zero point output linearly fluctuating with respect to the normal temperature is output from this line. There may be deviations. In particular, in the case of showing a characteristic that it largely swings in the positive direction, there is a disadvantage that detection cannot be started until it becomes stable because it causes a malfunction when the signal acquisition timing from the gas sensor is early.

【0008】この様子を次に述べる。ガス検知素子と補
償素子は、60μφの白金コイルにγ−アルミナの多孔
質担体を付着させた素子を用い、温度センサとしてガス
検知素子と同じ白金コイルを用いた。ガス検知素子、 補
償素子および温度センサを同一ベース、金網に納めた接
触燃焼式ガスセンサを給湯器の排気部に設けた取り付け
穴に挿入し、 ガス検知回路として上記の温度補正回路つ
きブリッジ回路を用い、印加電圧0.9V で通電を行い
ブリッジ出力の測定を行った。 給湯器停止状態から最大
燃焼を開始した時の、最も温度上昇速度が高く、最も極
端にばらつきが現れる場合である。
This situation will be described below. As the gas detecting element and the compensating element, an element in which a γ-alumina porous carrier was attached to a platinum coil of 60 μφ was used, and the same platinum coil as the gas detecting element was used as a temperature sensor. The gas detection element, the compensating element and the temperature sensor are on the same base, and the catalytic combustion type gas sensor housed in the wire mesh is inserted into the mounting hole provided in the exhaust part of the water heater, and the above-mentioned bridge circuit with temperature compensation circuit is used as the gas detection circuit. The bridge output was measured by energizing with an applied voltage of 0.9V. This is the case where the temperature rise rate is the highest and the most extreme variation appears when the maximum combustion is started from the water heater stopped state.

【0009】図7はガス検知素子と温度補償素子の従来
の組み合わせの場合の典型的なゼロ点出力(Vb)の過
渡特性である。カーブ群52がゼロ点出力であり、カー
ブ51は排気部のガス温度である。この過渡的な現象
は、ガス検知素子と温度補償素子の温度変化に対する追
従速度が個別に異なるためである。例えば、温度上昇時
にガス検知素子の温度上昇速度が温度補償素子の上昇速
度を上回れば、過渡的にプラス方向の出力として現れ
る。また、高温から低温への温度降下時においては、振
れ方向は逆に出るが、ガスセンサ素子の温度変化速度の
観点から見ると上昇時に比べてかなり緩やかなため、振
れ幅としてはより影響が小さくなるので、大きな問題と
はならないが、ある程度の範囲に抑えておく必要があ
る。
FIG. 7 shows a typical zero point output (Vb) transient characteristic in the case of a conventional combination of a gas detection element and a temperature compensation element. The curve group 52 is the zero point output, and the curve 51 is the gas temperature of the exhaust portion. This transient phenomenon is because the gas detecting element and the temperature compensating element have different tracking speeds with respect to temperature changes. For example, if the temperature rise rate of the gas detection element exceeds the rise rate of the temperature compensation element when the temperature rises, it transiently appears as an output in the positive direction. Also, when the temperature falls from a high temperature to a low temperature, the deflection direction appears in the opposite direction, but from the viewpoint of the temperature change rate of the gas sensor element, it is much slower than when it rises, so the influence of the deflection range becomes smaller. Therefore, it is not a big problem, but it is necessary to keep it within a certain range.

【0010】[0010]

【発明が解決しようとする課題】この発明の目的は、上
記欠点に鑑み、急激な雰囲気の温度変化に対し、ゼロ点
出力が小さく、直ちにガス検知信号取り込み可能状態に
なる接触燃焼式ガスセンサを提供することである。
SUMMARY OF THE INVENTION In view of the above drawbacks, an object of the present invention is to provide a catalytic combustion type gas sensor which has a small zero point output and is ready to take in a gas detection signal in response to a sudden temperature change in the atmosphere. It is to be.

【0011】[0011]

【課題を解決するための手段】上記の目体を達成するた
めに、測温抵抗体に、可燃性ガスを燃焼させる触媒を担
持させた多孔質セラミックよりなる担体を付着してなる
ガス検知素子と、ガス検知素子と同じ測温抵抗と担体と
からなり、ガス検知素子と同じ形状であり、触媒を担持
しないか、ガス検知素子とは異なる触媒を担持している
補償素子との1組からなる接触燃焼式ガスセンサであっ
て、補償素子の重量はガス検知素子の重量より小さいこ
ととする。
In order to achieve the above-mentioned object, a gas detection element in which a carrier made of a porous ceramic carrying a catalyst for burning a combustible gas is attached to a resistance temperature detector. And a compensating element which has the same temperature measuring resistance and carrier as the gas detecting element and has the same shape as the gas detecting element and does not carry a catalyst or carries a catalyst different from the gas detecting element. It is assumed that the weight of the compensating element is smaller than the weight of the gas detecting element.

