JPH0996468A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH0996468A
JPH0996468A JP7277136A JP27713695A JPH0996468A JP H0996468 A JPH0996468 A JP H0996468A JP 7277136 A JP7277136 A JP 7277136A JP 27713695 A JP27713695 A JP 27713695A JP H0996468 A JPH0996468 A JP H0996468A
Authority
JP
Japan
Prior art keywords
evaporator
heat
refrigerant
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7277136A
Other languages
Japanese (ja)
Other versions
JP3703889B2 (en
Inventor
Kazuhiro Kumakura
一裕 熊倉
Masanori Fujiwara
正則 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP27713695A priority Critical patent/JP3703889B2/en
Publication of JPH0996468A publication Critical patent/JPH0996468A/en
Application granted granted Critical
Publication of JP3703889B2 publication Critical patent/JP3703889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems

Abstract

PROBLEM TO BE SOLVED: To achieve the raving of fluorocarbon of a cooling system with the compressor type refrigeration cycle by thermally coupling the heat radiating side of thermoelement with the downstream side of the coolant of an evaporator and arranging the heat-absorbing side heat exchanger of the thermoelement in the space to be cooled. SOLUTION: A Peltier element 4 is arranged between the heat absorbing side heat exchanger 5 and an evaporator 6, the heat absorbing side heat exchanger 5 is thermally coupled with the heat absorbing side of the Peltier element 4, and the downstream side of the evaporator 6 is thermally coupled with the heat radiating side of the Peltier element 4. The inside of a compartment 3 is cooled by the heat of evaporation of coolant in the evaporator 6, the voltage of the predetermined polarity is applied to the Peltier element 4 and the Peltier element 4 cools the inside of the compartment 3 absorbing the heat from it through the heat absorbing side of the heat exchanger 5. At the heat producing side of the Peltier element 4, the coolant outlet temperature of the evaporator 6 is raised by imparting radiated heat to the part of the downstream side of the evaporator 6. The cooling capability is increased as the inside of the compartment 3 is cooled by both the heat absorbing side heat exchange 5 and the evaporator 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫、ショーケ
ース、自動販売機あるいは空気調和機等のコンプレッサ
式冷凍サイクルを用いた冷却装置に係り、特にペルチェ
素子等の熱電変換素子を併用した冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device using a compressor type refrigerating cycle such as a refrigerator, a showcase, a vending machine or an air conditioner, and more particularly to a cooling device using a thermoelectric conversion element such as a Peltier element. Regarding

【0002】[0002]

【従来の技術】冷蔵庫、ショーケース、自動販売機ある
いは空気調和機等の冷却装置として、コンプレッサ式冷
凍サイクルが知らている。
2. Description of the Related Art A compressor type refrigeration cycle is known as a cooling device for refrigerators, showcases, vending machines, air conditioners and the like.

【0003】一般に、コンプレッサ式冷凍サイクルの多
くは、冷媒としてフロンを用い、庫内または庫内の冷却
空間に通ずる通風路内に配置された蒸発器(エバポレー
タ)により冷媒を蒸発させ、その気化熱により空気を冷
やし、次いで凝縮器(コンデンサ)によりガス化冷媒を
凝縮して液化し、液化された冷媒を膨脹器によって膨脹
させた後、冷媒を再び蒸発器に循環させるようになって
いる。
In general, most compressor type refrigeration cycles use CFCs as a refrigerant, and the refrigerant is evaporated by an evaporator (evaporator) arranged in a refrigerator or in a ventilation passage communicating with a cooling space in the refrigerator, and the heat of vaporization of the refrigerant is evaporated. Is used to cool the air, and then a condenser is used to condense and liquefy the gasified refrigerant, and the liquefied refrigerant is expanded by an expander, and then the refrigerant is circulated again to the evaporator.

【0004】[0004]

【発明が解決しようとする課題】しかし、近年では、フ
ロンのオゾン層の破壊や地球温暖化等の環境保護の面か
ら、代替フロンの開発、省フロン化の推進が要請されて
いる。
However, in recent years, development of alternative CFCs and promotion of CFC saving have been requested from the viewpoint of environmental protection such as destruction of CFC's ozone layer and global warming.

【0005】本発明の目的は、省フロン化を達成し得る
冷却装置を提供することにある。
An object of the present invention is to provide a cooling device capable of achieving CFC saving.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の発明は、冷却対象空間内に配置さ
れた蒸発器と、前記蒸発器からのガス状冷媒を圧縮する
圧縮機と、前記圧縮機からのガス状冷媒を凝縮する凝縮
器と、凝縮器からの液状冷媒を膨脹させる膨脹器とを備
え、膨脹された液状冷媒を前記蒸発器の冷媒上流側に供
給するコンプレッサ式冷凍サイクルを用いた冷却装置に
おいて、熱電変換素子の放熱側に前記蒸発器の冷媒下流
側を熱的に結合させ、前記熱電変換素子の吸熱側熱交換
器を前記冷却対象空間内に配置したことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to an evaporator arranged in a space to be cooled, and a compression for compressing a gaseous refrigerant from the evaporator. Compressor, a condenser that condenses the gaseous refrigerant from the compressor, and an expander that expands the liquid refrigerant from the condenser, and a compressor that supplies the expanded liquid refrigerant to the refrigerant upstream side of the evaporator. In a cooling device using a system refrigeration cycle, the refrigerant downstream side of the evaporator is thermally coupled to the heat radiation side of the thermoelectric conversion element, and the heat absorption side heat exchanger of the thermoelectric conversion element is arranged in the cooling target space. It is characterized by

【0007】この発明によれば、熱電変換素子の吸熱側
熱交換器により冷却能力を増加させることができるの
で、その分だけ冷凍サイクル側の冷却能力を低下させる
ことができ、省フロン化と共に、蒸発器、凝縮器、膨脹
器を含む冷媒回路の小形化を達成する。また、熱電変換
素子の放熱側からの熱が蒸発器の下流側に与えられるの
で、圧縮機の入口における冷媒温度(圧力)が上昇し、
したがってその分だけ圧縮機の圧縮作用を助け、圧縮機
の負担を軽減し、熱電変換素子からの放熱を有効に利用
することができる。
According to the present invention, the cooling capacity can be increased by the heat absorption side heat exchanger of the thermoelectric conversion element, so that the cooling capacity on the refrigeration cycle side can be reduced by that amount, and at the same time, CFC saving is achieved. Achieve miniaturization of the refrigerant circuit including the evaporator, condenser, and expander. Further, since the heat from the heat radiation side of the thermoelectric conversion element is given to the downstream side of the evaporator, the refrigerant temperature (pressure) at the inlet of the compressor rises,
Therefore, the compression action of the compressor is correspondingly assisted, the load on the compressor is reduced, and the heat radiation from the thermoelectric conversion element can be effectively used.

【0008】請求項2に記載の発明は、冷却対象空間に
連通する通気路に配置された蒸発器と、前記蒸発器から
のガス状冷媒を圧縮する圧縮機と、前記圧縮機からのガ
ス状冷媒を凝縮する凝縮器と、凝縮器からの液状冷媒を
膨脹させる膨脹器とを備え、前記膨脹された液状冷媒を
前記蒸発器の冷媒上流側に供給するコンプレッサ式冷凍
サイクルを用いた冷却装置において、熱電変換素子の放
熱側に前記蒸発器と圧縮機との間の冷媒配管を熱的に結
合させ、かつ、前記熱電変換素子の吸熱側熱交換器を前
記冷却対象空間内に配置したことを特徴とする。
According to a second aspect of the present invention, an evaporator arranged in an air passage communicating with the space to be cooled, a compressor for compressing a gaseous refrigerant from the evaporator, and a gaseous state from the compressor In a cooling device using a compressor-type refrigeration cycle, which comprises a condenser for condensing a refrigerant and an expander for expanding the liquid refrigerant from the condenser, and supplying the expanded liquid refrigerant to a refrigerant upstream side of the evaporator. The heat radiation side of the thermoelectric conversion element is thermally coupled with a refrigerant pipe between the evaporator and the compressor, and the heat absorption side heat exchanger of the thermoelectric conversion element is arranged in the cooling target space. Characterize.