【0012】前記接触燃焼式ガスセンサにおいて、前記
測温抵抗体は白金コイルであり、多孔質セラミックはγ
−アルミナであり、補償素子のガス検知素子に対する重
量差は4〜18%であると良い。このように補償素子の
重量はガス検知素子の重量より小さいので、熱容量は小
さく、重量当たりの素子表面からの放熱(または吸熱)
は大きい。従って、温度変化が急激な雰囲気中に両素子
が置かれた場合には、補償素子のほうが先に雰囲気温度
に追従できる。温度が急激に上昇した場合、温度補償素
子の温度上昇速度がガス検知素子を確実に上回るように
なるため、過渡的に出力はマイナス方向に振れる結果、
検知信号の取り込みを早期に行っても誤動作の原因とは
ならない。また、 逆に温度が下降する雰囲気に晒される
場合は、 過渡的にプラス方向に振れるが、 給湯器などの
場合、 上昇時に比べて温度変動速度が小さくなるため、
振れ幅も小さくなる。
In the catalytic combustion gas sensor, the resistance temperature detector is a platinum coil, and the porous ceramic is γ.
-Alumina, and the weight difference between the compensating element and the gas detecting element is preferably 4 to 18%. In this way, the weight of the compensating element is smaller than that of the gas detecting element, so the heat capacity is small, and heat dissipation (or heat absorption) from the element surface per weight
Is big. Therefore, when both elements are placed in an atmosphere where the temperature changes rapidly, the compensating element can follow the ambient temperature first. When the temperature rises rapidly, the temperature rise rate of the temperature compensation element will surely exceed the gas detection element, so the output will transiently fluctuate in the negative direction.
Even if the detection signal is taken in early, it does not cause a malfunction. On the contrary, when exposed to an atmosphere where the temperature drops, it transiently fluctuates in the positive direction, but in the case of a water heater etc., the temperature fluctuation speed is smaller than when it rises, so
The swing range also becomes smaller.

【0013】素子を構成する材料によって、比熱と熱放
射率は異なるのが、2素子は同じ材料により構成される
ので、2素子の重量差を実験的に定めることは容易であ
る。
Although the specific heat and the thermal emissivity differ depending on the material forming the element, since the two elements are formed of the same material, it is easy to experimentally determine the weight difference between the two elements.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例 本実施例では、給湯器の排気ガス中の不完全燃焼を検知
する例をとって説明する。予め、従来の製造方法により
ガス検知素子と補償素子を製造し、ガス検知素子と補償
素子の重量を測定しておいた。このなかから、ガス検知
素子の重量に対して0.2mg( 約4%) 少ない重量の補
償素子を組み合わせたガスセンサを製作した。 なお、 ガ
ス検知素子、 温度補償素子の白金コイルと担体を含めた
平均重量は約5mgであり、 そのうち白金コイルの占める
重量は1.4mgである。
Example In this example, an example of detecting incomplete combustion in exhaust gas of a water heater will be described. The gas sensing element and the compensating element were manufactured in advance by the conventional manufacturing method, and the weights of the gas sensing element and the compensating element were measured. From this, a gas sensor was manufactured by combining a compensating element with a weight that is 0.2 mg (about 4%) less than the weight of the gas detecting element. The average weight of the gas detecting element and the temperature compensating element including the platinum coil and the carrier is about 5 mg, and the weight of the platinum coil is 1.4 mg.

【0015】このようにして作製したガスセンサを前記
の温度補正回路付きブリッジ(図6)に組み込み、従来
の技術の項と同じ方法で、給湯器停止状態から最大燃焼
を開始したときのブリッジ出力の過渡応答特性を調べ
た。図1は補償素子の重量がガス検知素子に対して4%
少ないのときのブリッジ出力のグラフである。カーブ1
1は雰囲気の温度変化であり、カーブ12は典型的なブ
リッジ出力である。図1から明らかなように、 過渡的な
出力はすべてマイナス方向(ガス検知の信号に逆方向)
に現れるようになった。
The gas sensor thus manufactured is incorporated into the bridge with a temperature compensation circuit (FIG. 6), and the bridge output when the maximum combustion is started from the water heater stopped state is carried out by the same method as in the prior art. The transient response characteristics were investigated. In Figure 1, the weight of the compensating element is 4% of the gas sensing element.
It is a graph of the bridge output when there are few. Curve 1
1 is the temperature change of the atmosphere and curve 12 is a typical bridge output. As is clear from Fig. 1, all transient outputs are in the negative direction (direction opposite to the gas detection signal).
Came to appear in.