【0009】この発明によれば、熱電変換素子の吸熱側
熱交換器により冷却能力を増加させることができるの
で、その分だけ冷凍サイクル側の冷却能力を低下させる
ことができ、省フロン化と共に、蒸発器、凝縮器、膨脹
器を含む冷媒回路の小形化を達成する。また、熱電変換
素子の放熱側からの熱が蒸発器と圧縮機との間の冷媒配
管をに与えられるので、圧縮機の入口における冷媒温度
(圧力)が上昇し、したがってその分だけ圧縮機の圧縮
作用を助け、圧縮機の負担を軽減し、熱電変換素子から
の放熱を有効に利用することができる。
According to the present invention, the cooling capacity can be increased by the heat absorption side heat exchanger of the thermoelectric conversion element, so that the cooling capacity on the refrigeration cycle side can be reduced by that amount, and at the same time, CFC saving is achieved. Achieve miniaturization of the refrigerant circuit including the evaporator, condenser, and expander. Further, since the heat from the heat radiation side of the thermoelectric conversion element is given to the refrigerant pipe between the evaporator and the compressor, the refrigerant temperature (pressure) at the inlet of the compressor rises, and therefore the compressor temperature is increased by that amount. The compression action is assisted, the load on the compressor is reduced, and the heat radiation from the thermoelectric conversion element can be effectively used.

【0010】[0010]

【発明の実施の形態】次に、本発明の好適な実施の形態
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings.

【0011】(I) 第1の実施の形態 図1に、本発明の第1の実施の形態に係る冷凍庫の縦断
面図を示す。この実施の形態は、直接冷却方式の冷凍サ
イクルに本発明を適用した例を開示する。
(I) First Embodiment FIG. 1 shows a vertical sectional view of a freezer according to a first embodiment of the present invention. This embodiment discloses an example in which the present invention is applied to a refrigeration cycle of a direct cooling system.

【0012】図1に示すように、冷凍庫のケーシング1
によって形成された庫内3の背面から底面に沿ってL形
状のロールボンドパネル製の蒸発器6が配置されてい
る。また、庫内3の上面から背面に沿って、一部が蒸発
器6の冷媒下流側と重なるように、逆L形状の平板上の
ヒートパネルからなる吸熱側熱交換器5が配置されてい
る。吸熱側熱交換器5と蒸発器6の冷媒下流側との間に
はペルチェ素子4が配置されており、吸熱側熱交換器5
はペルチェ素子4の吸熱側に熱的に結合され、蒸発器6
の下流側はペルチェ素子4の放熱側に熱的に結合されて
いる。2は扉を示している。
As shown in FIG. 1, a freezer casing 1
An evaporator 6 made of an L-shaped roll bond panel is arranged along the bottom surface and the bottom surface of the interior 3 formed by. Further, the heat absorption side heat exchanger 5 composed of a heat panel on a flat plate having an inverted L shape is arranged so that a part thereof overlaps with the refrigerant downstream side of the evaporator 6 along the upper surface to the rear surface of the interior 3. . The Peltier element 4 is arranged between the heat absorption side heat exchanger 5 and the refrigerant downstream side of the evaporator 6, and the heat absorption side heat exchanger 5
Is thermally coupled to the heat absorption side of the Peltier element 4, and the evaporator 6
The downstream side of is thermally coupled to the heat radiation side of the Peltier element 4. 2 shows a door.

【0013】蒸発器6の下流側は冷媒配管を介して圧縮
機7に接続され、圧縮機7は凝縮器8に、凝縮器8は膨
張器9に、膨張器9は蒸発器6の上流側へと接続されて
コンプレッサ式の冷凍サイクルが構成されている。
The downstream side of the evaporator 6 is connected to a compressor 7 via a refrigerant pipe, the compressor 7 is a condenser 8, the condenser 8 is an expander 9, and the expander 9 is an upstream side of the evaporator 6. And a compressor type refrigeration cycle is configured.

【0014】次に、動作を説明する。圧縮機7によって
圧縮された冷媒は凝縮器8で凝縮されて液状化し、膨張
器9を経て蒸発器6の上流側から流入する。蒸発器6で
は冷媒の気化熱によって庫内3の熱が奪われ、庫内3が
冷却される。一方、ペルチェ素子4に所定の極性で電圧
を印加し通電を行うと、ペルチェ素子4の吸熱側では吸
熱側熱交換器5を介して3内の熱を奪い、庫内3が冷却
される。このように、庫内3は吸熱側熱交換器5および
蒸発器6の双方によって冷却されることになり、冷却能
力が増加する。また、ペルチェ素子4の放熱側では放出
された熱が蒸発器6の下流側部位に与えられ、この熱に
よって蒸発器6の冷媒出口温度(圧力)が上昇する。こ
のガス冷媒は圧縮機7に還流され、以下同様の冷凍サイ
クル動作が行われる。ここで、冷媒の蒸発器6の出口温
度(圧力)の上昇により、圧縮機7の負担が軽減され
る。
Next, the operation will be described. The refrigerant compressed by the compressor 7 is condensed in the condenser 8 to be liquefied, and then flows from the upstream side of the evaporator 6 via the expander 9. In the evaporator 6, the heat of vaporization of the refrigerant deprives the heat of the inside 3 and cools the inside 3. On the other hand, when a voltage is applied to the Peltier element 4 with a predetermined polarity to conduct electricity, the heat absorption side of the Peltier element 4 takes away heat from the inside 3 via the heat absorption side heat exchanger 5, and the inside 3 is cooled. In this way, the inside 3 is cooled by both the heat absorption side heat exchanger 5 and the evaporator 6, and the cooling capacity is increased. On the heat radiation side of the Peltier element 4, the heat released is given to the downstream side portion of the evaporator 6, and the heat causes the refrigerant outlet temperature (pressure) of the evaporator 6 to rise. This gas refrigerant is returned to the compressor 7, and the same refrigeration cycle operation is performed thereafter. Here, the load on the compressor 7 is reduced due to the rise of the outlet temperature (pressure) of the refrigerant from the evaporator 6.

【0015】(II)第2の実施の形態 図2に、本発明の第2の実施の形態に係る冷凍庫の部分
縦断面図を示し、図3にその正面図を示す。この実施の
形態は、間接冷却方式の冷凍サイクルに本発明を適用し
た例を開示する。
(II) Second Embodiment FIG. 2 shows a partial vertical sectional view of a freezer according to a second embodiment of the present invention, and FIG. 3 shows its front view. This embodiment discloses an example in which the present invention is applied to an indirect cooling type refrigeration cycle.

【0016】図2及び図3に示すように、冷凍庫のケー
シング1の背部内面に沿って通気路15が設けられてお
り、この通気路15内にはクロスフィン形蒸発器10お
よび吸熱側熱交換器12が配置されている。吸熱側熱交
換器12にはペルチェ素子11がその吸熱側において熱
的に結合した状態で取り付けられている。ペルチェ素子
11の放熱側には放熱側熱交換器13が設けられ、この
放熱側熱交換器13に蒸発器10からの出口冷媒配管1
4が熱的に結合されている。
As shown in FIGS. 2 and 3, a ventilation passage 15 is provided along the inner surface of the back portion of the casing 1 of the freezer. Inside the ventilation passage 15, the cross fin type evaporator 10 and the heat absorption side heat exchange are provided. The container 12 is arranged. The Peltier element 11 is attached to the heat absorption side heat exchanger 12 in a state of being thermally coupled on the heat absorption side. A heat radiation side heat exchanger 13 is provided on the heat radiation side of the Peltier element 11, and an outlet refrigerant pipe 1 from the evaporator 10 is provided in the heat radiation side heat exchanger 13.
4 is thermally coupled.

【0017】蒸発器10には冷媒回路が接続されてお
り、冷媒回路は蒸発器10からのガス化冷媒を圧縮する
圧縮機7、圧縮された冷媒を凝縮して液化する凝縮器
8、液化冷媒を膨脹させる膨張器9、および膨脹冷媒を
蒸発させて気化熱を奪う蒸発器10を備えたコンプレッ
サ式の冷凍サイクルで構成される。
A refrigerant circuit is connected to the evaporator 10. The refrigerant circuit includes a compressor 7 for compressing the gasified refrigerant from the evaporator 10, a condenser 8 for condensing and liquefying the compressed refrigerant, and a liquefied refrigerant. The compressor-type refrigeration cycle includes an expander 9 that expands the refrigerant and an evaporator 10 that evaporates the expanded refrigerant to remove heat of vaporization.