【0016】比較のために、ガス検知素子に対して補償
素子の重量がガス検知素子の重量より0.1mg (ガス検
知素子重量の約2%) 少ない組み合わせでガスセンサを
作製し、その過渡応答特性を調べた。図2は補償素子の
重量がガス検知素子に対して2%少ないときのブリッジ
出力のグラフである。カーブ21は雰囲気の温度変化で
あり、カーブ22は典型的なブリッジ出力である。この
条件では同じように補償素子の重量がガス検知素子より
も軽くなっているが、過渡的にプラス方向に現れるもの
が少し混在しており、最大の振れ幅のものでプラス0.
5mVのものがあり、 すべてがマイナスの特性とはならな
かった。
For comparison, a gas sensor was manufactured with a combination in which the weight of the compensating element was 0.1 mg less than the weight of the gas sensing element (about 2% of the weight of the gas sensing element) with respect to the gas sensing element. I checked. FIG. 2 is a graph of bridge output when the weight of the compensating element is 2% less than the gas sensing element. Curve 21 is the temperature change of the atmosphere and curve 22 is a typical bridge output. Under this condition, similarly, the weight of the compensating element is lighter than that of the gas detecting element, but some transiently appearing in the positive direction are mixed, and the maximum swing width is plus.
There was a 5 mV type, and not all had negative characteristics.

【0017】重量差が4%の場合でも(図1)でも同様
であるが、同じ重量差であっても過渡特性にある程度の
ばらつきを生じている。この原因としては、素子担体の
多孔質セラミックの密度のばらつき、白金線に対する多
孔質セラミックの被覆状態のばらつきなどに起因するも
のである。最大振れ幅が0.5mVあると、 この幅は一酸
化炭素の500ppm に対する出力に相当するので、 最低
検知濃度を500ppm以下に設定したい場合には誤動作
を起こす危険性がでてくる。
The same applies to the case where the weight difference is 4% (FIG. 1), but even if the weight difference is the same, there is some variation in the transient characteristics. This is due to variations in the density of the porous ceramic of the element carrier, variations in the coating state of the porous ceramic on the platinum wire, and the like. If the maximum fluctuation range is 0.5 mV, this range corresponds to the output for carbon monoxide of 500 ppm, so there is a risk of malfunction when the minimum detection concentration is set to 500 ppm or less.

【0018】次に、温度変化が降温の場合を調べた。給
湯器で通電中、 最大燃焼状態( 排気温度約250℃) か
ら最小燃焼状態( 排気温度約70℃) に切り換えたとき
である。図3は補償素子の重量がガス検知素子に対して
4%少ない組み合わせのガスセンサの降温時の過渡特性
のグラフである。カーブ31は雰囲気の温度変化であ
り、カーブ32は典型的なブリッジ出力である。図3か
ら判るように、過渡的に振れる方向は、図1と逆にプラ
ス方向であるが、雰囲気の温度変化速度は温度上昇時程
急ではないので、ピーク高さが約1/5となり最大でも
ピークは0.1mVである。 これは、 一酸化炭素ガスに対
する出力に換算すると100ppm の濃度になる。 通常こ
の種のガスセンサは、最低500ppm 程度の一酸化炭素
濃度を検知するために使われるのでこの程度のピークは
問題にならない。
Next, the case where the temperature change was a temperature decrease was investigated. This is when the maximum combustion state (exhaust temperature approx. 250 ° C) is switched to the minimum combustion state (exhaust temperature approx. 70 ° C) while the water heater is energized. FIG. 3 is a graph of transient characteristics when the temperature of the gas sensor in which the weight of the compensating element is 4% less than that of the gas detecting element is lowered. Curve 31 is the temperature change of the atmosphere and curve 32 is a typical bridge output. As can be seen from FIG. 3, the transient swing direction is the positive direction, which is the opposite of that in FIG. 1, but since the temperature change rate of the atmosphere is not as steep as the temperature rises, the peak height is about 1/5 and the maximum. But the peak is 0.1 mV. This is a concentration of 100 ppm when converted to the output for carbon monoxide gas. Normally, this type of gas sensor is used to detect a carbon monoxide concentration of at least about 500 ppm, so a peak of this level is not a problem.

【0019】図4は、 最大燃焼から最小燃焼に切り換え
たときの、ガス検知素子と補償素子の重量差と過渡特性
のふれ幅との関係を表すグラフである。各重量差につき
5個のガスセンサを測定してあり、平均値と最大値、最
小値を示してある。例えば、補償素子の重量がガス検知
素子より1.0mg(20%) 重い組み合わせの場合、 ピ
ーク高さの平均が0.5mVにまで達している。 これは、
500ppmの一酸化炭素に対する出力に相当し、 ガスセ
ンサとして500ppm 以上を検知対象とする場合は、 問
題となるので、このような場合は、 補償素子とガス検知
素子の重量差の上限を0.9mg(18%) とする必要が
ある。
FIG. 4 is a graph showing the relationship between the weight difference between the gas detecting element and the compensating element and the fluctuation width of the transient characteristic when the maximum combustion is switched to the minimum combustion. Five gas sensors were measured for each weight difference, and the average value, maximum value, and minimum value are shown. For example, in the case of the combination in which the weight of the compensating element is 1.0 mg (20%) heavier than that of the gas detecting element, the average peak height reaches 0.5 mV. this is,
This is equivalent to the output for carbon monoxide of 500 ppm, and it becomes a problem when detecting 500 ppm or more as a gas sensor. In such a case, the upper limit of the weight difference between the compensating element and the gas detecting element is 0.9 mg ( 18%).

【0020】[0020]

【発明の効果】この発明によれば、ガス検知素子に対し
て重量の小さい補償素子を組み合わせてガスセンサとす
るので、雰囲気温度の急激な上昇に対しても、常にガス
検知素子の温度上昇が遅く、温度上昇過程における過渡
的なゼロ点出力が常にガス検知信号とは逆向きにに偏る
ようにしたため、給湯器で不完全燃焼を検知するために
ガスセンサからの信号を取り込む際のタイミングを従来
より早くすることができ、給湯器のスイッチを入れた直
後から行っても誤動作を生じることがなくなり、ガス検
知が点火直後から可能となる。従って、給湯器の安全性
を向上させることができる。
According to the present invention, since the gas detecting element is combined with the compensating element having a small weight to form a gas sensor, the temperature of the gas detecting element is always slowed down even when the ambient temperature rapidly increases. Since the transitional zero point output in the temperature rising process is always biased in the opposite direction to the gas detection signal, the timing when capturing the signal from the gas sensor to detect the incomplete combustion in the water heater is longer than in the past. It is possible to speed up the operation, and even if the water heater is switched on immediately after it is turned on, no malfunction occurs, and gas detection can be performed immediately after ignition. Therefore, the safety of the water heater can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】補償素子の重量がガス検知素子に対して4%少
ないのときのブリッジ出力のグラフ
FIG. 1 is a graph of bridge output when the weight of a compensating element is 4% less than that of a gas sensing element.

【図2】補償素子の重量がガス検知素子に対して2%少
ないときのブリッジ出力のグラフ
FIG. 2 is a graph of bridge output when the weight of the compensating element is 2% less than the gas detecting element

【図3】補償素子の重量がガス検知素子に対して4%少
ない組み合わせのガスセンサの降温時の過渡特性のグラ
FIG. 3 is a graph of transient characteristics when the temperature of a gas sensor in which the weight of the compensating element is 4% less than that of the gas detecting element when the temperature is lowered.

【図4】最大燃焼から最小燃焼に切り換えたときの、ガ
ス検知素子と補償素子の重量差と過渡特性のふれ幅との
関係を表すグラフ
FIG. 4 is a graph showing the relationship between the weight difference between the gas detection element and the compensation element and the fluctuation width of the transient characteristic when the maximum combustion is switched to the minimum combustion.

【図5】接触燃焼式ガス検知装置のブリッジ回路図FIG. 5: Bridge circuit diagram of catalytic combustion type gas detector

【図6】温度補正回路付きのブリッジ回路の1例の結線
FIG. 6 is a connection diagram of an example of a bridge circuit with a temperature correction circuit.

【図7】ガス検知素子と補償素子の従来の組み合わせの
場合の典型的なゼロ点出力(Vb)の過渡特性のグラフ
FIG. 7 is a graph of a typical zero point output (Vb) transient characteristic in the case of a conventional combination of a gas detection element and a compensation element.