【0018】次に、動作を説明する。まず、送風ファン
16の駆動によって通気路15内を図示する方向の気流
Aが流れ、庫内3内に供給される。圧縮機7によって圧
縮された冷媒は凝縮器8で凝縮されて液状化し、膨張器
9を経て蒸発器10の上流側から流入する。蒸発器10
では冷媒の気化熱によって通気路15内を通過する気流
Aの熱が奪われ、庫内3が冷却される。一方、ペルチェ
素子11に所定の極性で電圧を印加し通電を行うと、ペ
ルチェ素子11の吸熱側では吸熱側熱交換器12を介し
て通気路15内を通過する気流Aの熱を奪い、庫内3が
冷却される。このように、庫内3は蒸発器10および吸
熱側熱交換器12の双方によって冷却されることにな
り、冷却能力が増加する。また、放熱側熱交換器13の
放熱側では放出された熱が放熱側熱交換器13を介して
出口冷媒配管14に与えられ、この熱によってガス状冷
媒の温度(圧力)が上昇する。このガス冷媒は圧縮機7
に還流され、以下同様の冷凍サイクル動作が行われる。
ここで、冷媒の蒸発器10の出口温度(圧力)の上昇に
より、圧縮機7の負担が軽減される。
Next, the operation will be described. First, the air flow A in the direction shown in the drawing flows in the ventilation passage 15 by driving the blower fan 16 and is supplied into the inside 3 of the refrigerator. The refrigerant compressed by the compressor 7 is condensed in the condenser 8 and liquefied, and then flows from the upstream side of the evaporator 10 through the expander 9. Evaporator 10
Then, the heat of the airflow A passing through the inside of the ventilation path 15 is taken by the heat of vaporization of the refrigerant, and the inside 3 is cooled. On the other hand, when a voltage is applied to the Peltier element 11 with a predetermined polarity to conduct electricity, the heat absorption side of the Peltier element 11 takes away the heat of the airflow A passing through the ventilation path 15 via the heat absorption side heat exchanger 12, and Inner 3 is cooled. In this way, the inside 3 is cooled by both the evaporator 10 and the heat absorption side heat exchanger 12, and the cooling capacity is increased. Further, the heat released on the heat radiation side of the heat radiation side heat exchanger 13 is given to the outlet refrigerant pipe 14 via the heat radiation side heat exchanger 13, and the heat raises the temperature (pressure) of the gaseous refrigerant. This gas refrigerant is the compressor 7
And then the same refrigeration cycle operation is performed.
Here, the load on the compressor 7 is reduced due to the rise of the refrigerant outlet temperature (pressure) of the evaporator 10.

【0019】なお、本発明に実施の形態は上記した態様
に限定されることはない。例えば、ペルチェ素子11の
吸熱側熱交換器12は、種々の形態であってよい。例え
ば、押出しフィン、削り起こしフィン、プレート型ヒー
トパイプ、フィン付き管、ヒートパイプあるいはこれら
の組合わせを用いることができる。また13は、上記態
様のフィンを用いるか、冷媒配管14自体を抱持してペ
ルチェ素子11の放熱を伝達する構成とすることができ
る。
The embodiment of the present invention is not limited to the above-mentioned aspect. For example, the heat absorption side heat exchanger 12 of the Peltier element 11 may have various forms. For example, an extruded fin, a shaving fin, a plate-type heat pipe, a finned tube, a heat pipe, or a combination thereof can be used. In addition, 13 may be configured to use the fin of the above-described aspect or to hold the refrigerant pipe 14 itself and transmit the heat radiation of the Peltier element 11.

【0020】[0020]

【発明の効果】以上の通り、請求項1〜2に記載の発明
によれば、熱電変換素子の吸熱側熱交換器により冷却能
力を増加させることができるので、その分だけ冷凍サイ
クル側の冷却能力を低下させることができ、省フロン化
と共に、蒸発器、凝縮器、膨脹器を含む冷媒回路の小形
化を達成することができる。また、熱電変換素子の放熱
側からの熱が蒸発器の下流側(あるいは出口配管内)の
冷媒に与えられるので、圧縮機の入口における冷媒温度
(圧力)が上昇し、したがってその分だけ圧縮機の圧縮
作用を助け、圧縮機の負担を軽減し、熱電変換素子から
の放熱を有効に利用することができる。
As described above, according to the first and second aspects of the present invention, since the cooling capacity can be increased by the heat absorption side heat exchanger of the thermoelectric conversion element, the cooling on the refrigeration cycle side is correspondingly increased. It is possible to reduce the capacity, and it is possible to achieve a reduction in the size of the refrigerant circuit including the evaporator, the condenser, and the expander as well as the saving of CFCs. Further, since the heat from the heat radiation side of the thermoelectric conversion element is given to the refrigerant on the downstream side (or in the outlet pipe) of the evaporator, the refrigerant temperature (pressure) at the inlet of the compressor rises, and accordingly, the compressor temperature increases accordingly. Of the thermoelectric conversion element can be effectively utilized by reducing the load on the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の実施の形態を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of the present invention.

【図2】本発明第2の実施の形態を示す縦断面図であ
る。
FIG. 2 is a vertical sectional view showing a second embodiment of the present invention.

【図3】本発明第2の実施の形態を示す正面図である。FIG. 3 is a front view showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 扉 3 庫内 4 ペルチェ素子 5 吸熱側熱交換器 6 蒸発器 7 圧縮機 8 凝縮器 9 膨張器 10 蒸発器 11 ペルチェ素子 12 吸熱側熱交換器 13 放熱側熱交換器 14 冷媒配管 15 通気路 16 送風ファン A 気流 1 Casing 2 Door 3 Inside 4 Peltier element 5 Endothermic side heat exchanger 6 Evaporator 7 Compressor 8 Condenser 9 Expander 10 Evaporator 11 Peltier element 12 Endothermic side heat exchanger 13 Radiating side heat exchanger 14 Refrigerant piping 15 Ventilation passage 16 Blower fan A Airflow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却対象空間内に配置された蒸発器と、
前記蒸発器からのガス状冷媒を圧縮する圧縮機と、前記
圧縮機からのガス状冷媒を凝縮する凝縮器と、凝縮器か
らの液状冷媒を膨脹させる膨脹器とを備え、膨脹された
液状冷媒を前記蒸発器の冷媒上流側に供給するコンプレ
ッサ式冷凍サイクルを用いた冷却装置において、 熱電変換素子の放熱側に前記蒸発器の冷媒下流側を熱的
に結合させ、前記熱電変換素子の吸熱側熱交換器を前記
冷却対象空間内に配置したことを特徴とする冷却装置。
1. An evaporator arranged in a cooling target space,
A compressor for compressing the gaseous refrigerant from the evaporator, a condenser for condensing the gaseous refrigerant from the compressor, and an expander for expanding the liquid refrigerant from the condenser, the expanded liquid refrigerant In a cooling device using a compressor type refrigeration cycle for supplying the refrigerant to the refrigerant upstream side of the evaporator, the refrigerant downstream side of the evaporator is thermally coupled to the heat dissipation side of the thermoelectric conversion element, and the heat absorption side of the thermoelectric conversion element. A cooling device in which a heat exchanger is arranged in the cooling target space.
【請求項2】 冷却対象空間に連通する通気路に配置さ
れた蒸発器と、前記蒸発器からのガス状冷媒を圧縮する
圧縮機と、前記圧縮機からのガス状冷媒を凝縮する凝縮
器と、凝縮器からの液状冷媒を膨脹させる膨脹器とを備
え、前記膨脹された液状冷媒を前記蒸発器の冷媒上流側
に供給するコンプレッサ式冷凍サイクルを用いた冷却装
置において、 熱電変換素子の放熱側に前記蒸発器と圧縮機との間の冷
媒配管を熱的に結合させ、かつ、前記熱電変換素子の吸
熱側熱交換器を前記冷却対象空間内に配置したことを特
徴とする冷却装置。
2. An evaporator arranged in an air passage communicating with a space to be cooled, a compressor for compressing a gaseous refrigerant from the evaporator, and a condenser for condensing the gaseous refrigerant from the compressor. And a expander for expanding the liquid refrigerant from the condenser, in a cooling device using a compressor type refrigeration cycle for supplying the expanded liquid refrigerant to the refrigerant upstream side of the evaporator, on the heat dissipation side of the thermoelectric conversion element. In the cooling device, the refrigerant pipe between the evaporator and the compressor is thermally coupled to the heat exchanger, and the heat absorption side heat exchanger of the thermoelectric conversion element is arranged in the cooling target space.
JP27713695A 1995-09-29 1995-09-29 Cooling device and refrigerator Expired - Fee Related JP3703889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27713695A JP3703889B2 (en) 1995-09-29 1995-09-29 Cooling device and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27713695A JP3703889B2 (en) 1995-09-29 1995-09-29 Cooling device and refrigerator