【符号の説明】[Explanation of symbols]

D ガス検知素子 C 補償素子 S 温度センサ R1 抵抗 R2 抵抗 R3 抵抗 E 電源 V 負荷 A1 差動増幅器 A2 差動増幅器 A3 差動増幅器 D Gas detection element C Compensation element S Temperature sensor R1 resistance R2 resistance R3 resistance E power supply V load A1 differential amplifier A2 differential amplifier A3 differential amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測温抵抗体に、可燃性ガスを燃焼させる触
媒を担持させた多孔質セラミックよりなる担体を付着し
てなるガス検知素子と、ガス検知素子と同じ測温抵抗と
担体とからなり、ガス検知素子と同じ形状であり、触媒
を担持しないか、ガス検知素子とは異なる触媒を担持し
ている補償素子との対からなる接触燃焼式ガスセンサで
あって、補償素子の重量はガス検知素子の重量より小さ
いことを特徴とする接触燃焼式ガスセンサ
1. A gas sensing element comprising a temperature sensing resistor to which a carrier made of porous ceramic carrying a catalyst for burning a combustible gas is attached, and the same temperature sensing resistor and carrier as the gas sensing element. It is a catalytic combustion type gas sensor that has the same shape as the gas detection element and is paired with a compensation element that does not support a catalyst or that supports a catalyst different from the gas detection element. Catalytic combustion type gas sensor characterized by being smaller than the weight of the sensing element
【請求項2】請求項1に記載の接触燃焼式ガスセンサに
おいて、前記測温抵抗体は白金コイルであり、多孔質セ
ラミックはγ−アルミナであり、補償素子のガス検知素
子に対する重量差は4〜18%であることを特徴とする
接触燃焼式ガスセンサ
2. The catalytic combustion gas sensor according to claim 1, wherein the resistance temperature detector is a platinum coil, the porous ceramic is γ-alumina, and the weight difference between the compensating element and the gas detecting element is 4 to 4. Catalytic combustion type gas sensor characterized by being 18%
JP25230695A 1995-09-29 1995-09-29 Catalytic combustion type gas sensor Pending JPH0996619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25230695A JPH0996619A (en) 1995-09-29 1995-09-29 Catalytic combustion type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25230695A JPH0996619A (en) 1995-09-29 1995-09-29 Catalytic combustion type gas sensor

Publications (1)

Publication Number Publication Date
JPH0996619A true JPH0996619A (en) 1997-04-08

Family

ID=17235423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25230695A Pending JPH0996619A (en) 1995-09-29 1995-09-29 Catalytic combustion type gas sensor

Country Status (1)

Country Link
JP (1) JPH0996619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288122A (en) * 2008-05-30 2009-12-10 Yazaki Corp Deterioration detection device of gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288122A (en) * 2008-05-30 2009-12-10 Yazaki Corp Deterioration detection device of gas sensor

Similar Documents

Publication Publication Date Title
US4541988A (en) Constant temperature catalytic gas detection instrument
US5528225A (en) Gas detecting method and apparatus
JP4580405B2 (en) Hydrogen gas sensor
US20090035184A1 (en) Hydrogen gas sensor
EP1330640B1 (en) Catalytic sensor
US4594139A (en) Air/fuel ratio detector
WO2008007438A1 (en) Gas detector
US4723439A (en) Humidity detector
AU2001285148A1 (en) Catalytic sensor
US4258563A (en) Gas sensor
JPH0996619A (en) Catalytic combustion type gas sensor
JP2013160523A (en) Gas detector ans driving method thereof
JP3929845B2 (en) Combustible gas detector
JP3167568B2 (en) Contact combustion type gas sensor
JP3316789B2 (en) Contact combustion type gas sensor and method of manufacturing contact combustion type gas sensor
JP2001188056A (en) Gas detector
JP3538593B2 (en) Gas detector
Torvela et al. Characterization of a combustion process using catalysed tin oxide gas sensors to detect CO from emission gases
Takao et al. Effect of sensor thickness on trimethylamine sensitivity of In2O3-MgO sensors loaded with noble metals
JP3334358B2 (en) Gas detector
KR100186999B1 (en) Gas sensor with thermopile
JPH02263145A (en) Semiconductor type gas sensor
JP4711332B2 (en) Hydrogen detector
JP6574472B2 (en) Gas detection element and catalytic combustion type gas sensor
JPS62238452A (en) Gas detector