Publications (2)

Publication Number Publication Date
JPH0996468A true JPH0996468A (en) 1997-04-08
JP3703889B2 JP3703889B2 (en) 2005-10-05

Family

ID=17579303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27713695A Expired - Fee Related JP3703889B2 (en) 1995-09-29 1995-09-29 Cooling device and refrigerator

Country Status (1)

Country Link
JP (1) JP3703889B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147621A (en) * 2006-09-19 2008-06-26 Integrated Dynamics Engineering Gmbh Environmental noise shielding apparatus
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
CN106196706A (en) * 2016-08-05 2016-12-07 吴小峰 Quasiconductor overlay cryogenic energy storage refrigerating plant and method of work thereof
KR20180038431A (en) * 2018-04-05 2018-04-16 엘지전자 주식회사 A refrigerator comprising a sub-stroage chamber and a cooling device
US10309696B2 (en) 2011-05-31 2019-06-04 Lg Electronics Inc. Refrigerator
WO2022136501A1 (en) * 2020-12-22 2022-06-30 Universität Stuttgart Heat exchanger, heat exchanger network, heat exchanger method, and external heat transfer device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
EP1946024A4 (en) * 2005-11-09 2012-07-11 Emerson Climate Technologies Refrigeration system including thermoelectric module
JP2008147621A (en) * 2006-09-19 2008-06-26 Integrated Dynamics Engineering Gmbh Environmental noise shielding apparatus
JP4680970B2 (en) * 2006-09-19 2011-05-11 インテグレイテッド ダイナミクス エンジニアリング ゲーエムベーハー Environmental noise shielding device
US10309696B2 (en) 2011-05-31 2019-06-04 Lg Electronics Inc. Refrigerator
CN106196706A (en) * 2016-08-05 2016-12-07 吴小峰 Quasiconductor overlay cryogenic energy storage refrigerating plant and method of work thereof
CN106196706B (en) * 2016-08-05 2019-02-12 吴小峰 Semiconductor overlay cryogenic energy stores refrigerating plant and its working method
KR20180038431A (en) * 2018-04-05 2018-04-16 엘지전자 주식회사 A refrigerator comprising a sub-stroage chamber and a cooling device
WO2022136501A1 (en) * 2020-12-22 2022-06-30 Universität Stuttgart Heat exchanger, heat exchanger network, heat exchanger method, and external heat transfer device

Also Published As

Publication number Publication date
JP3703889B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP2001147050A (en) Refrigerating system for refrigerator equipped with two evaporators
JP2003336957A (en) Machine room cover of refrigerator
CA2345766A1 (en) Refrigerated merchandiser system
JP3616174B2 (en) Cooling device, refrigerator, showcase and vending machine
KR970001837B1 (en) Refrigerator
JP3703889B2 (en) Cooling device and refrigerator
JP3635902B2 (en) Showcase refrigeration equipment
JP2003302117A (en) Heat radiation system for stirling engine and cooling chamber having the same
KR101544878B1 (en) Cooling system of air conditioner for vehicle
WO2009157318A1 (en) Cooling device
JPS6294415A (en) Cooler for vehicle
JP2003106688A (en) Refrigerating cycle
KR0156719B1 (en) Heat exchanger apparatus of a refrigerator
JP3789636B2 (en) Freezer refrigerator
JPH06207773A (en) Refrigerator
JPS6158745B2 (en)
JPH07318222A (en) Refrigerator
JPH0268214A (en) Refrigerator for vehicle
JP2003139439A (en) Cooling device
JPH05223440A (en) Cold/warm serving vehicle and cooler thereof
KR0114925Y1 (en) Refrigerating apparatus combined with refrigerant compression cycle and refrigerant absorptive cycle
KR20000044071A (en) Air conditioner using thermoelectric semiconductor
JP2003025833A (en) Refrigerator for vehicle
JP3817876B2 (en) Showcase refrigeration equipment
JP2000179961A (en) Refrigerating air conditioner for shop

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees